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1. It now seems to be widely recognized that the internal rate of

return of an income-earning investment may have multiple wvalues if some

of the prospective net yields are negabtive and it does not serve, in
general, és a selection criterion among possible investment project, nor
can the Keynesién schedule of the marginal efficiency of capital give an
'uﬁéQuivocal measure of the level of aggregate investment at a given rate

of interest (see Pitchford and Hagger [T7]). It has been argued so far,
to overcome this.difficulty, that if it.isﬂﬁracticable to termin;te,
without any essential cost, an investment project at any stage during its
lifetime and if the investor chooses the truncation period so as to maximize
the internal rate of return (see Soper [10] and Karmel [k]), or if the
investor chooses the truncation period so as to maximize the present value
of the project (see Arrow and Levhari [1] and Flemming and Wright [3]),
theh the internal rate of return is unique. Moreover, Soper's maximal
rate of return is equal to the one found by Arrow and Levhari (see Norstrgm
[6]). Therefore, as long és an investment project is costlessly terminable,
the present value is greater or smaller than the replacement cost according
as the rate of interest is smaller or gfeater than the internal rate of
return, respectively. That is to say, the two selection criteria are
consistent for such a single investment project.
The main purpose of this paper 1s to investigate the significance of

the intermal rate of return of the investment project ~-- not necessarily



terminable, and to examine the role of the internal rate‘of return in the
selection among various investment projects. The assumption of terminable
investment mesns, to be more precise, that it is possible to truncate the
cash flow of the preject in any period leaving the cash flow up to the
point of truncation unaffected.l At the first gleance, this assumption is
similar to the assumption of free disposal in production theory, but these
two are quite different.2 It is plausible, I believe, %o assume that we
can freely dispose of positive net yields in any period of time but not
negative net yiélds. The latter may be dispoéed of only iff%e‘pay.some
"ﬁiﬁding—up cost', and this means that the cash flow of the projeet up to
the point of truncation will necessarily be affected.3 At any rate, when
the truncation.of a project involves co;t gﬁbstaptially or & projéct can
not be truncated we have the possibility of multi-valued internsal rate of
return. In this paper, we wish to work out a solution of this problem —-
the problem which the economists could not help but puzzle over thus far.

Some economists, notably Samuelson [8], adopt the maximization of
present value with market rates of discount as a guide in meking the
selection, since in a perfect capital market the investment project must
have a market value equal to the capitalized wvalue, which is uniquely
determined. But when = p?oject has multiple values of the internal rate
of return, it is possible to face with the situation that the present
value is less than the supply price at a given market rate of interest,
whilst an internal raﬁe is greater than the market rate (see, for example,
Karmel [4]). Can we conclude by the present value alone that the project
is not worth undertakiné? Or can such a situation really occur in the

perfect cepital market? Is it not possible to adopt the project to earn



the positive difference between the maximal internal raté and the market
rate as an additional premium? We are unable to answer these questions
unless we clarify the true profit rate of the project, which, whenever the
project is undertaken, is expected to equal the market rate of interest
under ideal conditions (i.e., the conditions that everyone can bhorrow or
lend in unlimited amounts at the market rate and evéryone has free access
to the project). It is also well known that a similar dilemme occurs
when we compare two projects even if the present value of each project is
a monotcnic deereasing function of the interest rate. This is so, because
'thé'present value of one project exceeds that of another at a market rate
of interest but the internal rate of return of the latter may exceed that
of the former (see also Karmel [L4]). C;n éﬁis situation also occﬁr in a
perfect capital market? It is true that the asssumption of terminable
investment gives a unique discount rate or a well-behaved present value
function, but when one compares two different projects, each being optimally
truncated, the same dilemma still remains. Indeed, the assumption of
terminable investment is not only unacceptable bui also unhelpful.
Besldes, an n-period project, if terminable in any period, contains n-1
truncated projects, and the search for an optimal truncation period is
the selection of an optimal project among these special n projects
according to one criterion, either the present value or the internal rate
of return. Strictly speaking, not only the above dilemma may be embraced
in the process of selection, but the selection itself is logically
incomplete without an appropriate theory of investment selection.

The problem of making the selection, or the maximum and the minimum

problems subject to constraints on the decision variables, occur very
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frequently in many branches of economics. It is strange %hat no inquiry
has systematically been made so far in the field of investment theory. We
wish to show that once we apply the thecry of efficient program of capital
accumulation (see Dorfmen, Samuelson and Solow [2]) to our problem, it is
a fairly simple matter now to develope the theory of investment program,
meking it c¢lear how the internal rate of return is to be defined or how
the discount rates of various projects play a role in the selection of
investment. BSectlon 2-will discuss the simplest possible linear model of
investment over'time with a single project, tﬁe case corresﬁénding.with a
single dynamic process of production, a so—called Ramsey model (see [2],
section 11-2). Section 3 will introduce various investment alternatives,
and the orderiﬁg Ef projects will be ouf mé;ﬁ concern. We shall see that
the efficiency prices of cash flows generated from investment will be cast

as the leading actors in the both sections.

2, It is our purpose in this section to deal with a single project,
describe our method of analysis and derive the internal rate of return in
a precise manner. Let us consider an investment project having a finite
life of n periods. Let S be the replacement cost (supply price) of
the asset and Qt ve the expected net yield, positive or negative, from
the asset in period t. If we are not concerned about how concretely the
net yields arise, a.complete history of the project is characterized only
by a cash flow (-8, Ql’ cees Qn). Traditionally, the internal rate of
return, v, 1is defined as a sclution of the equation

Q Q Q
1 2 - + 11
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where Qn is assumed to be nonzero, otherwise the project essentially
reduces to an n-~l period project. However, this definition of the internal
rate of return, which is regarded as a measure of profitebility, has been
accepted as a matter of course and, as far as I knowy; no one has ever
discussed its exact meaning or wvalidity. It is no wonder that one is
bewildered when (1) gives multiple solutions.

Multiply the both sides of (1) by (l+r)t, obtaining

)t—l

S(l+r)t = Ql(1+r + ...+ Q£ + wt’ . - - . (2)

where 0 <% £n, and Wt is the present value of the project at the
end of the t' period from its inception, i.e.,
Q
W_t='ﬂ+...+—Qn’—_E'. e e (3)
1+r (1+r)

W% is an internal value of the asset, since 2ll future yields are

discounted at the internal rate, or since the t year old capital-asset .
is not always marketablé. 'We will see from (2) that the rate of earnings
on the initisl outlay S will be r, or what amounts to the sg@e'thing,
S can grow potentially at the rate 1r, provided that the net yield QT

for 1 <1<t, if'positive, is not drawn but is expected to earn at

HA

the rate r, and that the cost of capital is r when QT is negative
or when discounting the future yields to compute Wﬁ. In order that the
rate of earnings on QT is r or the opportunity cost of capital is r,
such an investment opportunity must be open to the investor. If only one
kind of project is available, then there is no alternative but to let the
accumuléted funds in the course of the project be reinvested in the same

kind of preoject. Again these funds earn at the rate r if their net

yields do the same, and so on. This circular argument does not clarify



the significance of the internal rate, and of course, equation {2} holds
not only for r but for any other solutions of equation (1)}, whether
positive, negative or even complex, although most of them are usuaily and
traditionally disregarded without any justifiable reason. BStill, we see
at least that the reinvestment of the net yields seems to be a key to our
problem,5 and we will make the following assumption: -

Assumption 1. If (-8, Qs =5 Q,) is a project, (-us, UQq s s ue, )

is also a feasible project for w2 0, where u stands for the

activity level or intensity of the original project.
This means that if there isla feasible project installing one hundred new
machines and making a series of net ylelds over n periods, then it is also
feasible to install, say, two hundred (fifty) new mechines of the same kind,
doubling (halving) the net yield in each period. The characteristics of
this assumption is twofold. One is the divisibility of the project. If
this is not possible, u ﬁﬁst be an integer. But the assumption of
divisibility is an idealization often made by economists in the‘thgg?y‘of
production “or consumer demand. Another is that the project enjoys the
constanfﬂ;eturns to scalé. This is a basic feature adépted in linear
economic models, especially in the fields of modern capital theory and
of.production theory.6

Let us now imagine a firm endowed with a single project only and
acting in the investors' interests. The investors are interested in
profits over time in some sense. Let uy be the zectivity level of the
project in pericd t. The program of the firm, i.e., its complete

schedule of cash flows between the enterprise and the investors, is

completely specified by the list of activity levels, Ugs Uy Ups see o



In fact, Suo is an amount of money invested in period 0, and Qluo - Sul
shows & cash flow in period 1, and so on. Let us denote by c; a cash
flow, positive or negative, in period t. Generally, the relation between

a sequence of activity levels and a feasible seguence of cash flows will

be represented by the following inequalities: '
Cg £ ~ Buy,
¢y £ Qup - Sy
ey S QoUg + Qquq - Suy, - « - .. (W)
Co e,
and ¢y 2 Qnut—n + oo F Qlut—l - Sut,

t=n, n+l, ... .
A positive c, means ean outflow of money, and we draw an amount of Cy
in period t out of the project. If Cy is negative, it means an inflow
and we put money in the enterprise. If a project is profitable in the
= sense that one has at l:aast Ql + Q2 + ...+ Q‘n > 8, then there exists
& sequence of activity levels for which e, is positive for al;; t 2 n.
For example u, = 1l for all t. For a given feasible sequence of cash
flows, if cne cannot increase c, in period t withﬁut decreasing some
other cy in period t, then the sequence of cash flows is said to he
efficient. It is obvious that all the inequalities in (%) must hold with

strict equality for any efficient programs. Otherwise, one can at once

increase some ¢

T We will assume

without affecting any other ct's.
that the firm, meximizing its some objective function, chooses an optimal
program among the efficient programs of cash flows. In fact, if an optimal

program is chosen, it must be efficient, since, other things being equal,

a smaller inflow or a greater outflow is always preferred by investors.



