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ABSTRACT

Herein is modeled an R&D investment bBehaviour of firms in the light
of concept of self-catalytic process with a technological cycle.
This process is expressed in terms of a stochastic differential
equation, and its stochastic integration is shown to yield a new
skew distribution. This newly derived distribution of the R&D is
shown to fit the observed distribution. Its goodness of fit may be
interpreted that the self-catalytic process explains the actual R&D
investment behaviour. The properties of the new distribution are
discussed.



1. Introduction

The importance of R&D, especially the importance of R&D in private
firms is increasing. In fact, the share of R&D expenditure of private
firms in the whole national R&D expenditure is drastically growing in
France, UK and USA and it now exceeds 50% in UK and USA meanwhile it
has almost always exceeded 50% and. 70% in W. Germany and Japan, respec-—
tively. These figures indicate that the R&D investment or expending
behaviour of firms is decisively important today to the whole technology
development. (Usuwally, the word of R&D investment is used as almost
synonymous to that of R&D expending. Economic theories tend to use the
former while government statistics the latter.

An approach to R&D of firms is to dealiwith an R&D investment
problem of an individual firm as a project selection problem (e.g.,
Horesh and Ratz 1982) or as a timing problem (e.g.; Dasgupta et als.
1982). Another approach is to deal with an accumulation of individual
firm's investments. The latter approach is successful for the innovation
process as a diffusion process in terms of adoptiom or immitatiom of
firms (e.g., Mahajan and Peterson 1978, Jensen 1982). But, different
from innovations, the concept of adoption or immitation is not properly
applicable to the R&D problem. In addition the accumulation of R&D
expenditure of firms over time is usually not meaningful and its data
is unavailable. OQur approach herein is concerned with connecting an
R&D investment behaviour of single firms with a distribution of firm's
R&D expenditure. Aside a theoretical interest, a merit of this approach
follows from the data availability.

The data of R&D expenditure of individual firms were unpublished

till a few years ago though the financial data of each stockmarket-listed
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firm and the aggregated data of R&D expenditure in the private sectors
have been published. BSuch a limited availability of the data makes the
time-series analysis impossible and requires to infer an R&D investment
behaviour from the static data. A theoretical model which expléins a
statistical distribution is expected to help this inference.

As is easily expected from an analogy to the income distribution,
the R&D expenditure is quite unequitably distributed among firms. Aside
empirical distributions to describe unequitable distributions (e.g., the
Pareto distribution, the Lotka distribution), Aitchison and Brown (1957)
and Ijiri and Simon (1977) demonstrated that the log-normal distribution
and the Yule distribution, respectively, f£it unequitable distributions.

In this paper, the section 2 discusses the log-normal and Yule
distributions in the context of propertional growth process; the section
3 pr0posés a self-catalytic process as a model of an R&D investment
behaviour of firms, obtains an associated stochastic differential
equation and the stochastic integration as its solution; the section 4
derives a new statistical distribution therefrom combined with the
probability of a technelogical cycle; the section 3 discusses the
skewness of this distribution in comparison with the Yule distribution;
finally the section 6 shows its better fit to the actual distribution

than other distributions.

2. Existing Distributions for Proportional Growth
The proportional growth process in which larger ome grows more
than smaller one gives rise to skew or unequitable . distributions as

follows.

The log-normal distribution represents the proportional growth as
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Aitchison and Brown (1957, p 23) showed. Let the proportional growth be
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As the first term on the right side in the last formula is constant,
the left side is subject to the normal distribution by the central limit
theorem if Et's are sufficiently small and mutually independent for all
t. Thus Xn is subject to the log-normal distribution.

The Yule distribution is alsc deducible from the condition of
proportional growth as Ijiri and Simon (1977) showed. But its growth
process is different from the above one in that its dynamics is not in
time itself but in the total size. In other words the Yule distribution
igs associated with the prpcess in which firms grow proportionally as the
sum of firm sizes grows with no explicit reference to time (Eto and
Makino 1981). The Pareto distxibution can be viewed as a special case
of the Yule distribution (Ijiri and Simon 1977, p 75).

