Institute of Socio-Economlc Planning

Disccuslon Paper Seriles

No.160 (82-27)
Stratified Rejection and
Squeeze Method for Generating

Beta Random Numbers,

H. Sakasegawa

University of Tsukuba

University of Tsukuba
- Sakura, Ibaraki, 305

JAPAN

August,1982

1. Introduction

Beta~-distributed random variables play an.important role in
statistical simulation experiments in that 1t has a finite
support and in that a family of beta distributions has a wide
variety of shapes. This paper deals with generating algorithms of

random numbers with beta distribution

(2.1) F(x) = ¢ x27% (1-x)P1 (0<x<l, a>0, b>0)

T(a)T(b) /T (a,b)

i - -
J x® i (1-x)°71 ax.

o

where ¢ 1 = B(a,b)

n

Severai algorithms of generating suqh-numbers have been
proposed and tested by many authors including Johnk [6], Ahrens
and Dieter [1], Atkinson et al. [2,3], Cheng [5]1 and Schmeiser et
al. [8]. Johnk used the fact that the ratio of x to x+y, where

(x,y) 1s a random point in { (x.y) xi/a + ji/b

<1}, becomes a
beta-distributed random variate. Ahrens and Dieter considered the
normal approximation for the case a>1 and b>1. They calculated
the multiplicative factor of a normal density function to overlap
a beta density function for all x and used 1t in thelr algorithm.
Atkinson et al. used the another overlappling functlon and
generated random numbers using power functlon distrlibutlons.
Cheng proposed the dextercus algorithm to generate modified
(second kind) beta random variates which can be transformed into
ordinary beta random variates by simple linear operation.

The main tool of all these algorithms mentioned above is
so-called a rejection technique. To generate a random point in

some possibly complex region A, not necessarily bounded, one may

consider another simple region B covering A, then, sample points

randomly from B and select only such points that are also
contalned by A. It 1s evident that selected points are uniformly
distributed in A. This process to generate random points in A is
called a rejection method. A squeeze method is somewhat
elaborating technique which supports the rejection method in
improving its efficiency. Let C be a reglon which contains A and
let D be an another reglon which is contained'by A, that 1s,
DC A CC. When 1t is time consuming to test if a random point in
B, say P, lies also in A (P€A) or not (P&A), one can save
time by testing first if P€D and/or P &C before PE€A or not. If
P is in D, it 1is alsc in A, and if P is.noﬁnin C, i1t is not in A,
too. This technique has been widely applied to various generating
algorithms of random numbers with so-and-so statistical
distributrions and Marsaglia [7] gave this name for the first
time,

In this paper we propose new rejection algorithms to
generate random numbers with beta distribution. Three algorithms
correspond to different shapes of the distribution, that is,
U-shaped, J-shaped and unimodal ones. Each algorithm needs
several constants dependent on 2 shape parameters a and b and 1t
takes some time to compute these numbers. Accordingly., our
algorithms are not much effective when shape parameters change
from time to time. On the other hand, we have many situations
where a sequence of random numbers with fixed shape parameters
are required. In such cases our algorithms are superior to.other
existing algorithms mentioned above.

We glve precise descriptions of algorithms in the next
section and show results of timing tests with other algorithms in

section 3.

2. Method.

2.1 Stratified Rejection Method. |

First, we consider the rejectlion method described in the
previous section. Efficiency of the rejection method depends on
two things, one is an easiness to sample a point from B and the
other is an expected number of random points in B which is
necessary to get single sample from A, The latter is given by'the
ratio

(8] / [a]
where [A] 1s an area of A.

