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Introduction

Although there is extensive literature on the housing market and
property taxes, most of the analyses have been carried out in static
frameworks and the aspect of housing as an asset has not been fully
analyzed.l‘ Shoup (1969), Bahl (1968), Arnott and Lewis (1979), and
others examineéd the individual behaviour of a land investor, recognizing
the asset side of housing and land. Their analyses, however, are partial
in the sense that they simply assumed that investeors take the future
price path as‘given and did not close the model to determine the
equilibrium price path. |

Weiss (1978) analyzed the effect of capital gains tax on the choice
between renting and owning a house, but he also assumed the future
price path to be exogenous in most part of his paper. Though he suggested
a steady state model with the endogenous price path in section 3, his
analysis there remains heuristic.

Assuming perfect foresight, Markusen and Scheffman (1978) constructed
a simple two-period model of the land development process and analyzed
the effect on the equilibrium price path of a land tax and a capital gains
tax.2 This paper extends their model and offers more detailed analyses
of a captial gains tax and a property tax.

Major differences from the Markusen-Scheffman model are as follows.
First, the two-period model is extended to an infinite-horizon/continuous-
time framework. This enables us to separate long~run, or steady-state,
effects from short-run effects and makes clear the relationship with

the traditional static analysis of property taxes. Second, substitutability
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between land and capital is introduced into housing production, where
capital here includes both improvements and structures. This extension
allows us to analyze the distortionary effects on captial-land ratio
which have been one of the major issues iﬁ the analysis of property taxes.

Markusen and Scheffman obtained the result that a realized capital
gains tax speeds up the land development process. It is shown that gheir
result crucially depends on their implicit assumption that a change in
tax rate is anticipated beforehand. In their model, the capital gains
tax is levied only in period 2 and the tax rate is known in period 1.

If a rise in tax raté is anticipated, thére‘is an:incéntive to sell land
before the rise occurs and it is natural that the development process
is accelerated.

In this paper both unanticipated and anticipated changes in the
capital gains tax are considered. It is shown that an unanticipated rise
in tax rate causes decreases . in residential land and the housing stock
at each instant of time. An unanticipated rise therefore slows down.
the residential development process.

I£f, however, a rise in tax rate is anticipated, then the situation
is different and the perfect foresight equilibrium path has an upward
jump in the amount of residential land right before the rise occurs.

The jump is followed by a period in which residential development stops,
and after residential development starts again, the amount of residential
land follows a path lower than that with ne change in tax rate.

The result in Markusen and Scheffman corresponds te the case in
which the future rise in tax rate becomes larger. In that case, the jump
in residential land becomes larger, but the path that the residential

land eventually follows becomes lower. Thus, there is speeding of
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development at the moment when the tax rate is changed but in the long

run the amount of residential land decreases. An increase in the jump

size occurs since a larger tax increase gives more incentive to develop
land before the tax increase.

The effect of the property tax, or a tax on property values, is
similar to that obtained by Markusen and Scheffman and is also a
generalization of the traditiomal static analysis to a dynamic framework.

A model of the residential development process with a capital géins
tax is constructed in Section 1, and the perfect foresight equilibrium
path is characterized in Section 2. Section 3 examines the effect of
an unanticipated rise in the tax rate on the equilibrium paths of
residenfial land, housing capital, housing stock, and f;nd price.

An anticipated change in the capital égins £ax is analyzed in Section
4. TIn Section 5, a tax on property values is introduced instead of
a capital gains tax and the effect of the properxty tax om the perfect
foresight equiliﬁrium path is analyzed. Finally, Section 6 contains

concluding remarks. All the proofs are relegated to the Appendix.



1. The Model

A representative landowner initially owns L units of homogeneous
land and uses the land for, say, an agricultural purpose. The land
is gradually developed and converted intc residential use. It is
assumed that there is no rental market for land and housing so that
the development is possible only if the landowner-sells land.
Between time t and t+At, the agricultural landowner sells IL(t)At units
of land to a representative consumer. The consumer prepares the land
for residential use, for example, by installing sewerage and building
roads, and build houses. | -

Thenﬁroduction function of housing is denoted by H(L,K), whezxe
L and K are respectively the amounts of land and housing capital
(including land servicing costs). The production function is
assumed to be concave, homogeneous of degree one, twice continuously
differentiable, and to satisfy HLL(L,K)<O, HKK(L,K)<O, where
HLLEQZH/BL2 and HKKEBZH/BKZ. The amount of the housing stock
produced betweén t and t+At is then H(IL(t)At,IK(t)At)=H(IL(t),IK(t))At,
where IK(t)At is the amount of housing capital bought by the consumer
between t and t+At.

The prices of land and capital at time t are denoted by pL(t)
and pK(t) respectively. The price of land is detérmined endogenously,
but the price of housing capital is exogenous and supply of capital
is infinitely elastic at that price. The price path of housing
capital is assumed to be differentiable and increasing: ﬁK(t)>0.