Qur new distribution to be proposed below is superior to the Yule

distribution in the naturality that the former is deduced from the

dynamical process in time itself and is superior to the Pareto
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distribution in the clear structure to express the causality. Its
superiority to the log-normal distribution will be empirically shown in

the section 6.

3. R&D Investment Model

A technological cycle between the progressive age and the stagnant
age is historically known and its relationship with social and business
cycles has been discussed under the name of Kondratieff Wave by, for
example, Kuznetz (1953). Mensh (1978) showed that the inmnovation cycle,
a part of the technological cycle, does not correspond to the inwvention
cycle, another part of the technological cycle, but rather corresponds
to the business cycle. This indicates that ,the innovation cycle might
mainly be based on the economic investments or needs. Sahal (1980)
presented evidences that the technological cycle causes the business
eycele. In sequel of this paper, however, no detail will be diScussed
about a causal linkage between the technological and the business cycle.
Instead it will formally be treated as being exogenous to the business
and management while semantically it allows for the economic interpre-
tation as will be mentioned below. Indeed, the technological cycle
appears uncontrollable and hence exogenous to each single firm at the
present state of knowledgé on technology among businessmen.

This cyecle is simplified and modeled as followsw Technodogy makes
an advance (as measured by the numbers of patents and researchers,
the amount of R&D expenditure and so on) in the progressive age while
it remains unchanged (for example, the R&D expenditure does not increase
and the numbers of patents newly acquired and researchers newly employed

are equal to the numbers of patents expired and researchers retired in



the same pericd) in the stagnant age. The historical experience that
technology has almost monotonically grown allows to neglect the case
where technology makes a retrogressi@n. This simplified model of cycle
may be termed the polarized monotone growth model.

_ The ways of growth is treated hereafter as being discrete (the
unit incrementalism assumption). For example, the numbers of patenFs
owned by a firm and researchers working for a firm increase one by one
(unit by unit) in a sufficiently short time period At and the R&D
expenditure increases unit by unit for a fiscal term however rapidly
technology may grow.

The R&D resources may be classified into the stocked or accumulated
one and the flowing or current one. The former is a result of the past
decision and activity like patents, knowhow, knowledge, laboratories,
organizations, researchers especially in the closed (e.g., li%etime
employment) personnel management system and sé.on. Among these, the
most impoftant one is knowledge which is often represented by patents
as legally authorized knowledge or hy researchers as the carriers and
creator of knowledge. The latter is represented by the R&D expenditure.

A rational R&D budgeting may he to expend money in accordance to
the existing level of stocked R&D resources in view of the potential of
progress. In other words; a decision is made to increase R&D expenditure
when the level of stocked R&D resources is high and the outlook is
bright (i.e., the technological cyecle is at the progressive age.)
Otherwise, either the stocked R&D resources or the R&D expenditure would
become idle. The brightness of outlook or forecasting mainly depends omn
the environment outside a firm while the level of stocked R&D resources

is an internal matter of a firm. The former will be nepglected until the



section 4, and the discussion in this section will be concerned with the
latter. In a chemical terminology, the presence of the stocked R&D
resources tends to promote the R&D expending as a catalyst promotes the'
chemical process. Of course the R&D expending raises the level of the
R&D rescurces. Hence this process may be called the self-catalytic
process. This may explain why the R&D expenditure has (almest) monoto-
nically increased under the recognition that knowledge has (almost)
always advanced. In this sense the monotone growth model can be
justified.

As stated just above, the catalyst is alsc the result of the R&D
expenditure. Hence the self-catalytic process can shortly be expressed
ag the autogenous process by skipping the intermediary catalyst. For
the mathematical simplicity, the expressions hereafter takes the form
of autogénous process while.it Semantically leaves the room for economic
or decision-behavioral interpretationm. -

The above discussions may be restated in a formal manner as follows.