Two things are, in general, contradictory and one of them may be
less considered than the other,

Now we consider a technique to sample from A easily keeping
the ratio near to one. Let B,, B

1 2’
such that sampling from each subset is easy. We call Bj as the

be a decomposition of B

i Qur sampling plan is
as follows: First, we randomly choose one stratum, say Bj’

according to the ratio Qq Gy P oeaes then sample one polnt

Jj=-th stratum of B. Let qj be an area of B

randomly from Bj' If‘the point does not belong to A, this
sampling experiment - falled and try again the same sampling
process, otherwise the point is the objective one. We call the
above technique as a stratified rejection method. Correctness of
the method is easily varified, for stratification is only used to
simplify sampling from B,

In the following, we apply this technique to a beta variate

generation. We consider separate algorithms to different shapes

of the distiribution such as

Case 1) a, b < 1,

Case 2) a < 1 < b,

Case 2') b < 1 < a,

Case 3) a, b > 1 and

Case 4) (a-1)(b-1) = 0,
Since a beta distribution is symmetric in a and b, cése 2f) is
included in case 2): 1f x 1is a random variate of case 2), 1-Xx 1s
a random variate of case 2')., For the last case, the inverse
function method is applicable if eather a or b is not equal to
one, If a=b=1, y=f(x) becomes a uniform density. We treat three

cases, 1), 2) and 3), in the following.

2.2. Algorithm for Case 1).
Let t be a real number in (0,1) and let y=g(x) be a function

defined on (0,1) as follows.

(2.1) g(x) =_{c<1;t)b‘1xa‘1 (0<x<t)

et® 1(1-x)P"1 (£t <x < 1)

Let B be a region between y=g(x) and x-axis and let A be a region
between y=f(x) and x;axis, then A is completely covered by B. Let
B1 and B2 be two strata of B which are separated by a line x=t,
Sampling from each stratum 1s easlily done by using inverse

1/a 1-(1/a)

function method. (tu ,» ©(glu v) 1s a random point in

the left staratum and (1-(1-t)(1-w /P, r(t)(1-u)i~ (/D)

v) is a
random point in the right stratum if u and v are uniform random
numbers ("uniform" is commonly used as uniformly distributed on a

unit interval (0,1)). If

1-(1/a)

(2.2) f(x) > f(tiu v (= g{x)v)
| where x = tul/a
in B1 or
(2.%) £ix) > £(8) (1w Py (o gixyv)

where X = 1—(1—‘0)(1«11):!'/b

in 82 is correct, x is a desired random number. (2.2) or (2.3) is

equivalent to

(2.4) ((1-x)/(1-tNPL > ¢
or
(2.5) (x/£)2°t > v,

respectively. To avoid the time consuming computation of power,

we apply the squeeze method to this case. Note that

(2.6) ((1-6)PToyx/t + 1 > (1-x)%1 > (A=b)x + 1 (O<x<t)
(2.7) (1-t2" 5y (x-1)/01-8) + 1 > x® T 5> (a-1)(x-1) + 1
{ t<x<1).

These inequalities are well used for squeezlng steps. A free
parameter t of this algorithm must be determined so that
efficiency of the algorithm becomes maximum. Efficlency of
stratified rejection method may be measured by the expected
number of rejection or of sampling experiments. Let A, be an

J
intersection of Bj and A. Expected number of experiments is given

by
-~ -1
(2.8) (Zj<|%|/Lﬁ%h|%Vmﬂ) = |B| / |a].

and |B] 1is calculated as
iBl = (e/a)t®(1-5)°71 &+ (e/mrt2 1 (2-0)°.

The optimal value of t., say topt’ is given as a solution of a

gquadratic equation as follows,

Eopt = (a(a-1)+ J/ab(1-a)(1-b)) / (b-a) / (1-a-b)
(1f a¥b and a+bxl)
1/2 (if a=b or a+b=1)

It is possible to calculate ¢ by the Newton method to avold a

opt
troublesome problem which sign should be chosen for the first
case. Numerical experiments show that practically reasonable
approximations can be obtained by the Newton method with single
iteration aﬁd an antimode as an initial wvalue in any combination
of parameters.

Now we give the formal description of the first algorithm

below.