Let us now consider a set of feasible cash flows and the efficiency
frontier of the set. To make matters simple, we consider, to start with,
t =0, 1 only and a feasible set of (co, cl) in two dimensions, and
draw the possibilities open to us. We have from (4) that

ey £ - Suo and cq S QluO - Sul.

cl+Sul cl+Sul

Fig. 1.1 Fig. 1.2
Figure 1.1 is drawn on the assumption that Ql > 0, while in Figure 1.2
we assume Q, < O. The efficient point is (0, 0) only in the latter.
If we consider t =0, 1, 2”.oniy and a feasible set'of (e, el
specifying uy =1 or ¢y = - S, then we have from (4) that .

¢ £ 9 -8y and oy 5@+ Qu - Su,.

c2+8u2 c2+Su2

N :

Fig. 2.1 Fig. 2.2



Figure 2.1 is drawn on the assumption that Ql >0 and Q2 < 0. Point
g represents the coordinate (Ql, QE)' In Figure 2.2 we assume Ql < 0
and Q2 > 0. In Figure 1.1 or 2.1, the slope of the efficiency frontier,
namely, the marginal rate of substitution between 5 and ¢y, OF between
¢y and CyH will respectively be given by
- acl/aco = Ql/S for u, > 0 or - 302/3cl = Ql/S for u, > 0.

At the origin of Figure 1.1 or 1.2, where Uy = 0, or at point gq in
Figure 2.1 or 2.2, where u = 0, the mérginal rate of substifution is
not well defined, But we can draw a price lire passing through the origin
or q. Let (vo, vi) be a nonnegative price vector, which 'supports'
the feasible set of (co, cl) at point 0. We must have vo/vl P Ql/s
in Figure 1.1, but we need not consider such restriction in Figure 1.2,
since this is automatically satisfied by VG/Vl 20 and Ql < 0.

When we consider t =0, 1, 2, we can actually draw a feasible set

“of | ) or the efficiency surface in three dimensions, or a

0% 1> 2
feasible set of (co, cl) for some constant ¢, + Suy. It.is important

to notice that the marginal rate of substitution between o and )

differs from Ql/S ‘or the range of vo/vl differs from the previous
one. In fact, for any efficient point of (co, e, 02)’ the first three

inequalities in (4) must hold with strict equality, and whenever vy > 0

and ul > 0 hold, it is possible to differentiate them totally. Noting

that s + Su2 is constant, we obtain

deg = - 8duy, dey = Qqduy - Sduy, and 0 = Qyduy + Qpduy,
which in turn imply - Bcl/aco = (Ql + SQ2/Q1)/S. it is easy to see that
if we consider t =0, 1, 2, 3 then - 302/8cl is also (Ql + SQ2/Q1)/S.

In general, we can find the feasible and the efficient cash flow programs
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extending over any number of periods. The marginal rate of substitution

between any two Cy and . continues to vary and we must keep revising,

say, Figure 1.1 accordingly. The correct value of the marginal rate of

substitution between ¢ and ¢ is not obtained unless we consider an

0 1

infinite number of periods. To illustrate this situation, suppose that
we are given a three period project, (-8, Ql’ QE’ Q3), and we consider
t =0, 1, 2 only. We then have from (k) that

Cq < - Suo, cl b Qlu0 - Sul and s by Q2u0 + Qlul.
Since we do not consider t = 3, L4, ..., we cannot take into account

0

) does not reflect what we reelly can do or the true

Q3u0, qul and Q3u1 even if u and ul are positive. A feasible
set of (co, s Cp
structure of feasible cash flows generated from the project. Thus, we
must consider t =0, 1, 2, 3, b in order to zllow for what we have
neglected before. We will now add two inequalities:

3 £ Q3¥p * Qo * Qyu, - Sug end ¢y g Qg *+ Quup * Qpus.
Since activity levels Uy and u3 appear in these inequalities, and .
this'time. géue, Q2u3 and Q3u3 are not taken into account, we have to
extend the mumber of periods again. But lengbhening our time period turns
out zlways to add new activity levels, and we never seem to get enough
inequalities. Only one except_ion is the case of one period project, where
Ql/S determines the rate of return at once. This argument is closely
akin to the one discussed by Samuelson [9] in his overlapping generation
model where one must have an infinite time horizen for the determination
of the rate of interest.

To make our analysis more systematic, considering + =0, 1, ..., T,

let us seek to maximize SuT with Cgys Cps +++5 Cp all being feasible
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and prescribed. We wish to maximize

Sup
subject to (4) for £+ =0, 1, ..., T, namely,
- Su0 = Cqs
QluO - Su-l é clg + e e (ll-.l)

Whpp * oot Qo - Sup 2 Cp,
u 20, t=0,1, ..., T. coeeo(h2)

There corresponds a dual minirum problem of the form

- VOCO - vlcl - e VTCT

to be a minimum subject to

- vtS + vt+1Ql + ... 0+ vt+nQn <0,
T = O: l: cvey Ten,
- fT—n+1? oo v vy 4 £ 0, .« . (5.1)
= Vg8t ey 20, | -
- vTS £ -8,
vy 2 0, t=0,1,...., T. . .. (5.2)

Since we prescribe a feasible cash flow (co, cens cT), the maximum
problem, of course, has & feasible list of activity levels. (For example,
let us choose u, = l for t=0,1, ..., T, and consider a cash flow
satisfying (4) as equations.) The first inequality in (4.1) shows that
any feasible Ug is bounded. This together with the second inequality
shows that g must be bounded. Repeating the same arguments, we see

that any feasible is bounded. Thus, S being bounded, the
» .th uT

maximum problem has an optimal solution. From the duality theorem of
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linear programming, the dual problem also has an optimal solution and the
values of the two problems are the same:

- VoCg ~ V9C1 — -+ - Vpcq = Suq. . . . (B)
The solution of the dual problem v = (VO, ey VT) is regarded as a
price vector: Vi is a shadow price (an internal price) of money in
period t within the enterprise. We see from the last inequality of
(5.1) that v,

T is always positive, and we mey assume without loss of

generality that Vip = 1. (6) may be rewritten as

- = + ...
vol-cg) = vyey + vpleq + Sup),
where v is understood as a discounting price; the value of the initial
outlay, vO(—cO), is equal to & sum of discounted values of future cash
flows, (cl, ey cT+SuT). Specifically, the internal exchange ratio

between the moneies of two pericds, Vf/Vf now corresponds with the

+1°
marginal rate of substitution between cy and Cig As will be seen in
the sppendix, there exists ; positive price vector assoclated with the
efficiency frontier of the set of cash flows, the price vector 'normg;'
toc the frontier or 'supporting' the feasible set. This positive optimal
price vector v in the minimum problem, however,.may nét satisfy all
inequalities in (5.1) with strict equality. For example, suppose that

Ql < 0. Then - vT—lS + Ql < 0 holds for any nonnegative v, and

T-1°*
we have uT—l = 0 for any optimal solution of the maximum problem as is
the case with Figure 1.2, where T = 1 and we must have u, = 0 (since
the origin (0, 0) is the only one efficient point).