G: Kx C+K (or Kt = G(Kt_l, Ct_l))
where G denotes the growth law of knowledge and maps from the knowledge
space K and the technological cycle space C to K with the bivalent C =

{progressive, stagnant} as simplified above.

C.))

D: Kx C-+E (or E, = D(Kt_l, ¢

where D denotes the R&D expending decision and maps from K and C to the

R&D expenditure space E.

These two togéther yield the short relatiomn

C.))

R: Ex C~+>E (or Et = R(Et_l, .

where R is interpreted as a relation that the R&D expenditure is decided

on the basis of the foregoing one and the outlook or forecasting of
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progressiveness.

A firm is said to be in state k at time t when its R&D expenditure
is k in an appropriate unit at t and is denoted by Ok(t) or O if the
reference'to time can be omitted.

Let Qk(t) denote the probability that a firm is in Ok(t) under the
condition that the firm is in its progressive age at t. To avoid a
trivial confusion, the progressive age is assumed to have the open énd;
it is [tl, tz) so that a firm is still in the progressive age at t + At
if it is so at t. Let a firm be in the progressive age in the discussion
below in this sectionm.

When a firm is in Ok(t), only either Ok_l(t—At) or Ok(t—At) is
possible under the unit incrementalism assumption. From Ok_l(t—At) it
transips to Ok(t3 with the probability l(k-f)Af, and from Ok(t—At)Wit
transits to Oy (t) with the probability 1- XkAt for A > O under the
proportional growth assumption.

Formally restated,

Q(t) = A(k-1)AeQy _; (c-At) + (1-Akde)Q (e-At)

Transferring a term from the right to the left side and dividing
the both sides by At,

{Q, (£)-q, (t-At) }/At = -AkQ (t-At) + A(k-1)Q_; (t-dt)
=-Ae{Qu (£) +0q} + Alk=1){Qy_; (t) +0,}

where °1 and 0, are negligibly small terms.
In the form of the stochastic differential equation,”

Q', (£} = —AkQ () + A(k-1)Q_; (£) (1)

Solving or integrating (1) leads to (2) as is shown by Feller (1950,

p 403),



Q(t) = _1Choq exp(-Ait) (Lmexp(~At)) (2)

where i denotes the initial level of knowledge (e.g., the number of
patents) owned by a firm. Under the unit incrementalism assumption,
i=1 (3)
Substituting (3) in (2},
Q (£} = exp(-At) (l~exp (-A£))* ™ (%)
This expresses the probability of a firm being in Qk(t) under the
condition that the firm is in its progressive age. But it is not yet

properly the probability under investigation.

4, Probability and Associated Distribution

Whether it is in the progressive or stagnant age at t varies among
firms due to the characteristics of each firm and is therefore treated
as a random variable, It may actually appear random to a firm in that
it is unpredictable to the firm. (Recall that the randomness is often
associated with the possibly deterministic but unpredictable event).

For these reasons the randomness model may be acceptable.

Let qk(t|c) denote the probability that a firm is in.Ok(t) under
the condition that the firm is in its progressive age at t. Then,

q, (t]e) = Q (£)r (&) (5)
where rc(t) denotes the probability that the firm is in its progressive
age at t.

The probability rc(t) monotonically corresponds-to the probability
s(r) that the length or duration time of the progressive age is T in the
firm. In other words, rc(t) is larger (smaller) when the duration time
of the progressive age is longer (shorter). Actually our concern is not

with the state at each time but with its integration over time up to



present., Hence the deep relationship exists between rc(t) and s(T1).
Let the transformation be investigated from s(T) to rc(é).