The total amount of residential land at time t, L{t), satisfies
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L(t) = f I (s)ds, (1.1)

where L{t) is allowed to have jumps. It is assumed that the conversion
of land into residential use is irreversible: IL(t)gp for any t.

At time t, the landowner has L-L(t) units of agricultural land
which yields the agricultural income of R(L-L(t),t). The agricultural
land rent is then r(L-L(t),t)=3R(E-L(t),t)/3(E-L(t)) and we assume®
that rL(i—L,t)sar(i—L,t)/a(E-L)<o and rt(i~L,t)Ear(f—L,t)/Bt>0.

When the landowner sells land, a tax is levied on the capital gains
that the land has earmed. Specifically, the value of land sales in
excess of the value of that land evaluated at a certain base price, b,
(which may be the price at time 0) is subject to an ad valorem tax with
tax rate T. Thertax at time t is then T(pL(t)—b)IL(t) and the net

income from land sales is [(l—T)pL(t)+Tb]IL(t)- It is assumed that the

base price is low enough to satisfy b<r(DL-L,t)/i in the relevant range of L.

The tax revenue is redistributed to the landowner and the
consumer as lump-sum subsidies. The subsidies at time t are'SA(t)
for the landowner and SC(t) for the consumer, where SA(t)+SC(t)
=t (p"(£)-b) 1" (1) .

In addition to land and housing, there is another asset, called
the bond, whose rate of return is i and fixed. The landowner forms
expectations of the land price path and maximizes the discounted sum
of future earnings plus the lump-sum subsidy, IO{R(i—L(t),t)
+[(l—T)pL(t)+Tb]IL(t)+SA(t)}exp(-it)dt, where the discount rate is
the rate of return on the bond, i. The maximization is carried out
under constraint (1.1l) and the nonnegativity constraint for IL(t).

First order conditions for maximization can be easily obtained

L L
and yield supply of land, Ig(t), by the landowner: Is(t)=m if p (e} >



BL(t,T), Ii(t)=indeterminate if pL(t)=§L(t,T), and Ii(t)=0 if pL(t)

-]

<5L(t,T), where EL(t,T)EItrL(L(s),s,T)exp(—i(s~t))ds and rL(L,t,T)

_ 1

_l_T[r(f—L,t)—Tib]. These'conditions can be interpreted as follows.

If land is sold at time t, then the price of land net of the tax is
(l—T)pL(t)+Tb. If land is not sold, then it earns agricultural rent
o

and the discounted sum of future earnings is Itr(£~L(5),s)exp(-i(s—t))ds.
1f the former is higher than the latter, or if p (t)>p-(t,1), then it
pays the landowner to sell land. The rate at which land is sold, IL(t),
is infinite since both the objective function and the constraints are
linear with respect to IL(t). If the former equals.the latter, or

»

L, . - , .
if p (t)=p?€t,1), then the-landowner is indifferent Between selling

’ s . .

and keeping land and IL(t) is indete;minate. Finally, if the formexr
- is lower than the laﬁter, or if pL(t)<§L(t;T), then the landowner has
no incentive to sell land and IL(t);O.

The representative consumer buys land and housing capital and
build houses. The instantaneous utility function of the consumer is
U(c,H,t), where ¢ and H are the consumption of the composite consumer
good and the amount of housing stock respectively, and U(c¢c,H,t) is
assumed to be concave in ¢ and H. The dependgnce of the utility
function on time_may‘be'intéfpretéa as réfiecting population increases
and changes in taste.

Forming expectations on future land price and capital price, the
consumer maximizes the discounted sum of instantaneous utilitiesi
ng[c(t),H(L(t),K(t)),t]exp(—it)dt, subject to the intertemporal
budget constraint? W +f:{y(t)+SC(t)—c(t)-pL(t)IL(t)-pK(t)IK(t)]exp(—it)dt
=0, constraints (1.1} and

K(t) =f:IK(s)ds, - (1.2)



and nonnegativity constraints, IL(t);p and IK(t);p for any t, where
WO and y(t) are respectively the initial asset holding and the income
at time £, and it is assumed that the consumer cannot resell housing
capital. Note ‘that implicit im (1.2) is the assumption that housing
capital is malleable: the capital~land ratio of houses built in the
past can be changed freely and housing capital and land bought in the
past can be recombined to obtain the homogeneous housing stock H{L(t),
RK(t)).