Suppose that we can find a positive price vector v for which the
inequalities in (5.1) are satisfied as equations except possibly for the

\

last k inequalities and that these Xk inequalities do not depend on T.
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A necessary and sufficient condition for this to be true is that equation
(1) has & root r > -1. (See Theorem 1 in the appéndix.) In this case

we have the difference equation of order n for the unknown vyt

= VB b V@ e b v, Q0 =0, .. (T)
t=0,1, ..., v, v =min (T-n, T-k),
where v,

% > 0, and the last n inequalities in (5.1) give the conditions

which must be met by the initial condition 1) of

(Vp_pe1s +ve Vpoyo
this difference equation. Notice that, as long as (7) holds, efficient is
any cash flow (co, ey cT) satisfying (4.1) as equations for any non-
. negative u = (uo, cees uT) such that u =0 for t > v, including
.u=0,u=(1, 0, ..., 0), ete. This means that we may freely choose
w2 0 for 0 <t <£v so that the net yields of a project need not be
reinvested, although potentially it is always possible to do so0. As we
- mentioned before,' vb/vl will very as we increase T, and its 'correct'
- value is not obtained uﬁtii T goes to an infihify; It islinteresfing to
realize that the characteristic equation of (7) is given by-
-S+qu+...+unQn=0, ... (8)
which, upon putting u = (l+r)_l, is identified wi£h our familiar
equation (1). It is natural to conjecture that as T goes to an infinity,
the marginal rate of substitution between cq and ¢y, or vo/v .
converges to a unique positive (l+r). Whence this r is to be explained
as the genuine internal rate of return, since vO/vl is an internal
exchange ratio between the moneies of periods 0 and 1. As we will give a
rigorous proof in the appendix, vo/vl approaches a maximal (1+r)

satisfying equation (1). Since we may choose w, freely, the internal

rate of return is determined independently of the time pattern of investment.
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The following example illustrates that even if (1) produces multiple
values of discount rate, ﬁhe internal rate of return is uniquely deter-
mined from {7).
Example. We will cconsider the same example as in footnote 3.
§ = $4,000, @ =$13,200, @, = -$14,510, Qg = $5,313.
This gives three discount rates, 5, 10, and 15 per cent. It can be showed

that there is a positive price vector, (vo, cees ¥

T)’ satisfying all the

inequalities in (5.1) with strict equality for arbitrary T (see propo-
sition (D) in the appendix), so that efficient is any cash flow, meeting
(4.1} with striet equality for some activity 1ist. In fact, if T = 3,
we consider three equations to calculate the internal prices:

- 4,000v -~ 1k,510 = O,

2

and - h,OOOVO + 13,200v,

) = (13.32375, 7.2625, 3.3). Generally, when T is

2
- lh,SlOv2 + 5,313 = 0.

+ 13,200 = 0, - h,OOOvl + 13,200v

We obtain (vo, Vs Y,

large, it is convenient to use the following method to calculate vt's.

Let us put ai = Qi/s and consider the following matrix:

al 1 0
A = a2 0 1
ay ‘00
Premultiplication of A by (vT, 0, 0) gives (vT 1> Vo 0). Repeating

the same procedure, it will be seen that premultiplication of Ar by

(vT, 0, 0) gives (vo, Vi v2). When T =64 or T = 128, we obtain,

normalizing v, = l, +that (VO

(1.1562, 1.156, 1) or (1.1502, 1.150, 1),

s Vq» V,) is almost equal to
respectively. Hence, the internal rate of return is 15 per cent. Also

let us put Uy = Vg Uy = Vi g5 eess Up = V. Then, since (vo, cees VT)
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satisfies (5.1) with strict equality, (uo, cees Up_3s 0) satisfies (4.1)
with strict equality for = cash flow (-Sv,, 0, .., O, SuT). This means
that the initiél outlay SvT, if the net yields are not withdrawn, becomes
SuT in period T, and can grow at the rate 15% ultimately, as vo/v1
approaches 1+0.15. The 15% is a maximal growth rate, or an own-rate of
interest of money for the enterprise. Conseguently, it is regarded as the
opportunity cost of capital for the firm. Even if the project has three
discouny rates, only a maximal rate has an economic significance as the

internal rate of return, and the old puzzle is now resolved.

3. We now deal with multiple projects, apply our method of analysis
discussed up until now to a generalized case, and develope a rule for
. investment selection. When we restrict our attention to a single project,
its discount rates other than a maximal rate might seem to have no impor-
. tant economic significance. In comtrast with this, when we put multiple
projects in g correct order, all discount rates., whether pogitive.orlnot,
of all given projects must be taken intoc account.' By a discouwnt rate of
a project we mean a solution of equation (1) such that r > -1 is met.
Let (-s{i), Q-_Ei), e, Qr(li)) be given Project i, 1 =1, ..., w,

where the life of Project i varies with i, namely, n = n(i). Let us put

H
I

max (n(1), ..., n{w)), and consider (—S(i), ( ), vy Q;?)), where

i
1
le) =0 if 1> n(i}. Let uél), uil), be a sequence of activity

levels of Project i. Then a feasible sequence of cash flows generated by

the w projects given to us may be written as follows:

_ 5 S(i)uéi)’

£ g slily(),

fia

(
0

]
in

£ Qg'i)u
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e sz el e hp gt u{1) g s()y{1),

. . . . .

whefe the summation goes from 1 to w. The positive prices Vgs vees

Vin_ys Vo associated with the efficient frontier of the feasible setl of

cash flows must satisfy the following eguations:

- vtS(i) * V'1;+1Q1i) e T Vt+mgéi) ¥ Sél) =0,

t=0, 2%, ..., T-m,

- vT—m+18(i) Toeee ¥ VTQIE’LE:?_ * S'](jirzﬁl =0, . .. (10)
- vT-J.S(i) * VTQ(i) + Séi) = 0,
- vTS(i) + séi) = - S(i),

where séi), ey séi) are the nonnegativg slack variables. As before,

suppose that we find the poéitive prices Voo s Vg 1l satisfying

(10) for any T with séi) >0 for t =0, ..., 1, 1= 1, woy w-l,

and with sé“) =0 for t=0, ..., ™=k, vhere k 1is independent of T.

Then, efficient is a cash flow satisfying (9) with striét equality, with
t £

u§i) =0 for all t and for i # w, and with an arbitrary u(w) >0
t < T-k and uiw) =0 for t > T-k. Thus if we are about to

for 0O

LA

select a project at +t = 0, we must select Project w, since uéi) =0

except for 1 = w. A question now arises. Are there any simple means or

zay characteristics of projects through wvhich we can derive the same result?
Let us consider the polynomial associated with Project i,

f(i)(z) = S(i)zn _ Qii)zn_l - - Qéi)’ i=1, .., w

r is a discount rate, if and only if (l+r) is a positive root of f(l)
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A

Now let Agi), ceas Ak?) be all the positive roots of f(i), arranged
i

in descending order. Putting v = max (kl, PR kw)’ let us consider

A3 - (A§l), e, Aél)), i=1, ., w,
. If f(i) has no positive roots, A(l)

where Agl) =0 for J > ki

is a zero vector. We now assert the following rule:

Selection Rule or Ordering Rule of Projects.

Let Project i, i =1, ..., w, be given to us. For each i, let
us consider a v-dimensional nonnegative vector A(l) comprilsing all the
(i)

positive roots of f arranged in descending order and zeros. Project

(1)

i is preferred to Project j, if and only if A

(3)

is lexicographically
greater than A
This rule says that we must first choose a project whose internal rate of
return is maximal, that if some projects have the same internal rate., we
must then choose a project whose second discount rate is maximal among

- those projects having the same internal rate, etc; énd that we need not
teke into account the negative or complex roots of f(i). The.qglgtion
between this rule and the positive prices supporiing the efficiency
frontier of cash flows will be discussed in.Theorem.h in the eappendix.
We now give an example to illustrate the essential point of our argument.

Example. Consider two projects (-1, 3) and (-1, &, -1, -6).
Project 1 is simple and 1 = i%F gives r =2 at once. Project 2 has
two discount rates, r =2 and 1, since the polynomial f(2) is

22 - hzf + 5 + 6 = (2-3)(2-2) (z+1),

which has two positive roots. Obviously (3, 2) is lexicographically

greater than (3, 0). Let us now consider the efficiency prices which

simultaneously satisfy the following (11) and (12):
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.y VT_l,
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-l

-3

1

= (woﬁ

Where ¢ and s are the nonnegative slack variables.
t t _

give
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(11) and (12)
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First of all, we will examine whether (11} and (12) are satisfied =zt the

same time for the slack varisbles such that

If s, = 0 holds, we have from (13]) that Y = - 8
the slack variables are nonnegative, we must have s

this means that

sy =0 for all ¢t 2k,

and wT-l = -1,

k+l

k+1

- 25

8¢ = 0 for at least cne +%.

k0" Since

= 0. But

a contradiction.
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Hence, s, > 0 for all t. On the other hand, (11) ard (12) are met

simultaneously for positive prices with wt = 0 and S, > 0 for all t.
In fact, we have & positive solution

vy, = [27(3%) - 16(2%) + (-1)*1/12, £=0,1, ..., T,
and a positive slack variable for (12)

sy, = [2(2°) + (-1)°)/3, B=1,2, ..., T
(See, e.g., relation {14) in the appendix for a systematic derivation of
the solutiohs.) Hence, we may undertake Project 2, but not Project 1.
This holds whatever large T is taken.