The fact that the domain of t = the domain of T = [{[start of
observation, present] allows the transformation in question to be simple

one. Notice that s(T) satisfies the regularity condition

0

fo s(t)dt = 1

while the meaning ofrc(t) indicates that

e+

! r (£)de > 1

Hence the transformation in question which maps the probability in
T to the probability in t may be linear with the transformation coeffi-
cient vy > 1.

rc(t) = vs(T) . (6)

The underlying idea of the formulation in (6) is that our concern
is not necessarily with the probability of state of each firm at each
time but with the probability distribution of state of firms over
time.

The distributions of duration times of telephone counversations and
the lifetimes of industrial products are often expressed by the exponen-
tial distribution with the following density for u > 0.

s(1) = pexp(-um) (7

The idea to express the duration by (7) is the perfect randomness
or the lack of causality in the duration of conversations. 1In fact, (7)
is the solution to the following differential equation of the comstant
rate of accident as 1s stated e.g., by Yoda (1972, p 15).

as(t)/dt = -us(t)

where S(T) denotes the rate of survival of conversation. The same

-9 -
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idea will be applied to the duration of progressive ages. Now, using (6)
and (7} and recalling that Yy maps a function in T to a function in t,
r (t) = YWexp(~ut) (8)
As is well known, the mean of (7) is 1/u. Using this fact, let a
constant parameter O be defined as the reciprocal of the product of the
growth parameter A and the expected duration time of progressive age
1/u. Note that p > 0.
P = WA (2
The definition (9) suggests that the growth is faster (slower) when
the value of o is smaller (larger).

Now let p(k) denote the probability that a firm is in O, at present.

k
Note that p(k) is equal to the expected relative frequency of such firms
at present. In the polarized monotone growth model according to which
a firm remains in the same state in the stagnant age, the effect of the
stagnant age on p(k) is null and hence will be ignored below.

Now, let PU(k) denote the probability that a firm is in the states
of 0,  for all j =0, 1, .... at present or equivalently denote the

+J
upper cumulative relative frequency of p(k), namely,

pU(k) = T p(icH) (10)
j=0

By definition,
U U
pk) = P (k) - P (k+l) (11)
As the polarized monotone growth model allows to ignore the effect
of the stagnant age on the present state, only the effect of the progres-

sive age is considered in obtaining p(k) and PU(k). Therefore,

U _ o0
P(x) = S q (t]e)dt (12)

- 10 -



The right side in itself denotes the probability that a firm has

once been in Ok(t) for some t in [O,®]. In the monotone growth model

with the unit incrementalism assumption, a firm can be in Ok+" j=20,
|

1, ... only if it was once in Ok' Hence the right side also denotes

the probability that a firm is in O » J=0,1, ... at present.

k+j
By (12), (5), (4} and (8),

o

PU(k),= fﬂ exp(-Kt)(l-exp(—At))k—lYu exp (~ut)dt
1 - 1 -
= Ylifo xk l(1-—x)u/}\dx/A = Ypfo xk l(l—x)pdx
= YpB(k, p+1) = vy (k) (13)
where

x = 1 - exp(-At), dx = lexp(-At)dt
1 k—% 0

B(g, p+l) = fox 1—x)"dx = (k)T (p+1) /T (ktp+l)

y(k) = p8(k, p+1)
with B and ' denote the Beta and Gamma functions respectively.

It deserves mentioning that y(k) is the density or the relative
frequency of the Yule distribution.

By the regularity condition of a statistical distribution,

U

P(L) =1 (14)

Recall the following properties of the Gamma function;

T(x+l) = «I'(x) and Ftl) =1

Applying these properties to the left side of (14) with aid of (13),

1=yl (DT (p+1) /T (p+2) = vpl(p+1) /{(p+1)T (p+1)} = yp/ (p+l)
Hence,
Yy = (ptl)/p = 1+l/p = 1 + Xu (15)

Now, by (13),

- 11 -



pUk) = (o+1)B(k, p+l) = (PHLIT (k)T (p+L) /T (kbp+1)

=0(p+1) T T () /{(k+p) T(kt0) } = p(p+1)B(k,p)/ (k+0) (16)