First order conditions for the consumer’'s maximization problem
can be easily obtained. First, marginal utility of the consumer
good is constant over time: Uc(c(t),H(F(t),K(t)),t)=a: JFrom this
'relatiqnship, consumption.of the consumer good satisfies
c(t)=Y(H(L(t),K(t));t,&), where Uc[y(H,t,a),H,t}Ea. Using Y(H;t,a),
the marginal rate of substitution between housing and the consumer
good, UH/UC,_can be written q(H,t,a)= %UH[Y(H,t,a),H,t], where
qH(H,t,a)ép by concavity of U(c,H,t) in ¢ and H and it is assumed that
qt(H,t,a)>0. q can be interpreted as the shadow rent of housing services.

Next, define the shadow rent of residential land, qL(L,K,t,u)E
q(H(L,K),t,u)HL(L,K), the shadow rent of housing capital, q?(L,K,t,u)E
q(H(L,K),t,a)HK(L,K), the shadow price of res?dential land, EL(t)E
f:qL(L(s),K(s),s,u)exp(wi(s—t))ds, and the shadow ﬁrice of housing
capital, BK(t)Ef:qK(L(s),K(s),s,a)exp(—i(s—t))ds. Then, first order
conditions for the consumer's problem yield demand for residential land
and housing capital, Ia(t) and Ii(t):
(1) Iz(t)=0 if Pl ()spl(E), Ia(t)=indeterminate if pU(e)=p (),

and Ig(t)mo if pL(t)<BL(t).



(ii) Ig(t)=0 if pK(t)>BK(t), 'I?(t)=indeterminate if pK(t)=gK(t),
and Iy(D)== if p (t)<p (£). |
Thus, if the market price of land (capital) is higher than the shadow
price of residential land (capital), then demand for land (capital)
is zero; if the market price equals the shadow price, thén demand
for land (capital) is indeterminate; and if the market price is lower than

the shadow price, then demand for land (capital) is infinite.



2. The Perfect Foresight Equilibrium Path

As described in Section 1, the landowner and the consumer determine
demand and supply of land and capital, given the expectations of price
paths, pL(t) and pK(t). Along the perfect foresight equilibrium path,
the price expectations are correct and the expected price paths coincide
with the equilibrium price paths. Then, the landowner and the consumer
have the same expectations and given the price expectations the land
market is in equilibrium at each instant of time. The equilibrium
condition ds: (i) I5(D=T(1), or (1i) I5(0)>I5(t) and L(r)=L, or (iii)
_Ig(t)<12(t) and pL(t)=O. Note. that capital -market equilibrium is
always guaranteed since supply of housing capital is perfectly elastic.

Tt is assumed that the shadow rent of housing, q, rises fast enough

to yield the following conditions.

Assumption 1. The shadow rent of housing, q(H,t,a), the shadow rent of

agricultural land, rL(L,t,r),and the rental price of capital, rK(t)E
ipK(t)-ﬁK(t), satisfy the inequalities:
q./q9 2 rTE/rL
n[(q,/@) ~o(rs/r™) ~(1mw) (£/r) Mo (1-0) [(£/r)=(x /)T 2, 0
Al(q, /0 -0/t - (o) (/70 Mol (/x5 - (1/291 2 0,
where o, n, and w are the elasticity of substitution between capital
and land in housing production, the shadow rent elasticity of demand for

housing services, and the share of land rent in housing production

2
i : g=- H = = .
respectively: g=-L HKHL/(KH KK)>0, n q/(HqH)>0, w LHL/H>0

The first two inequalities assume that when L{t) and K(t) are

constant, the shadow rent of housing rises faster than or as fast as
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the agricultural rent and the rental price of capital. The last two
inequalities ensure that L(t) and K(t) are both nondecreasing over
time along the equilibrium path. 1If, for example, qt/q>rt/r=13K/pK
and b=0, then all four inequalities are satisfied.
Next, in order to ensure an interiocxr seclution, we make the following

assumption.

Assumption 2. qL(L,K,t,a), rL(L,t,T), qK(L,K,t,a) and rK(t) satisfy

L
qL(O,K,t,u) >r (0,t,7)
g (L,0,t,0) > £ (1)
@K, t,0) < @, 0

. K : K

lim q (L,K,t,a) < r (&) for any relevant L, K, &, o, 1.
K=o

Undexr Assumptions 1 and 2, the perfect foresight equilibrium path

is characterized by the following Proposition.