So far, our analysis is based on the assumption that any of the

given w projects is available to the firm at any point of time. It
seems that this assumption is plausible for almost all industries. It is
always possible, at least potentially, for a firm %o undertake the same
project repeatedly if the firm wants to do so. As far as the projects on
exhaustible resources a;e éoncerned, however, the'situatioﬂ may be somewhat
different. Consider, for example, a project to dig a specific_gql@ vein,
which is available once and for all. Suppose now that Projeect 1 is
available only for t =0, 1, ..., N. In this case; & feasible cash flow
is obtained from (9}, putting uél) = 0 identically for g2ll t > N. The
shadow prices associated with the efficient cash fiows are also obtained
from (10), deleting the equations associated with Project 1, except for
the first N+1 equations, corresponding to t = 0, 1, .y N. It is obvious
that the same shadow prices, satisfying all the original equations in (20),
are valid even in this case. Thus, as long as we focus our attention on
the same shadow prices, our conciusion whether Project 1 is worth under-

i (1)

taking or not is unaltered. Suppose, however, that A is lexicogra-
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1
phically greatest esmong A( ), cees A(w), and that e.g., A(Q) is

lexicographically greater than IA(B), A(w)

cees . If Project 1 is not
taken into consideration at all, there exist the shadow prices for which
we can conclude that only Project 2 is worth underteking. A guestion

is if it is possible for these shadow prices tc satisfy also

- vtS(l) + vt+lQ§1} + .. F vt+mQLl) + sil) = G,
t=0,1, ..., N,
with some slack wvarisgbles sél), ey sél). The answer is affirmative,
if the second element of A(l) is greater than the first element of A(E),
or if they are equal but 1{2) has no other positive element. In such &

case, whether we choose Project 1 or Project 2 should be determined by
some other factors of the firm.9
Example. Consider three projects (-1, 4, -1, -6), (-1, A) and
(-1, 1), where 1 < A's 2. Suppose that Projects 2 and 3 are always
avallable, but not Project i: As before, focusing our aftentioﬁ on
vT-t = [27(3t) _ 16(2t) + (_1)t]/12% we can say that an efficient gggy
flow is generated, using Project 1 only. But consider also vt = AT_t,
t=0,1, ..., T. Since ve have - v, + hvt+l = Vio —'6vt+3 <0 for
t < T-3, and - Ve + Viak < 0, an efficient cash flow iz generated also,
using Project 2 cnly.
In this example, Project 3 implies that any money put in a pocket
today can be taken out tomorrow. In Project 2, A-1 may be considered
as a market interest rate. Notice that the present value of Project 1
for X < 2 1is less than the supply price, but we do not necessarily
reject to underteke Project 1.

)

University of Tsukuba
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Footnotes

T I am grateful to my coleagues, Professors Satoru Fujishige, Mamoru
Kaneko and Yoshitsugu Yamamoto for freguent and useful discussions.

1. Bee, e.g., Karmel (L], or Flemming and Wright [3], p.259.

2. If it is possible produce output y from input x, then it is also
possible to produce § from X for any % 2 x and ¥ £ y. This is
the assumption of free disposal discussed in capital theory. Applying
this to the investment projects, we may have the following assumption:
If a series of net yields Ql, vees Qn are obtained from an initial
outlay 8, then it is also possible to have Ql', cens Qn' from &
provided that Qt 2 Qt' and S' 2 5 hold.

3. Let us consider a project given by Karmel [L4]:

5 = $4,000, @, = $13,200, Q, = -$1k,510, Q3 = $4,313.
This project has three values for the discount rate, 5, 10, and lj
per cent. It is en%irély harmless to assume thét Q3 can be freely
discarded, and the project embraces a two-period project:

s = $k,000, Q, = $13,200, q, = -$14,510.

This two-pericd project does not have a.meaningful discount rate,
since it gives only two complex roots. It is, however, certainly
implausible that Q2 can be freely disposed of again. It is
reasonable to think that Ql, Q2 and Q3 are mutually related, and
e.g., one can have, for a while, a positive profit of $13,200 in
period 1 because of a loss of $14,510 in period 2, and that if one
wishes to dispose of the loss in period 2, one has to pay a price for
it. Suppose that if we terminate the projeet in period 1, we can

have a one-period project:
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g = $4,000, Q = $l,560.
Q, is now only $4,560 instead of $13,200. That is, $8,640 is the
'winding-up cost' (or the winding-up cost minus & second-hand value,
or a scrap value, of the project's asset)}. The discount rate now
becomes 1l per cent. Which project should we choose among these three?
It is impossible to tell until we clarify the internal rate of return
of the original project or until we develope a theory of ordering of
projects. The agssumption of wvariable life of investment discussed in
the literature requires the truncation of projects without cost.
According to this assumption, it is possible to have a one-periocd
project:

S = $4,000, Q, = $13,200,
whose ralte of return is 230 per cent. This is the unique and the
maximal rate asserted by Soper, Karmel and others. The same assumptiop
is adopted in the workslby Arrow, Levhari, Flemming and Wright. It
seems to me that it is a clever diversion of argument to introdqce the
assumption of varisble life of investment. Not only is it unnecessary
to solve the original problem itself, but alsoc we caﬁ hardly accept
that the negative net yields are freely discarded. This does not
corresponds to the assumption stated in footnote 2, but rather to the
cne that ¥ can be produced from X% even if ¥ < x or ¥ > y.
It is irue that in a perfect capital merket the investment project
must have s market. value equal to the capitalized value, but this
value must also equal to the supply price of the assert in such a
perfect capital market. In my opinion, what they really assert is

this: when we are given a set of projects, each having a capitalized
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value nct greater than the supply price, we may undertaeke any project
whose capitalized value equals the supply price. This situation
resembles the one in which the constant returns to scale prevails in
production; under a perfect competition, the profits of firms are nils
and firms may adopt any production processes yielding no profits. Let
us also recall that it is meaningless fto say that a firm maximizes

the profits when the price of a product exceeds its unit cost, but
meaningful to say that the firm minimizes the unit cost even in such a
situation. Notice that since (p.x - c(x))/e{x) = p.x/c(x) - 1 and
P 1is given, where p is the price and c(x) 1is the cost function,
minimizing the average cost c(x)/x is equivalent to maximizing the
rate of profits. As far as I know, there is no authorized theory
which justifies the present value as a selection criterion in a general
situation where the projects need not be marketable, or where a firm
has several patent grojects, and others have no access to them. May
we adopt the internal rate of return as a criterion, then? Recall the
examples of three projects in footnote 3, where one has three rates of
discount, another has two complex rates, and still cother has a unigue
rate. I say =t the risk of being tedious that it is groundless and
selfdontradictory to compare these three projects unless we know the
true internal rate of return of the first projects, and unless we know
how to compare the projects in general.

Actually, the reinvestment of net yields need not be carried out to
understend the internal rate of return, as we shall see, though we
must assume that it is possible to do so potentially. It is a most

important to realize that the rate of returns of the initial outlay
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depends upon the investment opportunities in the subsequent periods
open to the investors. Let us consider & franchise business such as
the Kentucky Fried Chicken, the Seven-Eleven, etc., where entrepreneurs
continue to build the chain stores. This shows an example that we
invest and reinvest the net yields in the same kind of project. As
another extreme, let us imagine a tied loan from a bank such that if
one borrows S dollars to carry a project into effect, one has %o
deposit all the net yields in the bank. Let i represent the rate
of interest. If one does undertake the project, one has to pay an
amount of (1+i)"8 +to the bank at the end of period n, but at the
same time one's asset in the bank will be

A= Ql(l+i)n_l + Q2(1+i)n—2 FtQ.
The rate of return may be calculated by solving A = (1+r)"S. If one
says that the project is worth undertaking as long as A is not less
than (l+i)n8, one adoéfs the present value as a guide in meking the
decision.. But this is an extreme case of the 100% cruel tied 19??2
As we shall see later, the assumption of divisibility is not required
at all for ocur purpcse. It is solely for expositorf use. (8ee, rule
(5) in the appendix or the argument in the last part of section 1 in
the appendix.) Lifting the assumption of the constant returns to
scale, we can construct a nonlinear model of investment, with decreasing
returns to scale, say, corresponding to section 11-2-2 in [2]. In
this case, it will be possible to derive the Keynesian investment
function, relating the level of investment and the rate of interest.
This case, however, is not attempted in the present work. It is true

that the value of the internal rate of return of a project, in general,
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varies depending on the velume of investment, but the concept of the
internal rate of return itself has traditionally been discussed
independently of the level of investment. I believe the assumption
of the constant reiurns to scale obeys this spirit most faithfully and
is appropriate for the present analysis.
By =z feasible sequence of cash flow, we mean a cash flow over T
periods, whether T is finite or infinite, generated from a basic
cash flow (-8, Qs vees Qn) and given by (4). The fact that we
consider the activity levels U2 Q for t=20, 1, 2, ..., means
that it is possible to undertake the project at any time if we want
to do so. If the project is available, say, once and for all, then
Uy T Uy F e =u= L. = 0 identically, or we do not consider v,
except for Uy This problem is treated in the final section.
Let 1 %be a market rate of interest. Then an objective funetion,
maximizing the preéént value of the sequence of cash flows

| Lio oy (14+1)7® .
is not compatible with linear models unless some financial restric-
tions are introduced from outside or unless i .happens to equal the
internal rate of return as is the case with the perfect capital market.
This objective function will determine the level of investment in a
non-linear model, however. The similar situstion occurs in production
theory when the constant returns to scale prevails, as is well known.
If all of the w projects are unavailable for t > N, and have common