Then, by (11), (16) and the basic property of the Gamma function,

(LT (RIT(p+1) /T (ktp+l) = (p+1)T(k+1)T(p+1) /T (k+0+2)

p(k)
(p+1){T ()T (p+1) /T (ktp+l) - kI (k)T (p+1) /{ (kto+1) T (k+p+1) }}

il

(o+LIT () I (p+1) { 1-k/ (ktp+l) /T (lebp+l)

(p+l)2F(k)F(D+l)/{(k+p+l)F(k+p+l)}

(0+1) 2Bk, p+1)/ (ktprl) = (p+1)PU (k) / (ot p+L) (17)

The combination of (17) and (16), or perhaps more preferably, the

combination of (17), (14) and (10) allows to derive p(k) explicitly.

(1) = (p+l)'1/(p+2) = (p+1)/(p+2) = 1 - 1/(p+2) (18)
p(2) = (p+1){1-p(1)}/(p+3) = (o+1)/{(p+2) (p+3)} , (19)
p(3) = (pH){1=(p (1)4p (2))}/ (p+h) |

= (p+1) [{(p+3)- (p+1) } / {(p+2) (0+3) }1/ (p+4)

= 2(p+1) /{ (p+2) (p+3) (p+4) (20)
p(4) = 6(p+L)/{(p+2) (p+3) (p+h) (p+5)} (21)
p(5) = 24(p+1)/{(p+2) (p+3) (p+4) (p+5) (p+6) (22)

(See the Appendix for the detail)

Generalizing this series,

p(k) = {(k-1)!(p+1) }/{(p+2) (o+3) ... (p+k+1) } (23)

Let mp denote its mean. Then, by (23),

m, = Z [{k! (1) }/{(p+2) (o+3) . .. (p+k+1) }] (24)
k=1

Qur new distribution with (23) as the density or relative frequency

will be referred to as the post-Yule distribution hereafter.

- 12 -



5. Properties of the post-Yule Distribution
It is empirically kmown that (25}, (26) and (27) approximately
hold for many cases of distributions in asset, income, word frequency

(Ijiri and Simon 1977), scientific papers (Yablonsky 1980) and so on.

1x1/2<ps1lx2 ‘ - (25)
1/2 - 1/4 < £(1) < 1/2 + 1/4 (26)
1/k% < EQ)/E(L) < 1/k for 2 <k < 4 or 5 (27)

where f denotes the relative frequency which equals the density p.

These relations (25) -~ (27) are satisfactorily counsistent with
(18) - (22). 1In this respect the post-Yule distribution derived in the
section 4 may be useful in describing the aforementioned distributions
ags well as the distribution of R&D expenditure of firms. These distribu-
tions are expected to be momotone decreasing and to be éonvex (i.e.,
diminishing decrease). 1In fact, the post-Yule distribution is strictly
monotone decreasing. To see this, by (23),

[ =1 (o) { Cotet2) -k} 1/{ (o+2) . . . (p+k+2)

p(k) = p(ktl)

(k-1)! (p+1)/{(p+3) ... (p+k+2)} > O (28)

The convexity can be seen by examing the sign of second difference
" which is the discrete version of the second derivative. That is, by
using the above result,

{px)-p(k+l)} - {p(kt+l)~p(k+2}}

(k=1) ! (p+1) /{ (p+3) . .« (ptk42) }= k! (pHL) /{ (p+3) ... (p+kt3) }

[(k=1) ! (p+1) { (pHe3) -k 1/ {(p+3) .. . (p+k+3) )}

n

{(k=1) 1 (oH1) }/{ (pt4) o (pHc+3)} > O

This implies the diminishing decrease or the convexity of the density

function of the post-Yule distribution.

- 13 -



As the k-power of p occurs in the denominator while a single p
occurs in the numerator on the final right side in (28), the rate of
decrease is diminishing as p is increasing for k fixed. In other words,
the density is higher for large k when p is larger. This means that the
post-Yule distribution is skewer when p is smaller.