Algorithm BCO (a,b;x)

0. t <« (1-a)/(2-a-b), s <« (b-a)(l-a-b), r <+ al(i-a),
t <« t-({(st+2r)t-v)/2/(st+r), p < t/a, q <« (1-t)/b,
s « (1-£)271, ¢ « 271, r < (e-1)/(t-1).

1. u,v < UR(0,1), u <« (p+glu. If u>p, go to 3.

2. X < t(u/p)l/a, v « sgv, If v < (1-b)x+1, deliver x.
If v > (s-1)x/t+1 or v > (1-x)°%, go %o 1,
otherwise deliver x.

3. x = 1-(1-8) ((p) /P, v <= ev.

If v < (a-1)(x-1)+1, delilver x.

a-1

If v > r{x-1)+1 or v > X » g0 to 1, otherwise deliver x.

Step 0 should be executed once when parameters a and b are set
new. u <- UR(0,1) means %o generate a uniform random number and
to set to u. These remarks are true for the other algorithm

descriptions,

2.3. Algorithm for Case 2).
Let t be a real number in (0,1) and let y=g(x} be a function
defined as follows,

(2.9) g(x) ={ e x271 (0 <x £t)

c £2°1 (1501 (£t <x<1)

Same as 2.2, let B be a region between y=g(x) and x-axis and B,

and B, be two strata of B with a line x=%t as a boundary. (tui/a,

g(tul/a)v) or (1—(1—t)(1—u)1/b, f(t)(i-u)l_(l/b)v) 1s a random
point in B, or By, respectively. If

(2.10) f(x) > g(x)v where x = tui/a

or (2.%) is satisfied, x is a desired radndom number, (2.10) is
equivalent fto
(1-x)b_1 > v

and using

m, x+1 > (1—x)bu1

1 > m2x+1
where my = max(1-b, ((1—t)b_1—1)/t) and
m, = min(1-b, ((1-£)°72-1)/%)

and (2.7) for squeezing steps, we can construct the algorithm. To

determine the optimal value of t which minimizes IBI where
Bl = (c/a)s? + (e/0)t271(1-t)°,

we solve non-algebraic equation by the Newton method with single
iteration and a ratio of (1-a) to (b-a) as an initial value,.
The formal description of the second algorithm is stated as

follows.

Algorithm B01 (a,b3;x)

0. £ < (i-2)/(b-a), s « (1-£)°72, r <« a-(a+b-1)t,
t < t_(t"S(i"t)(1-r)/b)/(j."sr)§ p < t/a’ q < (1-t)b—13

s <= min(1-b, (g-1)/t), r < max(1-b, (g-1)/%)},
g « q(1-t)/b, ¢ < £271, 4 « (c-1)/(t-1).
1. u,v < UR(0,1), u < (p+q)u. If u > p, go to 3.

2, X < t(u/p)i/a. If v < sx+1, deliver x.

If v > rx+1 or v > (fL-x)b_1

3, X & 1-(1—t)((u-p)/q)1/b, v <« cv,

, g0 to 1, otherwise dellver X.

If v < {(a-1){(x-1)+1, delever x.
a-1

If v > d(x-1)+1 or v > x° —, go to 1, otherwise deliver x.
As stated earlier, BO1l algorithm is also applicable to Case 2'}:
exchange a and b, generate x according to B0l and transform x to

1-%.

2.4, Algorithm for Case 3).
In this case, (1.1) 1s bounded and B can be chosen to be
bounded. The density function has a single mode at

x = x, = (a-1) / (a+b-2).

M

Ifa>2 (b>2), there is a point of inflection at x_ (x,_),

+

where

x_ = xy (1 -/ (b-1)/(a-1)/(a+b-3))

x, = xy (1+ /(b-1)/(a-1)/(a+D-3))

and the left (right) tall of the density decreases faster than

the exponentilal density.

Let y=g(x) be a function defined as follows (see Filgure 1}.