-t

r? then Ve = Si .

discount factors § §

1> e t=0, 1, ...,

are the shadow prices for each discount factor. The o0ld puzzle

revives. The same is true when T = =, if the projects are available.
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Mathematical Appendix

1. Let (-8, Qs voes Qn) be a given investment project. To simplify,
we will divide each component of the project by S, and put a; = Qi/S

for all i, obtaining (-1, Bys tees an). Throughout this appendix,

we will deal with this normalized project, since the argument in our
. linear model of investment is not affected =t 211. Let us now consider

the poiynomial associated with the project

n n-1
flz) = 2 - a)z - .- a (1)

and let us introduce the triangular matrix M of order T+l, which

corresponds to the polynomial f£(z) and which is given by

1
—al 1
—a2 —al 1
: | (2)
—an _an—l .—al 1
N —an _an-l' . —al l_

where any element of the principal diagonal is unity, any element of the
next 1% lower parallel diagonal is -a, (i =1, ..., n), and all other
elements are zeros. We will name M the polynomialoid matriz. Toe
reason for this new term will be understood in seetion 3. In general,
we may consider the triangular matrix of the same type for an arbitrary
polynomial. We will write M¢ or M¢ if it is necessary to designate
the polynomialoid matrix corresponding with the polynomial ¢(z) or

¢(z), respectively.
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The matrix M, if multiplied by -1, is the coefficient matrix of
constraints (k.1) in the text. A pair of linear programs discussed in

gection 2 in the text will be represented as

maximize eTu
subject to Mu g ~c, uz0,
(3)
and minimize -ve
subject to Vi 2 eT, vz0,

where eT and v are row vectors, u and ¢ are column vectors, and
in particular, el = {0, +v., 0, 1). It will be our main interest to
study the optimal price vector v associated with the efficient cash
flow ¢, or to study the relation between the posiiive price vector
characterizing the efficiency and the internal rate of returns.

To begin with, consider the set of integers {0, 1, ..., T}, and
let the letter J denote a subset of this. It is easy to confiym that

(A} There exists ;omé J for which we have

Mx £ 0 and X, 2 0 for 'i € J  dmply x=0.. ._;-. _(h)

A simplest case for this to be true is the one in which J is the whole
set from 0 to T. For, any diagonal element of -M being unity, the
inequalities Mx £ 0 and x 2 0 give x =0 at once. There are of
course other cases in which only some coordinates of x are required
to be nomnegative while others may be arbitrary, but we ultimately have
x 2 0 and hence x = 0. For example, let the zeroth column of M have
a negative component and comsider J = {1, ..., T}. Let a, be the

first positive net yield, so that B sees & _q are nonpositive. Since

¥, 20 for i=1, ..., T, the kth row of Mx £ 0 or the inequality

1
T %% T Bk¥p 7o T BNy XS0
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implies - & X £ 0. We therefore have Xy 2 0 as well.

We now suppose that (k) holds for a proper subset J, and consider

a feasible cash flow ¢ = - Mu¥* determined by the rule
u? =0 if i e J,
(5)
ut 2 0 it i4 J.

Let us place this particular ¢ in the sbove linear programs (3). Since
Mu £ -¢ means M{u - u¥*) < 0, and since u 2 0 means u, - u? 2 0 for
i e J, it follows from (L) that wu = u¥. Thus, ¢ 1is an efficient cash
flow, u¥* Dbeing a unique feasible vector. There exist a price vector
v and a nonnegatlive vector s for which we have

s, >0 for 1ie¢d,

W =s, v>0 and 1 (6)
s, =0 for id J.

i
(See, e.g., Nikaido [5], p.128.) Conversely, suppose that (6) holds for
some J. Then c¢ = - Mu* where u¥ obeys rule (5), gives an efficient

cash flow. For, we have from (5) and (6) that s(w - u¥) = su 2 0 for

any u 2 0. Since v 1is strictly positive, we have that M(u

vl

u*) < 0
and u 2z 0 imply u = u¥. (If M{u - u*) = 0 does not hold we have

that vM{u - u¥) < 0, contradicting to su > 0.) Thus, c is efficient.
In fact, we have just confirmed the following proposition.

(B) There exists a price vector v for which (6) holds for some
J, 1if, end only if, (L) holds for the same J.

Once we have a positive price vector v and a nonnegative u¥
satisfying, respectively, (6) and (5) for the same J, and once a cash
flow ¢ = -~ Mu¥ is adopted”in linear programs (3), then v and u*¥ are
a pair of optimal vectors, giving eTu* = -vc, (We may normalize v,

[y

without loss of generality, sc that Vip Sp = 1.) It is important to

[}
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notice that even if i does not belong to J, u? need not be positive,
and even if u? is positive, it may be an integer. We shall derive the
internal rate of return from the optimal price vector v of the dual
program, and it is in this sense that the reinvestment of the net yvields
is not always required and that the divisibility of the project in the
assumption 1 in the text is solely for expository convenience.

2. It is obvious that if the ith column of M does not have negative
elements then this i must belong te J for (4) to be true, or we must
have s, >0 for (6) to be true. For example, T always belongs to J
or we may assume that Sp = 1 alwsys holds. Exclusive of this last
component of s, 54 represents a slack varizble, and so s - eT is a
slack vector. We now introduce an important idea concerning the optimal
slack varisbles. We will say that s is 'invariant' or tfinite', if s
consists of a row of T-k zeros followed by k+l non-negative elements that
are invariant even if‘ E varies. That is, s ig Vinvarient' or 'finite'
if s tekes the form of (0, ..., 0, s

., S 1). and if. Sla:":-a s

k’ 1? k
are constant independently of order of s. To put it in a different way,
"let ¥(z) be a rolynomial of, e.g., degree.k, haviﬁg nennegative coeffi-
cients. Let Mw stand for the polynomialoid maitrix corresponding to 1.
Suppose that we have for any T that v =g, v>0 and s = eTM¢,
namely, s is the last row of Mw. Then s is 'finite', since it is
derived from the coefficients of a polynomial; it is to be remarked that
the degree of any polynomial is necessarily finite. A question now arises.
Is it possible to have (6) for such 'invariant'® slack variables? The

following two examples will illustrate the cases for or against such

"invariant' or 'finite' s.
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Example 1. Consider a two-period project given by
(—1, a-l, a-2) = ("'15 33 “2)-
The eguation 22 _ 3z + 2 = 0 has two positive roots 1 and 2. If

T =14, M is written as

- -
-3 1
M=1{ 2 -3 1 :
2 -3 1
3 2 -3 1|

Premultiply M by a positive vector p = (1, L, 1, 1, 1), obtaining
(o, 0, 0, -2, 1). For any feasible x, satisfying Mx £ 0, we have
pix £ 0 or 2% 2 X). Now, using (1, 1, 1, 1, 0) in place of p,

and repeating the same argument, we have 2x, 2 x Similarly, using

2 3

(1, 1,1, 0,0) or (1,1, 0,0, 0), we have 2x, 2 X, Or 2%y 2 X

e 0 1
respectively. Hence, Mx £ 0 and %) 2 0 imply x20 or x»= 0.

It is also easy to see that Mx £ 0. and x, 2 0 imply x =0 or any

T
large T. That is, (6) holds for s = et for any T. The matrix M,
must be an identity matrix I, or V¥(z) must be the pélynomial of
degree zero, namely, ¢(z) = 1.

Example 2. A two-period project considered is

(-1, a = (-1, 2, -2).

1 )
The polynomial of this project £(z) = z2 - 22 + 2 has two complex roots,
1+i and 1-i. In this case, a cash flow generated by c¢ = - Mu is not
- efficient, provided that u, > 0 for any consecutive three i's. For

example, let T = B and u= {0, 1, 1, 1, 0}. But it is easy to see

that we have a better cash flow, upon substituting {0, 0.5, 0, O, 0}
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for u. BSuppose next that w = {1, 1, 1, 0, ., 0O}, say. We will note
that the fellowing relation holds:
(1 1 [1]
-2 1 2 0
2 -2 1 2 0
2 =2 ol _ |0
2 1 . L
-2 1 . 0
2 -2 1 0 .
L 2 -2 1.0 ] L O ]
This is written more compactly as Mp¥ = s¥. It is easy to see that
-Mu- 6p¥) =c+8s¥2¢c and u-9%%*20 for .5>8 >0,

Hence, c¢ 1is not efficient. We may have a positive vector v such that

vM = s for some nonnegative s. But obviously s iz not 'invariant'.