Proposition 1. The perfect foresight equilibrium path satisfies

BL(t)=pL(t)=§L(t,T) and EK(t)=pK(t) for any t in [0,®). Hence, the

equilibrium path follows the differential equatiomns:

pUCE) = 1pl(6)-q" (L(E) ,K(E), t,0)
= ipn(0)-r" (L(D),£,1), 0gt<®,
Ko = 150~ @ k), 50, 0t <o

1im pL(t)exp(~it) = 0.
f st
Although the proof of the Propositicn is tedious, the Proposition
itself is simple and easy to understand. Along the perfect foresight

equilibrium path, the shadow price of residential land, the market
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price of land, and the shadow price of agricultural land are all
equal, and the shadow price(of housing capital equals the market price

of housing capital. This condition implies that the shadow rent of
residential Iand, qL, equals the shadow rent of agricultural land, rL, and
that the shadow rent of housing capital, qK, equals its rental price,

ey =ipt () -p (L) .
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3. An Unanticipated Rise in the Realized Captial Gains Tax

Next, consider the effect of an unanticipated change in the tax
rate, T. The effect depends on the way in which the tax, revenue is
redistributed between the landowner and the consumer. We assume the
simplest case where SA(t) and Sc(t) are determined in such a way to
keep unchanged the consumer's marginal utility of the consumer good, a.
The.effect of a change in o is.the pure income effect and its nature is

well known. Henceforth, we suppress a's in q(), qL(), and qK().

Proposition 2. Consider two perxfect foresight equilibrium paths
correspénding £0 two tax rates, one higher tﬁan the otherl' Then, the
equilibrium path with the higher tax rate has

{(a) the smaller amount of residential land, L(t),

(b) the larger (smaller) amount of housing capital, X(t), if ﬁhe
elasticity of substitution between capital and land, o, is larger
{smaller) than the shadow rent elasticity of demand for housing, n,

(c) the smaller amount of housing stock, H(t), and

(d) the higher price of land, pL(t), but the lower price net of the tax,
p"(B)-tlp" (£)-b],

at each instant of time.

Since the realized capital gains tax is levied when agricultural
land is converted to residential use, it discourages residential

development. Proposition 1 yields (1—T)qHL+Tib=r and qH =rK. Hence,

K
if b=0, then the capital gains tax is equivalent to a tax on residential

land with no tax on agricultural land and housing capital and causes a

fall in the amount of residential land. If b>»0, then the term with b
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works in the opposite direction but this effect is weaker than the above
effect under our assumption that b<r/i. Thus, the capital gains tax
always reduces the amount of residential land as shown in condition (a)
of the Proposition.

The effect on the amount of housing capital depends.on the relative
magnitudes of two forces. On one hand, the tax causes a rise in the
cost of housing and induces a fall in demand for housing. This effect
tends to decrease the émount of housing capital. On the other hand,
the price of land rises relative to the price of capital and the resultant
substitution from land to capital tends to increase housing capital.
Condition (b) shows that if the elasticity of substitution is larger
(smaller) than the rent elasticity of housing demand, then the latter
effect is stronger (weaker) than the former and fﬁe capital gains tax
increases (decreases) thé amount of housing capital.

As in condition (c), even if hbusing capital increases, the increase
is offset by a decrease in residential land and the amount of the housing
stock always falls.,

Condition (d) results from condition (a).l In oxrder to induce a
fall in the amount of residential land the gross price of land that the
consumer pays must be raised, and the price net of the tax that the
landowner receives must be lowered to increase the amount of agricultural

land.

The Proposition compares two equilibrium paths corresponding to two

tax rates. If a tax rate, is maintained up to time T and the tax

g
rate is suddenly raised to Tl(>TO), then the equilibrium path shifts

from that with tax rate 5 to that with tax rate Ty However, since
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L(t) and K(t) cannot fall over time by our assumption, there is a period
in which IL(t)=O {and IK(t)=O if o<n) after time T and it may take a while

for them to reach the new equilibrium path.

It should be noted that the pri;e of land jumps up at time T.
This is a consequence of the assumption of long-rum perfect foresight,
that is, the assumption that both the landowner and the consumer have
the correct expectations of the entire future paths of land and capital
prices. If they face stable environment, the assumption would be a
reasonable approximation of reality, but if the environment is
changing“rapidlf, it is unlikely that the long-run perfect foresight
aséumption is satisfied. 1In such a case, the myopic perfect foresight
assumption may be a better one. Under the myopic perfect foresight
aésumption, only the rates df change of land and capital prices at the
present moment are expected correctly. Demand for and supply of land
are determined in such a waj that only the short-run optimality conditions
are satisfied: for the consumer (the landowner),the return om the alter-
native asset equals the residential (agricultural) shadow rent plus
capital gains from a rise in the price of land, or ipL(t)=qL+§L(t)=rL+ﬁL(t).
If myopic foresight is assumed and the present ﬁrice is taken as given,
then the price path is continuous and it can be seen that the priée path
becomes flatter at the time when the tax is raised: BﬁL/3T=—3rL/BL
3L/31<0. Therefore, the tax lowers the land price as in Fig. 1 in sharp
contrast to the case of long-run perfect foresight. After a while,
however, it may be realized that their expectations are wrong and a

jump in the price path teo the long-run perfect foresight path may occur.
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Since the consumer does not sell a house, there is no market
price of housing. Although the representative consumer may be interpreted
as consisting of many identical consumers and trading of houses among
them may be considered, they never sell their houses if they have to pay
the capital gains tax. Only when the tax rate is zero, the market price

of housing can de defined since they are indifferent between selling

their houses and buying others' houses. The shadow price of

housing, f:q(H(L(s),K(s)),s)exp(-i(s—t))ds, however, can be defined, and
it is easy to see that the shadoiw price rises when the tax rate is

raised. ,
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4. An Anticipated Change in the Capital Gains Tax