(2.11) g(x) = ff(xl) exp(rl(x-xl)) (if 0 < x € X,)

1
ml(x-xz) + £(x5) (if X, <X § X)
< mz(x-x2) + f(xé) (1f Xy, < X £ X)
f(xME_ : (if X <X £ Xg)
m3(x—x6) + f(x6) (ir Xg < x g Xg)
Kmu(x-x6) + fxg) (if xg < x ¢ Xq)
f(XT) exp(-rz(x-x7)) (if *q < %X < 1)
where X, = (X_ (if a>2)
(_XM/Z (1f ag2)
X T Ky = FUx,/07(x,) (1f a>2)
{ 0 (if ag2)
mg = (£0x)=0(x))/(x5-%0) (1f a>2)
{ £ (x5) (if asg2)
my, = £(x,)/(x5-%,)
Xg = Xy * (£(xy)=-£(x5))/m,
ry = £(x)/0(x)
Xg = (X, (if b>2)
% (1+xM)/2 (if bg2)
Xq ={ Xg = f(xs)/f'(x6) (if b>2)
1 (if bg2)
my = f(x6)/(x6—x7)
my, =3 (f(x6)-f(x7))/(x6-x7) (if a>2)
f'(xs) (if bg2)
Xg = Xg * (f(xM)—f(x6))/m3 and
Ty = —f'(x7)/f(x7).

Let B be a region between y=g(x) and x-axis and let Bj's be

defined as follows:

NnN{0 < x < X4 b

1 B

B, = B n { x > X4 Ny >.m2(xtx2)+f(x2) b
B3 = B n | Xy <X < Xy P { y <.m2(x—x2)+f(x2) Y,
By = B A { Xy < X < Xq Fn{y < mB(x—x6)+f(x6) by
B5 = BN { x < Xo tnly > mstx-x6)+f(x6) !} and
B6 =B~ { Xq < x <11},

Random points in B, (B6) are generated by using trancated
exponential random variates. The shape of Bé (B5 } is triangle
and B3 (BH) trapezoid. Sampling from them is executed by using
three or two uniform variates, respectively.

A squeezé method is also effective in this case using the

following inequalities:

f(x) > (f(XM)-f(Xg))(X-XM)/(XM-X2)+f(XM) > £(x5)
in B |

f(x) » (f(xﬁ)—f(x6))(x~xM)/(xM-x6)+f(xM) > £xg)
in By, |

£{x) > £ {x,) (x-x)+f(x)

in B, and B

1 if a»2, and

2

f(x) > ¢ (x7)(x-x7)+f(x7)

in B

5 and B6 if b>2,.

Now we give our third algorithm.

~ 10 -

Algorithm B11 (a,b;x)

0. ¢ <= a+b-2, d <« clogle), x, < {a-1)/c.

If c>1, dy < /(b-1)/(a-1)/(c-1). Set X5 ¥, Xy» ¥y Xgs Ty
q3, X6’ y6, XT’ yT, x5, Ty and q4 according as Table 1,
q, < xu-(x3+x1)/2, Ay < q1+(x5+x7)/2-xq, Q- «— q2+q3,
qq -~ q3+q4’ q5 < q_u+y1(x2‘xl)/2’ q_6 — q5+y7(x7"‘X6)/2:
4, < (1—y2)/(xu—x2), d2 = (1~y6)/(xn—x6), e, < 0 and e, « 0.
1. u,v < UR(0,1), u < qgu. If Qjp €U < Q4 4> & to J
(where q0=0);
2. x < xy-2u, If v > (X'Xl)/(XB"xi)’ v € 1-v, X < X +X5X.
If v < yp, O Vv < dl(x-x4)+1, deliver x, otherwise go to 8.
3, X < x4+2(u-q1). If v > (x—xT)/(xs—x7), Vv « 1-v, X €« Xg*tXg=X.
If v < yg or v < d,(x-x))+1, deliver x, otherwise go to 8.
h, If e, = 0, ei < exp(rlxl).'
W e 1+(e-1)V, X < (1og(w))/ri, v wyl(u-qz)/(QB-qz)/ei,
go to 6.1.
5. If e, = 0, e, < exp(-rz(l-x7)). W 1—(1-e2)v,