These facts stated above indicate similarities of the post-Yule
distribution to the Yule distribution.

Let the post-Yule distribution be compared with the Yule distribu-
tion. For the purpose of comparison, the same value of p is assumed for
the both for the time being. Let YU(k) denote the upper cumulative

distribution of the Yule distribution. Namely,
U =)
Y (k) = 2 y(I)
. j=k
Naturally like (11),
g @) = Y0(k) - YO (k+l)
Then, by the properties of the Beta function (e.g., Ijiri and Simon
1977, p 67),
U
Y (k) = pB(k,p) = ol'(K)T(p)/T (k+p)
Hence, by (16), for the same value of p,

pUk) - Vk) = p(orLITER)T(p) /{ (ktp) T (ko) } ~ oT (k)T (p) /T (k+p)

pT (k)T (p) { (p+L)/ (etp) = 1}/T (ktp)
p(1-K)T (k)T (p) /{ (kt+p) T (ktp) }

=p(1-k)B(k,p) / (ktp) (29)

Therefore, for the same value of p,

U 0]

P (k) <Y (k) fork>2 30)
The inequality (30) implies that the post-Yule distribution has

less heavy right tail, or more precisely, has a smaller value in the

- 14 -



expected maximal occurrence in the extremal distribution for the same

value of p.

Naturally, by (29} and the regularity condition,

p'(1) = ¥0(1) = 1

Analogously to (29), (see the Appendix for the detail)

PUCerl) — YO (tD) = ~pk2B(k, )/ { (kbp) Cetpbl) } (31)

Using (11), (28), (29) and (31), (see the Appendix)

p(k) - y(k) = pB(k,p) (p+l-kp) /{ (k+p) (ktp+l)} (32)

From this,

olk) < (=,>) yk) for k> (=,<) 1+ 1/p (33)

This relation implies that the density of the post-Yule distribution
is smaller (larger)} than that of the Yule distribution for large (small)
value of k for the same value oﬁ p and hence that the fo;mer is.less
skew than the latterlfor the same value of p. |

Let Ly denote the mean of the Yule distribution and let L = [1+1/p]

+1.
m, - my =kElk{P(k) -y}
-1 @
= kgl kip(k) - y(k)} +k£Lk{p(k) - y(k)}

The first term on the right side is finite and the second term is
negative and finite, too,by (32) and (33). As mn, is finite, mp is also
finite.

The comparisons made above were based on the condition that the
parameter p assumes the same value for the both distributigns. From a
semantical point of view, however, the parameter P of the Yule
distribution (denoted by pY hereafter) does not mean the same thing as

the parameter p of the post-Yule distribution {(denoted by pp hereafter).

- 15 -



In deriving the Yule distribution, l/lemeans what ) means in (1) to
derive the post-Yule distribution. Hence, by (9), the following
equation should hold in order that Py and pp have the same interpretation.

Py = P,/H (34)

Recalling tht 1/u means the average duration of the total progres-
sive age of a firm in [0, o], it is very likely that

1/u>1 oru<l

Hence, it is very likely by (34} that

PY:>DP

As the parameters pY and pp are smaller (larger), the Yule distribu—
tion and the post-Yule distribution are skewer (less skew). Hence the above
statements that the Yule distribution is skewer than the post~Yule
distribution under the condition that pY = pp should not be generalized
beyond this condition. But the discussion on the finiteness of m, is not
affected by the interpretation of p and it is valid no matter what p

means.

6. Empirical Analysis

The pharmaceutical industry is known as highly R&D intensive and is
the highest (5.45% in 1980 in Japan) in the percent of R&D expenditure
against the net sales among all the industrial sectors (the second high-
est one 1s the electronic and communication equipment sector with 3.94%
in the same period). TFor this reason the pharmaceutical industry is
gselected for the empirical analysis. The data ig taken from Nippon
Keizai (1982) which describes the R&D expenditure of 26 pharmaceutical

firms in 1981 out of the 38 stockmarket-listed pharmaceutical firms.