Markusen and Scheffman (1978) analyzed a tax on realized capital
gains in a two period model and ob£ained the result that "a capital
gains tax will speed the conversion of undeveloped land into final use'.
This contradicts our result in Section 3 that a capital géins tax reduces
residential land at each instant of time. The difference is caused by
the fact that Markusen and Scheffman assumed an anticipated change in tax
rate, while an unanticipated change is assumed in Section 3. They assumed
that there is no tax in the first period, that capital gains from the

first period to the second period are taxed, and that the tax rate is known

& -
-~ >

in”;he first peripd. 1In such a case, there is an incentive-tdjdevelop
land in the first period to avoid the capiéal gains tax in the second
period,

In this section, we consider ' an anticipated rise in tax rate at
time T from 1. to 7,. The tax rate is then To in period [0,T] and T

0 1

in period (T,=),where T >T The only difference from Section 2 is that

0
the objective function of the landowner becomes Iz{R(ﬂ-L(t),t)

(-1 p (D41 b1 TH (048" (0) Yexp (-it)dt + Sp{R(I-L(E) ,0)+[ (11 )p" (t)+t BIT"(t)
+SA(t)}exp(—it)dt. Supply of land by the landowner satisfies the same
condition as that in Section 2 if we substitute Ty for v in period [0,T]

and T, in period (T,=).

1 .
Proposition 3 characterizes the perfect foresight equilibrium path

when a rise in the tax rate is anticipated.

- - L,» - L, ‘
Proposition 3. Define L(t,T) and K(t,7t) by q (L{(t,T),K(t,T),t)=r (L(t,T),

K- - K L
t,7) and q (L{t,T),K(t,1),t)=r (t); and ¥(K,t,7) and ¥(L,t) by q (¥(K,t,T),
K K
K,t)ErL(©(K,t,T),t,T) and ¢ (L,¥(L,t),t)Sr (t). Then, the perfect

foresight equilibrium path with an anticipated rise in the capital gains
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tax from TO to Tl at ;ime T satisfies the following conditions.
(i) If the elasticity of substitution is not larger than the rent
elasticity of housing demand, or o<n, then
(a) in period [0,T),
EL(t)=pL(t)=EL(t,TO) and 'EK(t)=PK(t);
L(E)=L(t,7,) and K(t)=K(t,T,);
(b) in period [T,Tl), T<T

=2, .

1
L L -L . L =L K K
p (t)<p (E)=p (t,Tl) with p (t)<p (t,rl) and p (t)=p (t);
L(t)=Ll;}(T,ro) and K(t)=W(Ll,t),
where L1>L(T,TO) if Tl<m; and
(¢} in period [Tl,m),
L L, . =L K K
p (©)=p.(t)=p (t,ry) and p (t)=p (t);
L(£)=L(t,7)) and K(t)=K(t,7,)
where L1=L(Tl,rl).
(ii) If o>n, then

(a) in period [O,to], 0zt <T,

0
P ()=p"(£)=p"(t,7,) and p (B)=p (£);
L(t)=£(t,T0) and K(t)=£(t,T0);

(b) in period (tO,T),
B (8)=p" (£)=p"(t,7,) and p (B)<p (8);
L{t)=8(K(ty),t,7,) and K(£)=K(t,)=R(ty,70);

(¢) in period [T,tl), Té;légl,
P (©)gp" (D5 (1)) with ELct><5L<t,rl) and pr(£)<p (t);
L(t)=L >¢(K(t,),T,1,) and R(t)=K(t ),

where Ll>¢(K(tO),T,TO) if Tl< w3
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(d) in period [tl,Tl),
P ()" (D)5 (£,7,) with p()<p (£,7,) and p (©)=p"(£);
L(t)=Ll and K(t)=‘P(Li,t),
where K(t0)=‘1’(1,1,tl); aﬁd
(e) in period [T,,%),
pE(6)=ph ()= (¢, 7)) and p (£)=p(t);
L(E)=L(t,7,) and K()=K(t,T,),

where L(T1,11)=Ll and K(Tl,Tl)=¥(Ll,Tl).

