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Abstract We present a brief interpretation of variable dimension
algorithms for solving systems of nonlinear equations. The inter-
pretaion is based on a basic model consisting of a ohe;pérameter
family of sys;ems of equat?ons and a class of primal-dual subdivided

maifolds.

1. Introduction

The purpose of this paper is to give a brief interpretation of
variable dimension algorithms ( abbreviated by vd algorithms ) which
were originally proposed for computing fixed points on an n-simplex by
Van der Laan and Talman [8] and later extended to solving a system of
equations
(1) £(x) = 0, x € R
{ Van der Laan and Talman {9,10,11], Todd [15], Todd and Wright [16],
Kojima and Yamamoto [6], Saigal [14], Yamamoto (18], ete. ). Here £
is a continuous map from the n~dimensional Euclidean space RY  into

itself, Throughout the paper, we assume that £: R"+RY  is Cl



( continuously differentiable ) and restrict our attention to
"piecewise smooth vd algorithms™ ( Kojima [5] ). See Kojima and
Yamamoto {6,7] for "simplicial vd algorithms",

Let us begin with the Newton ( -Raphson ) method, one of the wmost
popular method for solving systems of equations. Let xO be an
arbitrary point of R® or a rough approximate solution of (1) if it
is known., Then the iteration of the Newton method is defined by

xp+l = xP - Df(xp)—lf(xp) (p=0, 1, ... ),
where DEf(x) dis the Jacobian matrix of f at =x. It is well-known
that if the initjal éoint xo is sufficiently close to a non-
degenerate solution x* of (1), i.e. an x* ¢ 8% such that f(x*)
=0 and &et Df(x*) # 0, théﬁ.the seﬁﬁence ‘{gp} 00§verge§ fo .xg
quadratically. When the initial point xo is far from x*, however,
the convergence is mot guaranteedﬁand the Newton method may fail. In
other words, the Néﬁton method ddes not enjoy the global convergence
property. "Continuation' is one of the techniques developed for
overcoming the lack of this nice property ( See, for example, Broyden
[2], Ortega and Rheimboldt [13], Ird [4] ).

In the followings we assume for simplicity that xo =0 and
consider the family of systems of equations
(2) f(x)-(;-s)f(0)=o,OSSsl,xeR“,
where s 1is a parameter, As s increases from 0 to 1, the system
(2) is continuously deformed from the system

f(x) - £(0) = 0
having a trivial solution xo = 0 into the system (1) which we want

to solve. Thus, starting from the known solution xO of (2) with the



parameter s = 0, we trace solutions of the system (2) until the
parameter s hits 1. Then we obtain a solution of the system (1),
This is a basic idea of the continuation methods. In many practical
problems for which the Newton wmethod fails the continuation methods
of ten succeed with the same initial point.

We now convert the system (2) into the system
(3) - E(0) +tf(x) =0, L<t, xeR.
Suppose 0 £ s < 1. Then (x, s) ¢ Rn+l satisfies (2) if and only if

(x, L/(1-s)) € Rn+l satisfies (3). Specifically, the known solution

1 1

(0, 0) ¢ ™ of (2) is corresponding to the solution (0, 1) € r*

of (3). Let S denote the connected component of the solution set of

(3) which contains (0, 1) ¢ R™1. since the system (3) consists of
. ¥

n scalar equations in p+l variables, it is intuitively ci;ar that
S forms a one ?imensional curve, which we shall call a path. If the
path § 'converges" to (x¥*, +« ) for some x* ¢ Rn, x* is a
solution -of (1). In this case a point x ¢ R® which solves the
system (3) with a sufficiently large t satisfies

£ = WD £ = o;
x 1is an approximate solution of (1). Then we may apply the Newton
method to the system (1) and the initial point x if an approximate

solution with higher accuracy is needed,

Let
S, = {x e R™: (x, t) e § for some t ¢ [1, +w)}.
Since the path S winds through Rn+l, Sx alsc winds through R

toward x*. Generally, we are forced to consume much work to trace a

nonlinear path in a higher dimensional space. So, if Sx could lead



to a solution x* of (1) aloug a straight line, it would be ideal.
The éystem {(3) can be rewritten as follows by introducing a redundant

variable vector y:

(4) y+ t £(x) =0, (x, ¥, t) e L x T,

Here
L={(x, R xec®, y=-£01,
T= (1, +=), |

i.e. the variable vector x and the variable t are not restricted
while the variable vector y is fixed to ; £(0). This combination
furnishes one dimensional freedom to the set of solutioms of (4), OF
course, there are many combinations which furnishe one dimensional
 freedom. TFor instance, for given k-dimenmsional subspacg' X ¢ % and
{n~k)~dimensional subset Y < Rn, we may replace L by .
L=xxY=1{(x, y) e R2% x e X, ye¥l.
It is needless to say that we cannot reach a solution of (1) unless it
happens to lie on the subspace X. But since y plays as a slack
variable vector in (4), the.work required for tracing the path S of
solutions is greatly reduced if k is small. The aim of vd
algorithmé is to approach a solution of (1) while keeping the variable
vactor x in lower dimensional subspaces as long as possible, At
final stages, however, we have to let the variable vector x freely
move around in Rn. to approximate a solution whose location is not
known beforehand. Thus the dimemsion of subspaces on which x wmoves
must vary aloug the path S. In the next section we shall illustrate

how to realize such a variable .dimension structure by presenting an

example.



2, Variable Dimension Structure

Figure 1 shows two subdivided manifolds ( see Section 3 for the

definition )} of Rz.

Let

P = (X, X, K},  P={Xy Xy, «ur, X5 )

<l
H
—
v
o
v
]
-
o
.

D =Y},

Note that dim Xj + dim'Yj =2 for j=20,1, ..., 6.

Example 1.
;1.
X2 X1
X P
XB . j{ 0
X : e ¥
6 o e 6
" X4 ‘ AX .
/ | 5 ;
5
Xy = {o} -YO : a triangle having O
Xl, X3, KS : two dimensiomal in its interier
polyhedral cones Yl’ Y3, YS : vertices“of"YO
XZ’ X4, XG ¢ half lines YZ’ Y4, Y6 : facets of YO
Figure 1.



Let

6
L = . X, Y. ).
UJ=O ( ] x ] )

Then L forms a two dimensional piecewise linear manifold ( the
definition will be given in Section 3 ) in Ré. Figure 2 illustrates
a combinatorial structure of L, i.e. an adjacency relation among two
dimensional polyhedral sets Xj X Yj's.

Now we consider the system (4)'of equations with 4 -defined
above and T = [0, +« ). Obviously, z0 = (0, 0, 0) ¢ XO X ¥q X T
_satisfies (4). Let S be the connected component of the solﬁtion set
of (4) which contains zo. Since the system (4) consinsts of two
scalar equations on the three dimensional piecewise linear‘manifolds

L xT, § forms a piecewise smooth path under a moderate regularity

assumption., It rumns through the three dimersional manmifold L x T in

XZXYZ Xlel
X3><Y3
X5 Yo
X6X‘26
X4><Y4

Figure 2. combinatorial structure of L



RS all the way from zo (S and L x T are illustrated in Figure

3 ). But we can observe the variable dimension structure of the path
S in the projections Sx and Sy of S on the spaces of the
variable vectors x and y. BSee Figure 4. We see that S, leads to
a solution of (1) along several faces of P with varying dimensions,
The system (4) with L and T defined above is decomposed into the
family of systems of equations:
y+ t £(x) =0, (x, v, t) € ij ij T (j=0,1, ...,6).

Suppose S moves from a three dimensional polyhedral set X; % Yix T
into another one Xj><ij T traversing their common two dimensional
face. Then by the comstructiom of L, either

X is a facet of Xj and Yj is a facet of Y.
or

Xj is a facet of X, and Y. is a facet of Yj
occurs. In this way the dimensions of X and Yi vary comple-
mentarily by unity as the path S moves into a new polyhedral set.
Observe that the variable vector x moves along lower dimensional
faces of P in earlier several stages of tracing the path S. As
stated in Section 1, y serves as a slack variable vec£or in (4), and
hence the computation of § is relatively easy while x moves on

lower dimensional faces.