X < xT-(log(w))/rz, v < wyT(u-qB)/(qq-QBJ, go to 7.1.
6., w <« UR(0,1), x < x1+(x9-x1)min(w,v),‘V‘é— (y2(x—x1)
~y1(x—x2)(u-qu)/(qs-qu))/(x2—x1). If a £ 2, go to 8.
6.1 If v < yi(rl(x-x1)+1), deliver x, otherwise go to 8.
7. w <« UR(0,1), x < x7-(x7-x6)min(w,v), vV (y7(x~x6)

(u—qs)/(q6—q5)-y6(x~x7))/(xT-x6). If b £ 2, go to 8.

-..,J

.1 If v < y7(—r2(x—x7)+1), deliver x.

8. If v > £(x), go to 1, otherwise deliver x,.

- 11 -

1)

The area of the region B, |B|l, varying according to two
parameters a and b, is a good measure of the effilclency of the
algorithm and we give the values for various parameters in all

cases in Table 2.

3. Numerical experiments.

We state some timing test results to compare several
‘existing algorithms and to Qlaim the superiority of our
algorithms, Compared algorithms are BA, BB and BC by Cheng [5],
AS134 by Atkinson and Whittaker [4] and,BHBﬁ by Schmelser and
Babu [8]. BA and BC does not work for small wvalue(s) of
parameter(s), say min(a,b) < 0.05, according to overflow effect,
AS134 is only applicable for the case 2) and BAYPE is only
applicable for the case 3).

All algorithms are coded in FORTRAN and timing tests are
executed using FACOM M-200/08 IV at Tsukuba University. For
uniform random numbers, we used in-line generator of multipli-
cative congruential method to avoid linkage to and from a
subroutine: it takes about 4 usec. to 1link a subroutine and about
1 gsec. to generate one uniform random number.

Results are summarized in Table 3, Each flgures are averaged
from 25,000 numbers. The only algorithm competitive with ours' is
BY4PE witﬁ both parameters greater than 2. In order to obtain such
high performance, we must prepare several constants depending on
parameter values before generation. The tlme to compute these
constants is called set-up time and those of each algorithm are
listed in Table 4. From these two tables we conclude the

followings. Our algorithms proposed in this paper is recommended

- 12 -

for the consecutive generation, of size at least 6 (if a,b > 1)
or 3 (oﬁherwise Yy, with the same parameter values, For the case
where parameter values change from time to time, BA algorithm of
Cheng is preferable except for some skew cases, where BC, a time
saving modification of BA, becomes efficlent. Program length of
each algorithm 1s given in Table 5. Memory requirement is of
1ittle interest at present and the difference in the table is not
practically'significant. Our complete subroutine program of a
beta random number generator consists of 180 FORTRAN statements
including all 5 cases stated in section 2.1, and it 1s not too

big as a part of a large-~scale computer simulation program.

- 13 -

References

£1] Ahrens,J.H. and Dieter,U. (1974) Computer methods for sampling
from gamma, beta, Poisson and binomial distributions. Computing
12, pp.223-246, |

£2] Atkinson,aA.C. (1979) A famlly of switching algorithms for the

computer generation of beta random variables. Biometrika 66.1,

pp.141-145,
[3] Atkinson,A.C. and Whittaker,J. (1976) A switching algorithm for
the generation of beta random variables with at least one

parameter less than one. J.R.Statist.Soc. A-139 (1976), 7

pp. 462-U46T.
(4] Atkinson,A.C. and Whittaker,J. (1979) Algorithm ASi34: The
generation of beta random variables with one parameter greater

than and one parameter less than 1. Appl.Statist. 28, pp.50-93.