The Proposition is illustrated in Figs. 2 and 3. If the elasticity
of substitution is smaller than or equal to the rent elasticity of housing
demand, then, up to time T, L(t) follows L(t,t,) which is the equilibrium

and does not change; jumps up to L. at time

path when the tax rate is 7 1

0
T; remains constant until time 'I‘l when i(t,rl) becomes equal to Ll; and
follows ﬁ(t,rl) from that time on. Thus, there is a sudden increase

in L(t) at time T but L(t) eventually follows the path, i(t,rl) which

is lower than the path without a change in tax rate, ﬁ(t,TO). The amount
of housing capital also experiences an upward jump at time T. From time
T it moves in such a way to equate the shadow rent and the rental price

of housing capital and eventually follows K(t,rl) which is lower than

R(t;t.) .

0
If the elasticity of substitution is larger than the rent elasticity
of housing demand, the situation is more complicated since the phase in
which K(t) remains constant appears. In this case there is no jump in

K{t) and K(t) eventually becomes larger than K(t,TO) since K(t,11)>

ﬁ(t,TO).
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for any t in

1 1

[T,»®). It can be seen that if Tl is infinite, L1 is not smaller than

the steady state value of L(t,tl), i.e., Ll;}(w,rl).

Note that T. may be infinite, in which case L{t)=L

It Tl ig finite, then L(t) always has a jump at time T, but if

Tl is infinite, then L(t) may not jump. If, for example, r(L-L,t)=

- ®
r*(L-L)exp{(nt), pK(t)=pK exp(nt), q(H,t)=q*(H)exp(nt), and b=0, then it
is not diffcult to see that L({(t) and K(t) are constant over the entire

time horizen.

Next, Proposition 4 yields the effect of an anticipated rise in the

tax rate, T,.

Proposition 4. If Tl<m, then an expected rise in Tl has no effect on

L(t,ro), but raises Ll and lowers L(t,Tl). Hence, an infinitesimal

rise in 7 keeps L(t) unchanged in [0,T); but raises it in [T’Tl); and

lowers it in (Tl,m).

This Proposition corresponds to the result of Markusen and Scheffman.
An anticipated rise in 1 speeds up development at time T when the size
of a jump in L(t) becomes larger, but eventually reduces the amouﬁt of
residential land since i(t,rl) becomes smaller.

1f a‘change in Tl is discrete, then the Proposition should be medified
slightly: L{(t) rises in {T,Tz? and falls in.(TZ,w) for some T2 which is

larger than Tl.
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5. A Tax on Property Values

Next, consider an ad valorem tax on property values with tax rate
T. : Land is evaluated at market price of land, and housing
is evaluated at factor costs, that is, the valué of E(L(t),K(t)) at time
£ is pr(E)L(E)+p (E)K(E). |

The landowner owns L-L(t) units of land at time t ;nd the property
tax he has to pay is TpL(t)(i—L(t)). His objective function is then
FRE-L(E), D)+ (D T (6)-p" (8) (E-L(£))+5%(2) yexmp(-it)dt. Supply of
land is given by the same condition as that in Section 2 if we modify
the definition of EL(t,T) to EL(t,T)=fz[r(f;L(s),s)—rpL(s)]exﬁ(—i(s—t))ds.'
The shadow price of agri;ultural land, EL, ig the discounted sum of the
shadowmreng of agricultural land, where the shadow rent equals the
agricultural rent minus the property tax per unit land, rmrpL.

The consumer péys the property tax, t[pL(t)L(t)+pK(t)K(t)], on the
heusing stock, H(L(t);K(t)), that he owns. The budget constraint is
modified to Wy ly(£)+s°(D)-e(t)-p (DT (6)-p ()T  (t)=[p" ()L ()
+pK(t)K(t)]}exp(—it)dt=0. Demand for land,.Ig(t), and demand for housing
capital, Ii(t), satisfy the same conditions as those in Section 2 if
BL(t) and EK(t) are replaced by EL(t,T)=I:[q(H(L(s),K(s)),s;a)HL(L(s),K(s))
_TPL(S)]EXP(—i(S—t))dS and EK(t,Tj=f:[q(H(L(s),K(s)),s,u)HK(L(s),K(s))
-TPK(S)]EXP(—i(S—t))dS.

If Assumptions 1 and 2 in Section 2 are maintained with modifications,
rL(L,t,oc)=r(i—L,t), rK(t)=(i+r)pK(t)-13K(t), qL(L,K,t,a)=q(H(L,K),t,a)

H (LK), and (LK, £,0)=q(BL,K) , £,0)H, (LK), then the following

Proposition is obtained.
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Proposition 5. The perfect foresight equilibrium path with a tax on

property values satisfies EL(.t,T)=pL(_t)=L_JL(_t,T) and P_K(t,-r)=pK(t) for
any t. Hence,
PP ()= (141 p" (£)~q (L (£) ,K(£)), £ ) By (L(£),K(E)
=0 p () -rE-L(D),0)
P () =(L41)p  (£)=q(E(L(E) ,K(E)) , £,0) Hy (L(E) ,K(E))

lim pL(t)exp(-it)=0

Lo

Next, if the tax revenue is redistributed in such a way that o

remains the same, then the effect of a change_in the tax rate is:

Proposition 6. The equilibrium path with a higher tax rate has

(a) a larger (smaller) amount of residential land, L(t), if the
elasticity of substitution bétween capital.an& land is larger
{smaller) than the rent elasticity of demand for housing.