Figure 3. a segment of the manifold LXT

and the path §

t >

;
A

t=0 t=t t=t3/ 1:=t4 =0
t=t

Figure 4. projectious Sx and S
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3., A Class of Primal-Dual Subdivided Manifolds
To give a precise description of éubdivided manifolds which
compose the variable dimension structure we shall introduce some
definitions. We call an m—dimensional convex polyhedral set C in
Rk a cell or an m-cell, Let B be a cell such that B c C. If
Ax + (I-A) yeB
X, yeC, 0<2xc<l

always imply that x, ¥ € B, then we say that B dis a face of C and

write B < C.

Let M be a finite or countable collection of m-cells in Rkv

Let

M ={B:B<C forsome CeM} ,
[M]=J{c:CceM } .

M is a subdivided m-manifold if it satisfies the following three

conditions:‘
(1) For each pair B, C e M, either B n C=¢ or Bn ¢ is a

" common face of B and C.
(ii) Each (m-1)~cell of M lies in at most two m-cells of M .,
(iii) M is locally finite; each point x €| M I has a neighborhood
that intersects with finitely many m-cells of M .
Define the boundary 3M of a subdivided m-manifold M by

M= {B : B is an (m~1)-cell of M that

lies in exactly one m-cell of M } ,

Let M be a subset of Rk. If M= IM l for some subdivided

m-manifold M , then M is an m-dimensional piecewise linear

manifold, or simply, an m-manifold and M is a subdivision of M.



Now we are ready to describe a primal-dual pair of subdivided

manifolds ( abbriviated by PDM ). A triplet (P , D ; d ) 1is a PDM
if it satisfies the following conditions:
(i) P is a subdivision of R .
¢ii) 0 is a subdivision of a polyhedral subset D of R” such
that each cell of T is bounded.

= d

(iii) d is an operator from Pu?d into itself such that X e D

for every X ¢ P ° and 9P for every Y e D .

{iv) If ZePu?D then (Zd)d =7 and dim Z + dim Zd = n,
35 d d
(v) If Xy, Xy € P and Xy < Xy, then Xy < Xqo
= d d
(" If Yy, ¥, ¢ D. and ¥, <Y,, then Y, < 1.

See Fection 3 of {6] for the general.defipition of PDM and its
fundamental properties. We call P ( resp. 0¥ ) the primal ( resp.

dual ) subdivided manifold, d the dual operator and zd the dual of

7 for each Z ¢ P u J. Note that the condition (iv) implies that
the dual operator d is one-to—one and onto, and that its inverse is

d itself., It is easily seen that the two subdivided manifolds in
d

Example 1 form a PDM by defining the dual operator d by Xj = Yj
and Y? = Xj for =0, 1, ..., 6.
Define

d:xe? Y,

1
-
pd

X
P

<P ,0;d>
or equivalently

<P,D; {Y XY:YGD}

a8
\Y
i}

et L=<P,D; d>,
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Theorem 1. ( Theorem 3.1 in Kojima and Yamamoto {7] )
L is a subdivided n-manifold with no boundary, i.e., 3L = ¢,

and |L| is closed.

We further impose the following two conditions on the PDM

(P,D,;4d):
(vi) {0}eP , and O ¢ int Yy, where Y, = {O}d eD .
(vii) There exists a positive number o such that

x%y 2 o x | for every (x,v) ¢ |L|,
where | x || = ( X x )1/2. From the condition (vi), we see that
(0, c¢) lies in |L| whenever | ¢ || is sufficiently small. This point
(0, ¢) will be used as an initial point of the vd algorithms. The
condition {vii) will play an Important role when we derive a
sufficient condition for the global convergence of the vd algorithms,
It is also easy to see that the PDM in Example 1 satisfies the
conditions (vi) and (wvidi).

We shall givé threé:examples of PDM below. Here we restrict
ourselves to picturing them. See Section 3 of Kojima and Yamamoto [f]
for their precise descriptioms.