[5] Cheng,R.C.H. (1978) Generating beta variates with nonintegral
shape parameters. Comm.ACM 21.4 (1978), pp.317-322.

[6] Jdhnk,M.D. (1964) Erzeugung von betavertellten und gamma-
verteilten Zufallszahlen. Metrika 8, pp.5-15,

[7] Marsaglia,G. (1977) The squeeze method for generating gamma

variates., Comp.Maths.Appls. 3, pp.321-325.

[8} Schmeiser,B.W. and Babu,A.J.G. (1980) Beta variate generation via

exponential majorizing functions. Operat.Res. 28.4, pp.917-926.

- 14 -

Table 1. Constants for the algorithm Bi1l,

(a>2)

x), (1-dg)

h(x,)

x,(1-4d,)

h(x,)

x1+x2d1/y2
(a—i—cxl)/xl/(l—xl)

¥1/74

(b>2)
Xu(l""do)
h(x6)

h(xT)

x7+x6dz/y6

(ch—a+1)/x7/(1*x7)

y7/r2

y2(1

(a<2)
XL;/2
h(xa)

0

—(afl-cxz)/(l-xz))

x2/y2

-

0

{ b<2)
(1"'}(4)/2
h(x6)

1

y6(1+(a-1;cx6)/x6)

1+(x6—1)/y6

0

where h(x) = exp(d+(a-1)log(x/(a-1))

+(b=1)Tog((1-x)/(b-1))),

[o]
[}

1 (1—x2?/(a-1-cx2)

jo 7]
\]
n

(1—x6)/(a-1—cx6).

15

and

o O o O

Table 2. Expected number of sampling experiments.

a b 0.01
.01 1.973
,

5

.8

5

5

10

0.2

1.402
1.595

0.5 0.8
1.249 1.121
1.365 1.169
1.273 1.144

1.087

- 16 -

1.5

1.004
1.063
1.112
1.098
1.089

.008
.131
.227
.178
. 064
.042

10

.008
.145
.251
.194
.068
.ols
.045

P ——————t e e ey i s

Table 3. Timing tests.

a b 0.01 0.2 0.5 0.8 1.5 5 10 100
0.01 37 27 24 22 20 20 20 20
#1 *1 *1 *1 *1 %1 *#1 *1

¥1 ¥ *1 %1 #1 %1 C %1 %1

-= -- -- -- 32 33 32 33

0.2 32 28 2y 22 24 25 25
56 73 79 83 86 87 88

b2 41 41 41 40 4o 39

-- = - 35 37 38 37

0.8 23 23 26 27 30
ite} 46 53 55 57

27 78 b 41 42

- 36 39 40 4o

1.5 15 13 14 15
46 51 52 55

32 38 42 b7

23 16 17 18

5 12 12 a3
b8 48 50

33 35 42

13 13 15

10 12 12

| 49 49

33 39

1 15

100 {(1st row : BO0O/B01/B11) 12
(2nd row : BA) 49

(3rd row : BB/BC) 34

(4th row : BUPE)} 13

(5th row : AS134) -

Remark. #%*1 shows that overflow occurred 1in the "EXP"
routine in FORTRAN.

- 17 -

Table 4, Set-up time.

BO0O/B01/Bi1 BB/BC BA B4PE AS134
a,b<1_ 35 11 0 - -=
a<li<b - b1 11 0 -- 60 130

1<a,b<?2 80 17 0 33 -
1<a<2<b 108 17 0 80 L
2<a,b 133 17 0 130 --

Table 5. Program length (a number of .execution statements).

BOO BO1 Bi1 BA BB BC BYPE AS134

set-up 9 11 46 7 5 0 39 31
generation 16 15 46 20 15 10 54 9

- 18 -

y = g(x)

Figure 1,

19.'