- 16 -



For the purpose of comparison, the log-normal distribution, the
Yule distribution and the exponential distribution are selected. The
former two are selected as the distributions with the structure of
proportional growth as discussed in the section 2 and the last one is
selected as a skew distribution with the simplest mathematical
structure. As the last two distributions and the post-Yule distribution
under investigation are all the single parameter distribution, the
parameter of each distribution is evaluated from the observed mean value.

Formally, the following equations are used to evaluate the parameters

respectively.
m, = pY(pY—l) for the Yule distribution
m, = l/ue for the exponential distribution
m, = mp for the post-Yule distributiom

where m, denotes the observed mean value} pY and Ko dendte the parameters
of the respective distribution and m, is defined by (24).
This evaluation method by the mean has a merits of the unbiassness
as well as the computational. .simplicity. On the other hand the log-
normal distribution has two parameters and therefore needs two equations
for the evaluation; one on the mean as above and the other on the
variance (the equation between the theoretical and the observed variances).
The degree of fit beéween the theoretical and the observed distribu-

*
tions is measured by 8 , the square sum of errors.
& oz
¥ = TP -R() Y
k=1

where F{k) and R(k) denote the theoretical and the observed cumulative

distributions respectively.

Table 1 shows that the post-Yule distribution fits to the observed

- 17 -



one the best among the four. The second is the Yule distribution
followed by the log-normal distribution as the third which is followed
by the expomential distribution as the fourth all with the nearly equal

interval (about 0.025) between the adjacent ranks.

7. Appendix
p(4) = (p+L) {1-p(1)-p(2)-P(3)} / (p+3)
= (p+1) [1/ (p+2) = (p+1) /{(p+2) (p+3) } - 2(p+1) /{ (p+2) (p+3) (p+4) }1/ (p+5)
= (p+1) [{(p+3) (o+4) } = { (p+1) (p+4)} {2 (p+1) }]1/{ (p+2) (p+3) (p+4) (p+5) }
= 6 (p+1) /{ (p+2) (p+3) (p+4) (p+5) } (21)
p(5) = (p+l){1-p(1)-p(2)-p(3)-p(&)} / (p+6)

(o+1) [1/ (p+2)=(o+1) /{(p+2) (p+3) } = 2(p+1) /{ (p+2) (p+3) (pt+4) }
=6 (p+1) /1 (042) (p¥3) (p+4) (p¥5) F1/ (p+6) = 24 (p+1) /1 (pH2) (p+3) (p+4) (p+5) (p+6) }
(22)

PU (kL) - YO (k+l)
= plp+l)r (k+L)T(P) /{ (L;+p+l)F(k+o+l)} - oI (kt+1)T (p) /T (ktp+1)
= ol (k+1)T (p) { (p+1) / (k+p+1) - 1}/T (k+p+1)
= —pkI' (k+1)T () /{ (kto+1) T (ktp+1) }
= —pk’T ()T (p) /{ (tp+1) (o) T (ko) }

= ok (k, ) /{ (tp) (ltohl) | (31)

p() = y() = {2700 ~ 2Pt } - {37 ) - ¥ k) } = (2¥ ) - YU () }- {BV () -1 Cer) }
= {D(l-k)B(k,p)/(k+p)}"~{-kaﬂ(k,p)/{(k+p)(k+p+l)}}
= pB(k,0) { (1-k) + K>/ (kgL }/ (k)

= pRk,p) (ptl-kp) /{ (k+p) (k+p+1)} (32)
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Table 1.

Degree of fit for pharmaceutical firms

R&D expenditure

(million yen)

Distributions

(square sum of errors)

max

mean

min

post=Yule | Yule

log-normal

exponential

27,000

4,360

316

0.046

0.069

0.097

0.119
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