The PDM's given in Examples 2, 3 and 4 are used in the 2n-method
:( Van der Eéén_ang Télmgn’[li] 7, the'2n~metho&' (‘ofhthe octahedral ‘
method, Wrightl[l7] 5vana thel(3n-l)—method ( Kojima and Yamamoto
[7] ). They ar; all easily verified to satisfy the conditions (vi)

and (vii) as well as (i) - (v).

11



Example 2.

i
5, 0% X s Y Ty
/0
X, Xg -1, ' v, —
50 X % e
5 6 7
|
Figure 5.

Example 3.

Figure 6.
Example 4.
\\\gfs X, XS////
_ 4 %
X 2 X
X7 6 1
Xg ¥ %16 -
Y 7 %15
10 1
,////Xll M2 Q\\
13 p
Figure 7.
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4, Piecewise Smooth Vd Algorithm
Let (P, D; d) be aPDM which satisfies the conditions (i) -
(vii) given in Sectiom 3, and let
L =<P,D;d>={Xx Xd :XeP} .
Define the subdivided (n+l)-manifeold
M ={2xT:Zel }o,

where T = [0, +®). By Theorem 1, we see

M ={2Z2x{0}:2¢el}
(5) a _
={XxX x {0} :XeP }.
Now we define the PCl ( abbreviation of piecewise C1 ) map h :
[MI -a-Rnby

»

hix, vy, t) =y + t £(x) for every (x, v, .t) e |M]|.

i Let ¢ be an interior point of the cell YO of D . By the
condition (vi), any point ¢ with sufficiently small norm | c [| lies
in the interior of T5- In Section 2 we have taken c¢ = 0. We shall

consider the system of equations

(6) h(x, s t) = ¢, (X, ¥ t) £ IM

It follows from (5) and the condition (vi) in Sectioﬁ 3 that h—l(c)
intersects with | M| at a single-point 2z = (xo, yo, to)

= (0, ¢, 0). This point will serve as an initial point for the
piecew{ée %mooth'vﬁ_algofithm. fet 8 fbe‘a”co;ngcted component of
hfl(cj whicﬁ.conégins the inifiél péint zo.b We see that under a
moderate regularity assumption h"l(c) is a disjoint union of

piecewise smooth paths and loops, and that § is a piecewise smooth
-

path.

13



Lemma 2. ( Lemma 5.3 in Kojima and Yamamoto [7] )
.Assume the condition (i) — (vi) in Section 3. Then under a
moderate regularity assumption S 1is an unbounded path which is

homeomorphic to [0, +«),

If there is a bounded subset V of DB such that” § < R x

V *x T, each (;c, 3—7, ¥) € § with a sufficiently large t satisfies
el s e disl+lel) = o

X is an approximate solution of (1). In examples in Sections 2 and
3, each polyhedral subset D is bounded in itself, i.e. there is a ¢
>( such that |ly ||$5 for any vy € D.. Therefore to obtain an.
apéroximate,solution x such that ” fzi)” < e we hav; only to trace
the path dé until t exceeds ( § +” c“.)/EQ. ’For tracing the path
5 _numerically, we can employ various prédictdr—corrector procedures
developed in the homotopy continuation Qethods ( Li and Yorke [12],

Allgower and Georg [1l], Georg [3], etc.). See Kojima [5] for more

detail.

Remark When we trace the solution path § of the system (6), we

may encounter numerical unstability as the value of t increases. It

» . e »

might be better to employ the system of‘equépiOns
(1-t) y + £ £(x) = 0, (x, 3, £)e|L] x [0, 1].
‘In this case we obtain a solution of the system (1) when the variable

t attains 1.

14



The following theorem provides a sufficient condition for the

global convergence of the piecewise smooth vd algorithms.

Theorem 3. ( Theorem 5.1 in Kojima [5] )
In additien to the conditions (i) - (vii), suppose that for some
L > 0 and for every x ¢ R with || x || 2 u there exibts an x ¢ R°
such that _
” ;~” £ h and (x - ;)t f(x) >0
( a weaker version of Merrill's condition ). Then there exist bounded

sets U c Rn and ¥V D such that S < Ux V x T.
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