{b) 2 smaller amount of hoﬁsing capital, K(t),

(¢) a smaller amount of housing stock, H(t),

at each instant of time, and

(d) a lower price of land at the steady state,

From Proposition 5, the equilibrium path satisfies qHL=r and

qHK=(i+T)pK—§K, and the effect of the property tax is to raise the

. . . , K K , K K
effective rental price of capital from ip -p to (i+T)p -p .
A tax on housing is equivalent to taxes on land and capital at the
same rate. A tax on capital has a real effect but a tax on land does
not cause distortion in resource allocation since supply of land is
fixed. 1In effect, therefore, the property tax is equivalent to a tax

on capital only.
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Being equivalent to a tax on capital, the property tax reduces the
amount of capital as in (b) of Proposition 6. The effect on the amount
of residential land is ambiguous, since a rise in capital price causes
substitution from capifal to land as well as a decline in housing demand.
If the elasticity of substitution is larger than the rent elasticity of
housing demand, then the property tax increases residential land, and
vice versa. Although residential land may decrease, it is offset by an
increase in capital and the amount of housing stock always falls.

It is unlikely that the price of land rises when the property tax
is raised, but I have not been able to prove that the land price always
falls. As in Ptoposition 6, however, the price of land at the ;teady
state falls. It can also be seen that if o<n, éhe? the price falls
at each point in time. .

Qur results in this section are-similar to those obtained by
Markusen and Scheffman. The results also extend the traditional
static analysis‘of property taxes to a dynamic framework. Proposition 6
yields the steady state effect as a special case and the steady state
results correspond to the static results in the traditional literature.
Although this paper does not deal with the question of the incidence of
the property tax, or who ultiﬁately beérs the tax burden, the analysis
of ;he incidence can be carried out by assuming that the subsidies, SA(t)
and Sc(t), are zero and examining the effects of the tax on the welfare

levels of the landowner and the consumer.
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6. Concluding Remarks

Constructing a perfect foresight equilibrium model of the land
development process, this paper has analyzed the effects of the capital
gains tax, both unanticipated and anticipated, and the property tax.

The analysis can be extended in several directions.

First, housing subsidies and other forms of taxes such as a tax on
accrued capital gains can be easily incorporated. In a slightly different
formulation, Kanemoto (1981l) showed that a subsidy on interest payments
of housing loans tends to raise the prices of land and housing and to
increase the amounts of ;esidential land and housing stqck. A tax on
accrued capital gains can be seen to have effects similar to a tax on
property values. )

Second, the rental market can be introduced quite eésily in addition
to the property market? If rental housing and owner-occupied housing
are perfect substitutes for the consumer, the analysis is especially
simple. In the case of no taxes, both suppliers and demanders are
indifferent between rental and owner-occupied houses and their relative
shares are indeterminate. A tax on property values does not change the
situation if the tax is levied on rental housing as well as owner-occupied
housing and agricultural land. If a realized capital gains tax is imposed,
however, the property market collapses and there is only rental housing
in equilibrium.

Third, housing capital is assumed to be malleable and durability of
housing is ignored. If this assumption is not satisfied, the steady
state may not be unique and may depend on initial conditioms. 1In such
a case, the analysis becomes much more complicated, but it is not
likely that the comparative-dynamic properties that are derived in this

paper are radically changed.
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Finally, there is no uncertainty in our model and the financial
market is complete so that everyone can lend or borrow at the same
interest rate, 1. Extending the model to include uncertainty and
incompleteness of the financial market would be the most fruitful

direction.
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Appendix

Proof of Proposition 1l: This follows from Lemmas 1 through 5.

Lemma 1. For any t20,
L L
qt(L,K,t,a) 2 v (L, E,T)

K K
qt(L’Ks t,a) rt(t)

v

L L

ae (L, ¥(L, ©) ,£,0) ¥ (L, ©)+qs (L, ¥(L, 1), t,0) 2 Tr(L,€,1)

K K

qL(é(K,t,T),K,t,a)@t(K,t,r)+qt(¢(K,t,r),K,t,a) ;gri(t)
Proof: The inequalities follow directly from Assumption 1.
Lemma 2. The perfect foresight equilibrium path satisfies EL(t,T)ggL(t)
and pK(t);EK(t) for any t.
Proof: If L(t)=L, then L(s)=L for any s2t. Hence, by Assumption 2,
=L ’ L
p (t,T) >p (&),