As this example shows, if s 1is not 'invariant', we are not able to

determine the amount of investment at time 0, or the activity level u

0

without considering the subseguent levels of investment, Uy Uy oees

simultanecusly so as to obtain the efficient cash flows. TFor instancé,

it is not a wise decision for a firm to make Iinvestment in every period

and to produce a steady flow of outputs. On the other hand, if s is‘

'invariant', the first T-k components of s are zeros and according to

rule (5) we may freely choose a nonnegative v, for any t Dbetween

0 2t < T-k. We may even remove this condition on % essentially. For,

whatever large t one may take, we are allowed to increase T Further

so that T-=k > t always holds. If the activity level of an n-period

project is unity in each pericd, a steady-state is attained from the n

pericd on. Such calm state is efficient. The internal price vector

assoclated with the efficient cash flows is determined by v = sM for

some s. It is true that some components of s are positive and v
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depends on them. Suppose, however, that as T goes to an infinity, the

price ratio vO/v (or it is seemingly more general to consider the

1

price ratio vt/v. at any period of time) converges to a unique wvalue

t+1
A Tor any v determined by some 'invariant' s. We may then say that
the internal rate of retrun is determined as A-1, independently of the
time pattern of investment. Traditionally, the internal rate of return
is calculated by equation (1} in the text, as scon as & basic cash flow
(-1, a;5 .-ws a ) 1is given. In our opinion, this is justified only if
one chooses a maximum rate of return among multiple solutions. Indeed,
the primary purpose of this appendix is to establish the following
theorenms.

Theorem 1. There exists a positive price vector v satisfying (6)
for some 'invariant' s, 1If, and only if, the polynomial f(z) has at
least one positive root.

Theorem 2. Let A be”a maximal positive root of f(z). There
exists a nonnegative vector s for which v = sMﬂl is positive and
1."0/11':L converges Lo A.

Theorem 3. Suppose that f{z) does not have a negative or complex
root whose absocolute value is A. Then vo/vl converges to A for any
positive v satisfying (6) with some 'invariant' s.

3. We are now in a position to return to the polynomial f£(z) and the
triangular matrix M defined at the outset. We wish %o clarify the
properties of the matrix M and the reason why ii is named the polyno-
misioid matrix. Let z,, Zys ++5 %, De the roots of f{z), so that
f(z) is’uniqgely factorized as

flz) = (z—zl)(Z—ze)- - (zmz ). (7)
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Let us single out (z~zi), any linear factor of f{z), and consider
the triangular matrix of the same type as (2), corresponding with the

polynomial z - Z; - This matrix of crder T+1 will be given by

— ——

L. _Zi lJ

2 = - _ .
t ozt (z zi)(z Zj) be a quadratic factor of

Similarly, let =

f{z), and let Mij denote the corresponding triangular matrix of the

same order:

[1 ]
ul 1
Mij = Iag al 1 .
L o o 1] _ <L
Notice that o, = -(z,+z,) and o_ = z,z,. Now by matrix multiplication
1 i 73 2 i3

we have Mij = MiMj' Mi and Mj are commutable.' To repeat a similar
argument, let (z-zi)(z—zj)(g—zk) be a cubic factor of f(z), and let
Mijk denote the corresponding triangular matrix. The reader can easily
verify that Mijk = Miij = MiMij' In general, we have

M= MM, .. ML ' (8)
This is a factor representation of matrix (2). (8) corresponds to (7).
A scalar 1 is a trivial factor of f£(z), and it is considered a poly-
nomial of degree zero. It is clear that the unit matrix, I, corresponds

"

with the polynomial 8y = 1. The unit matrix is a trivial factor of M
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also. It is easy to see that the inverse matrix of Mi takes ithe form

of
1—1 -
Z 1
-1 _ 5
M,” = z{ z; 1 . (9)
T T-1
L 25 3y Zs 1 ]

Since Ml’ ME’ .o Mn commute, so do their inverses. Hence by matrix

multiplication we obtain that Mt also takes the form of

-y -
bl 1
Mt =l5b, b, 1 . (10)
2 71
L N
Tt is to be noted that since MiMEl =T or Mt =T, we can derive

the last row of M;l or Mt by considering 1 + (z-zi) or 1.% f(z).

Indeed, let us put, e.g.,

1= (2)(z + blz_n-l + bzz_n‘2 + .., Y.

Expanding the right-hand side and comparing the coefficients, we have

b b b

1 2 3 oo T
-al -albl —alb2 e e e e —ale_l
-8y -aghy . . . ... —agbp (11)
-a . +« =—-2b
+ n n T-n
1 0 0 #] e e e e e 0

»

Therefore, the last row of M—l iz obtained from the coefficients of



e e - ] -n -n-1 -n-t
the infinite series, =z + b,z + .. .+ b,z S

t ] by

truncating it at t = 7. The inverse of a polynomial is not a polynomial
but an infinite series, while the inverse of M 1s again the triangular

matrix of the same type, corresponding with the truncated polynomial.

When we increase T, however, we will see that the last row of M_l is

not 'finite' in the sense defined in section 2, sinece it is obtained from
the infinite series. In our analysis, the triangular matrix M plays a
vital role rather than the polynomial f(z)} itself. But it is interesting
to remark that the triangular matrices, which we termed polynomialoid,

bear a striking resemblance to the polynomials.

L. Having clarified the properties of matrix (2), we now proceed to

prove our main theorems. TFirst, it is easy to demonstrate the following
three propositions.

(¢) (6) holds for WM = eT, if and only if b, > 0 for all i.

Tn fact, (6) requires v be strictly positive. But v = e°M © or

V= (Drys vees b, 1). Hence, (C) is obvious. y

.

T’
(D) Let polynomial (1) have positive roots only. Then (6) holds

for wM = eT.

Since M T = M;l. - Mgl, and since z; >0 for all i, it is

obvious from (9) that (b b,, 1) is strictly positive.

I ey I
(E) Let (-1, a., ..., an) be an n-period project such that
a; 20 for all i, and a;, > 0. Then (6) holds for vM = er.

It is obvious from (11) that b, = a;, which in turn implies that

b, > 0, efte. We ultimately have bi >0, i=1, ..., T.

2

In general, the polynomial f(z) has negative and complex roots.

The following proposition plays an important role for our analysis,
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(F) Let n By be negative numbers, let ¢ , .., c_ be

1* vt r

complex numbers, and let El’ .es Er be their conjugate mmbers. Let

us define the polyncmial of degree g+2r given by

h{z) = (z—nl)...(z—nq)(z—cl)(z—El)...(z—cr)(z—Er).

Then there exists a polynomial with non-negative coefficients

k k~1
plz) = 2 + % +. ... + Sy s

such that ¢(z) is divisible by h(z) and the integral quotient ¢(z)} =
W(z}/h{z) has positive coefficients only.

If h(z) heppens to have nomnegative coefficients, we will put
Y(z) = h(z) and ¢(z) =1, and (F) is proved at once. This is the case
where each complex number ¢ has a nonpesitive real part. In general,

some of ¢ ves Co have positive resl parts, and we will consider the

19
following polynomials for any given c:

2t ( t,_t )t

A=z c 4T )zt + {ec)”, t =1, 2, cvuy T,

where T 1s a minimal positive integer for which et ‘has a nonpositive
real part. Namely, ct+6t is positive for % < 1, bdbut nonpositive for .
t =1. T depends on- ¢c. We will write A as A¥ vhen t = 1. BSince

¢ and ¢ are roots of A, A is the product of the two polynomials

(z2 - az +b) and Q(z;t) = qozgt_2 + quEt-3 SRR - PP

where a = c+c and b = ct., We will show that the coefficients of @
are all positive for + g 7. Note that if o is a root of A, so is

b/a. The same must be true for Q. Thus we have
£-1 42 _
b, q2t—3 = qlb s sees Qp T qt_éb.

Qot-2 = Y
It is sufficient tc show that Qs «+++5 Q_q aTE positive. Expanding

the product of (22 - az +b) and Q, and comparing the coefficients

4

with those of A, we obtain
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9y = 1> 9 =&, 9, =8q; - b, . .., AU_y T84, - b o

- _ ot ot
and q =aq bqt_2 {c”+B

It will be seen at once that qo, ql, N qm—l are the same for all
Q{z;t) if t 2 m. Moreover, as long as (c +a") is positiye, q is
increasing as t alters from m %o m+l. It is obvious that 4y = i
for all +t, and when +t = 2, we have 9, =a and a, = b. When %
increases further, we have 4, = a2 - b, and this is greater than b.
Repeating the same arguments for + =3, ..., T, we see that all the
coefficients of @ are positive for all + 5 T.

Let Q* represent Q(z;t) for +t = 1. We may consider the similar
polynomials Ai, ees
ly, and we will put

Ai and Qi, ves Qi for all ¢ +vs Coo respective-

l’

p(z) = (z—nl). . .(z—nq).Ai ... A;.

Bince all the coefficients of A? are nonnegative, and -n_, .., -n

1 g -

v are positive, all-the c;efficients of Y are nonﬁegative. "Mbreover, we
have 9(z)/n(z) = Qf - - . Q¥, . all the coefficients of which are positive.
This completes the proof.

The relation ¥(z) = ¢(z}h(z) established abo%e will effectively be
utilized, once it is given in matrix form. ILet M¢’ M¢ and M, be the
polynomialoid matrices of order T+1l, corresponding with three polynomials
¥, ¢ and h, respectively. We then have M¢Mh = Mw. Consider also
the following four nonnegative vectors of order T+1:

s = (0, ..., O, Sps vees Sy 1),

p=1(0, eovey O, Pyy vy Dis 1),
A 1 (12)

{1, s 0, +.., O},

1

15 +ees S

= {1, Pys +vs Pgs 05 -neey OF,

k’

g
®
!
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where k-£ = g+¥2r, and we will let s or p represent the last row of
M¢ or M¢, respectiﬁely. Let s* or p* represent the first column
of Mw or M¢, respectively. Since M¢ and M, commute, we have
™M, = s and Mpp® = s*, {13)
We aré now able Lo prove Theorem 1.

Proof of Theorem 1. We first wish to show the sufficiency. Suppose

that polynomiél (1) has at least one positive root. Let us factorize (1)
so as to have f£(z) = a(z)h(z), where a(z) has positive roots only and
h{z) has negative or complex roots only. Then, corresponding with this
factorization, we also have M = M M,. By (D) any element of M;l, not
sbove the diagonal, is positive. On the other hand, by (F) there exist
four vectors (12} for which relations (13} hold. We now put v = pM;l.
Obviously v > 0, and we have v = sM;lMHl or vM =s., Since T is
arbitrary, and s = (0, ..., O, Spr +ees 5p5 1), s is 'invariant!'.

We next wish to prove fﬂe necessity. Suppose that f(z) does not
have any positive roots. Namely, £(z} = h(z) and M =M. We have
Mp* = s¥, GSuppose that we have vM =s and v > 0 for some 'invariant'
s. Since p*¥ consists of a column of 2+1 nonnegative eiements followed
by T-% zeros, we may assume, wvhen T is large, that sp*¥ = 0 for any
'invariant' s. (Indeed, s even need not be nonnegative.) However,
Mp*¥ > 0 and v > 0 imply vMp¥* = sp¥ > 0, contradicting to sp* = 0.
Hence, v > 0 cannot hold for any 'invariant' s.

We shall now proceed to prove Theorems 2 and 3. As a preliminary,
we shall prove proposition (G).

(@) Let M, My, ..., My be polynomialoid matrices corresponding

with linear polynomials ZmZys Z=2g5 «rey Z-Z respectively, where zi's
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are mutually distinct. Let ki be a nonnegative integer, representing

the degree of multiplicity of Mi' We then have

k K _
L = (M2

-1
(Ml e L (M)

)+ £ (M), (14)
where fi is a polynomial, of degree ki’ in a matrix M;l with scalar
coefficients, and without a constant term.

To verify (G), we will first note that

29 My = 2 M) = (29-2,)

or (MM,) "~ = e.M]~ + e M.,
where ¢y = Zl/(zl'z2) and ¢, = —22/(21—22). This proves {14) for the

case where kl = k2 =1 and k3 = ... =k,.=0. Let us increase any ki

by 1. We have, e.g., for kl = 2 that
2. =1 -1 -1 -1
(MiME} = Ml (clMl + c2M2 )

-2
= clMl + (e M + c2M2 .
- 2 -1
(c + c CEMl ) + 2 2 -

‘Repeating the similar argument we will see that (lh) is true for any

3

k

iven k P . . N
g 1 ¥ B . A -

Let (pT, vres Pps 1) represent the last row of the matrix of the
left-hand side of (1L4). How does op vary as T increases? Let us
write x = (XT, vees X, 1) and y = (yT, cees ¥ 1} for the last vows

of M;k and fi(M;l), respectively. It is obvious from {9) that for

k=1, we have x = (ZE, cies s 1}. We also have for k = 2 that
x = ((T+l)z$, vees 224, 1). It may be verified from routine calculations

that we have in general

= zz(t+k—l)...(t+l)/(k—1)!, for k=2, 3, ..., k..

Xt 1

. . _ .t .
Since f, is of degree k;, we have vy = zi.gi(t), where gi(t) is

w

a polynomial of degree k.-l in t. Thus it follows from (14) that
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= El o1 & (t)z (15)

Proof of Theorem 2. Let Zys Zos res 2o be all the positive roots
[a4

of (1), and let a(z) be written as

kq, k

'(Z_Zr) r

alz) = (Z—zl)

By Theorem 1, we have M, =p and v > 0 for any T. Suppose that

.+, . We will show that vo/v1 - A
1

Let (pT, seer Py 1) represent the last row of M; . It follows from

z. = A and z, < A for 1 =2,
1 i

(15} that we have

= E i=1 1 t)z

or pt/x =g (8) + IT_) &, (£)(2 /)"

Hence pt/kt converges to gl(t). We see that p /Apt converges o

t4+1
gl(t+l)/gl(t), which, by L'Hospital's rule, converges to unity. Thus

. - s s X '
pt+l/pt + A. BSince vM, =p and p is 'invariant', vo/v1 converges
to A as well.

Proof of Theorem 3. Sﬁppose that we have M = s. and v > 0 for

any T and for some 'invariant' s. This means that there is a poly-,

nomial o(z) with nonnegative coefficients for which we have s = eTMa.

Since the factorization of the polynomial or of the polynomialoid matrix

is unique, Mi is a common factor of M and My and can be eliminated

from both sides of WM = eTMG, if and only if zZ, is a common root of

f(z) arnd o(z). It is easy to see that o{z) with nonnegative coeffi-

cients does not have any positive roots, so that any factor of Mg cannot

be eliminated. Tt is also easy to see that eTMUMEl is again 'invariant’

(though some of its nonzero components may be negative), if and only if

o{z) is divisible by z-z;. Suppose that a highest common factor of M

v

ang MU is eliminated from both sides of wM = eTM and we obtain

o2
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v, = eTME. Since f(z) and o{z) have real coefficients, so do a{z)
and E£(z). This is so, because if z;, 1is a complex root common to both
£f(z} and o(z), so is its conjugete number. If the absolute value of
any negative or complex root of «{z) is less than A, we see that since
eTME is 'invariant', vo/vl converges to A as in the proof of Theorem
2. Hence, it is sufficient to show that «(z) has no root whose absolute
value is greater than A.

Let 23, ..., z,. be pairwise distinet roots of «(z), and let Zs

be r;-multiple. Suppose that Izi[ =m for 1< v, and Izil <m for

i>v, including 2, =X <m for some i. It follows from (1k) thai

M;l = fl(Mil) o, i‘k(Mlzl),

where f; is of degree r,. Let eTM;l = (aT, covs a5, 1), (15) gives
o - T (0,

or ag/® = Ve (6) (g /m)® o+ g (6)(z, /),

i=v+1
- where g, is of degree r;-l. Since ‘|zi| <m for i>v, and
|z;] =m for i g v, the second term of the right-hand side of the last

equation goes to zero, while the first term does not, as is well-known.

T —l "l ' 0 T _l
| — —
We now put V' = e Mg(fl(Ml ) + ...+ T (M ) ) . Bince e MEMG =V,

and since eTME is 'invsriant', vo/mT converges to vé/mT as T goes

to an infinity. Define a polynomial

1 Ty

H(z) = (z-2 v o (z-zy)

1)
By proposition (F), there exist ¥(z) and ¢&(z) with nonnegative coeffi-

cients such that -¥(z) = E(z)®(z). We also have My = MpM,. Now consider

v'M, = eTME(fl(MIl) R fv(M;l))My. (16)

¥(z) is a polynomial of degree, e.g., K, with nonnegative coefficients,

so that the first component of v'MIP is positive, provided that the first
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K components of v' are positive. On the other hand, fi(MEl) is =
polynomial, of degree s, in a matrix Mgl with scalar coefficients.
Since M§ is a factor of MW for r=1, 2, ..., Tss the right-hand

side of (16) is an 'invariant' row vector. Its first component is zero.
Hence, v' has a negative component among its first K elements. This

means that v > 0 cannot hold. Whenever we have VMOt = eTM and v > 0

g

for any T, afz) does not have any root whose absolute value is greater
than A. This completes the proof.
5. Suppose that we are given w investment projects,

(-1, a&i), Cees aéi)), i=1, c.., ®,

where the life of Project i varies with i, wviz., n =n(i). Let M(i)

be the polynomialoid matrix corresponding with the polynomial

e(1)(z) = o0 - agi)zn'l o . = ald)

n e i=1, ..., w,

and consider the following pair of linear programs:

maxinmize z@ éTu(i)
i=1
subject to Z?=1M(l)u(l) g -~c, u(l),g 0, .
(ar)y
and minimize -ve
subject to vM(l) 2 eT, i=1, ..., w, 2 0.

v
Let k&i), iy Aé%) be all the positive roots of f(i) grranged in
i

descending order. Define v = max (kl, ey km) and consider a vector
W) - (A§i), cees Aéi)), i=1, ..., w, putting Agi) =0 for j>k,.

We may now prove

Theorem 4. There exists a positive vector satisfying

vM(l) = eTMd, and vM(i) = s(i) >0, i=2, ..., wy, for any T,
vhere ¢ 1is a polynomial with nonnegative coefficients, if and only if

A1) (i)

is lexicographically greater thsn A s 1=2, ..., w.
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Proof. We will first show the necesgity. Suppose that we have

W) = Ty ana wili) = () 50 for 122, ..., w,

but some A(i) is lexicographically as great as or greater than A(l>.

(1)

Suppose that we are given A and A(l) for this particular 1 as

0, .., 0) ana a1} = (g 0, .., 0),

1 Tt Zk’

and let Mi or Nj be the polynomialoid matrix corresponding with

(1)

Z - X Or 7 -z, respectively. Pactorize M and M(l) as

g/\
-
n

(1) o
Ml-o.MrHl a.n.d M - Nl---NkHi,

vwhere e.g., H; corresponds with h;(z), the factor of (1) which has

no positive roots. We may consider the relation ¢1 = ¢lhl or Y; = ¢;h;

assured by proposition (F), and the corresponding matrix relation
_ - : (L)1) o Ty (i)
Mwl = M¢1Hl or M¢i = M¢iHi' Since s M = g MUM must hold, we

will multiply the both sides by M¢1M¢i, obtaining

(i) _ T
s Ml..erMwlM¢i =g MGNl...NkaiM¢l. (;8)
First, suppose that 1) 2 (1)) mnen M)...M, = Ni...N_ holds, and
(18) reduces to .
(1) _ T
s My M = e MMy, My .
W7oy o9y

Obviously the right-hand side is 'invariant', and it is impossible to have

s(i) > 0. Hence A(l) = A(l) cannot hold. BSecond, suppose that Xy < Zl'

(18) is equivalent to

s(i)(MilMl)...(Mi

1 Iy = Ty TN

M) (.l ), = T (19)

2...N

where M, = M¢1M¢i and My = MUM¢1M¢1' Since X5 and 1z, are positive,

J
1 1 -1
>z I. Also Xy 2 X; means Mi 2 Ml or Ml

Since wl and ¢i have nonnegative coefficients, M, 2 I also holds.

we have M," > I -and N, M., > I.
i = J 1L =
We also have My > I. We see that the left-hand side of (19) is strictly

positive according to our hypothesis s(i) > 0. As to the right-hand side,
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we will write ( ey O l)) (BT: ven oy Bls l) and (YT: ey Yl: l)

Crpo 1°
Ty~ Ty T gt ; .
for e Ml s & Ml Nl and e Mdhl Nl’ respectively. As was showed before,

ut/at_l converges o X - But this means, since Bt = o and

t T E1%-a

Xy < Z» that Bt < 0 holds for all t greater than some +¥. BSince

eTMd is 'invariant' and nonnegative, we have Yy < ¢ for any sufficiently

large t as well. This is a contradiction. If x

1= 2 then Ml =N

1

and we will eliminate M; end N, from the both sides of (28), and will

1

repegt the same arguments to show Xo < Zg dces not hold, ete. Hence,

A(l) must be lexicographically greater than A(i) for 1 =2, ..., w.

We will next show the sufficiency. As & preliminary, we will
demonstrate the following proposition.

(H) Let X5 -+ X, &nd zZ;, ..., 2z be two groups of positive

numbers, each being arranged in descending order. Let M and Nj be

the polynomialoid matrices for z - x, and z - 3.

5 3° respectively. Then

there exists s polynomial d(z) with positive coefficients for which we
have for any T

_ T
1o-eM. = e MN L. N, end s > O, (20)

provided that X > Zq holds.

We will consider WMl = eTMdNﬁ and w > 0 instead of (20). For
these and s = w{My...M)"H(WTIN ). (W31, ) will give (20) at once.

We will also assume without loss of generality that Xy = 1l. PFor, if

X = m # 1, %then we introduce a diagonalk matrix D given by

1




- 45 _

and consigder p(D_lMlD) = eT(D_lMdD)(D—lNlD)k and p > 0, which are

equivalent to WM, = eTMdN§ and w > 0, since p = WD/mT. We will see

that DM D or D_lN D corresponds to z -1 or =z - zl/m, respectively.

1 1

Write (5T, e 80, 1), (dT, cvrs 855 1) end (Eps oves €5 1)
for eTMik, eTMI_k+l and eTMikNﬁ, respectively. First we note that
1> Z, means eTMilNl > 0, so that eTMikNi > 0 also. We now consider
M, such that eTMd = (0, ..., 0, dps woes 895 1} for some fixed T,
Then we cbtain erIIMdI\/I']—_:L = (8§, ..., 8, GT, .es 61, 1), wvhere § = 61.
Let (1, Nys oo nk) represent the coefficients of (z - zﬂk when
expanded, which corresponds with N?. Obviously, 1 + Ny + ... F My =

(1 - zl)k = a > 0. We therefore have

eIy M—lNE = (82, ..., 6a, @ 6 e, €., 1),

ai 1

Thus, to verify (H), we will show that there is some 1t for which we have

T‘{"k’ D T_!_l: ET’

that 6 )

410 s Opgp ?re all positive. This is seen to be true as soon
{ as we notice that
eHi = 4§ + nlb‘_ I ni'o‘ + ”i+1‘5'r-l to. ”ka"r-k-i-i-’.
=8(1+ng ..y k NigpSp /8 + con 8L /6).

Since st/at—l converges to unity, and since & = 6., we have that
BT+i/6 converges to & > 0 as 7T increases.

We will now return to prove Theorem 4. ILet f(i) be factorized as
#(i) o ai(z)hi(z), where ai(z) has positive roots only while hi(z)
has no positive roots. Correspondingly, M(i) iz factorized as M(i) =

(1) (i)

AiHi. Suppose that A is lexicographically greater than A . We

will then consider a polynomial di(z) with positive coefficients for

il

which we have from (H) that p(i)Al = eTl\&d‘.i-‘L:.L for i=2, ..., w. As
N i

I
j=7]

asserted by (H), we have p(i) > 0. Let us define 4
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also a polynomiel with positive coefficients. Consider zlso the relation

Y; = ¢;h; asserted by proposition (F}. ¢,

5 has pesitive coefficients,

and Y. heas nonnegative coefficients. Define two polynomials with non-
i Jn

negative coefficients, ¢ = ¢l¢2...¢w and g, = = h, ¢1¢2 2"'dw' We
will show that the following vectors v and s(l) given by
vM(l) = eTMCr and 5(1) = vM(l)
1

satisfy the conditions that v > 0 and s(l) >0 for 1i=2, ..., W.

. 1y _ 7 _ T
It is clear thet v » 0., For, M = e My reduces to VA, = e M.M,.

1 1 a'd
Since p(l)A = eTM JA.  and since d. is a factor of d, we have
1 d; 71 i
q(l)Al = eTMdAi, and q(i) > 0, where q(i) = p(i)MdMa?. On the other
(1) _ _ T _ T _ (1)
hand, we have s = v H = e MdM¢A1 A H = e MdAl A M =q Mci > 0.
We see from Theorem 4 that if A(l) is 1ex1cograph1cally greater

(1)

than any other A , then efficient is any cash flow generated by

u(i) =0 for i# 1, “and u(l) 20 for 0 <t < T-2 for scme fixed AX.
This is wvalid whatever large‘ T is taken. It is cléaf fhat if we want
to choose & project, independently of the time pattern of investmenﬁz we
must choose Project 1. What will happen if T is infinite? When mabrix
(2) has an infinite order, it is no longer a polynomialoid matrix but is
equivalent to polynomial (1) itself. For, when T is.finite, only the

first j number of coefficients of (1) appear in the jth

column, from the
right, of (2). The inverse matrix of (2) has the similar characteristics.

But if T dis infinite, no such truncation of coefficients is made; e.g.,

the coefficients of an infinite series appear in every column of the inverse

of (2). We simply have to return to the old arguments dealing directly
with polynémial (1) so far. The polynomialoid matrix distinguishes our

arguments from the cld cnes.
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