- L, ., -L
Suppose that, for some ty> L(t0)<L and p (t0)>p (tO,T). Then
IL(t )=IL(t ), or IL(t )<IL(t ) and pL(t )=0. Furthermore, by continuity
d* 0 s 07 d 0 s 0 0 ?

of EL(t) and 5L(t,r), there exists e>0 such that EL(t)>EL(t,T) for any
t in [to,t0+e). If EL(t)>5L(t,T), then either EL(t)>pL(t) or pL(t)>EL(t,t).
In the former case, 1E(t)=m and hence Ii(t)g;ﬁ(t)=IL(t)=m, where IL(t)
denotes the equilibrium path. In the latter case, II;(t)=m and since
L -L . L L L R
p (£)>p (t,t)20, we obtain Id(t)=Is(t)=I (t)==. Thus, in both cases,
IL(t)=no in [tO,tO+E) and L(t0+s)=m, which contradicts the assumption
that L(t)éi. This proves the first inequality in the Lemma.
+£) for some

If EK(tO)>pK(tO) for some t., then EK(t)>pK(t) in [t

0’ 0’0
K

£>0. Hence K(t0+e)=oo and, by Assumption 2, p (t0+e)<pK(t0+e), which is

a contradiction since by continuity EK(t0+s);pK(tO+s). This proves the

second inequality.
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Lemma 3. The perfect foresight equilibrium path satisfies EL(O,T)=EL(O)
and pK(O)=gK(6)- |

Proof: We prove the first equality only. The second equality can be
proven in a similar way.

From Lemma 2, it suffices to prove that EL(O,1)>EL(O) cannot hold.
Otherwise, either pL(O) <5L(0,T) or pL(O)>EL(O). Hence, by the
equilibrium condition, IL(0)=O and L{0)=0.

Now, by continuity of EL and EL, either one of the following cases

must occur: (i) there exists some t, such that EL(tl,r)=EL(tl), and

1
L L . ' . oy =L L
p (t,t)>p {t) with L(t)=0 for any t in [O,tl), or (ii) p (t,t)>p (t)

with L(t)=0 for any t in [0,®). By Assumption 2, qL(t)>rL(t) if
N .
L(t)=0. Hence, in case (i), pL(0)=f01
tl L :L -L
>[5 T (t)exp(-it)dt+exp(-it))p (t;,T)=p (0,T), and in case (i),

qL(t)exp(—it)dt+exp(—itl)EL(tl)

EL(0)=f;qL(t)exp(uit)dt>fgrL(t)exp(—it)dt=5L(0,?). Thuz,a contradiction

is reached in both cases.

Lemma 4. If EL(EO,T)=EL(tO) and SL(t,T)>BL(t) for any t in (to,tl),
then qL(L(t),K(t),t,a);;L(L(t),t,T) for any t in (tO,tl) along the perfect

. ST K K K K
foresight equilibrium path. If p (t0)=E (to) and p (t)»>p (t) for any
t in (to,tl), then qK(L(t),K(t),t,u);;K(t) for any t in (tO’tl) along
the equilibrium path.
Proof: We prove only the first half of the Lemma, since the latter half
can be proven in a similar way.

L, + ‘L, + o
The assumption implies that p (tO,T):;E (to), where superscript
. . s L L +

denotes the right-hand limit. Hence, q >r at t=ty.

-K
Since L(t)=L(t0) at any t in (to,t ), we have p (t)=iEK(t)—
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qK(L(tO),K(t),t,a). Now, suppose that BK(t)=pK(t). Then, by Lemma 2,
pNE) 25 (e) 255(t) and hence qK(L(tO),K(t-),t,a)_i_rK(t);qK(L(tO),K(t+),
t,o), where superscript ~ denotes the left-hand limit. But, since
K(t+);§(t_) and q§=qH(HK)2+qHKK<O, these inequalities hold only when
K(t+)=K(t“). It follows that K(t)=W(L(tO),t) for any t in (tO’tl) if
EK(t)=pK(t).

Next, if pK(t)>EK(t), then ﬁ(t)=0. Hence, either K(t)=¥(L(t0),t)
or ﬁ(t)=0, which implies that K{t} is nondecreasing since @(L(to),t)=
Wt>0. Hence, by Lemma 1, qL—rL is nondecreasing at any t in (to,tl).
Combining this result with qL;;L at £=d§' yields qL;;L at any t in

(to,tl).

* Lemma 5. Along the perfect foresight eduilibrium:path, EL(t,r)=pL(t)
=EL(t) and pK(t)=EK(t) for any t in [0,=).
Proof: We prove the first equality. The second equality can be proven
in a similar way.

It is first shown that EL(t,T)>EL(t) cannot hold for any t>0.
Suppose, on the contrary, that, for some %>O, EL(%,T)>BL(%). Then;
by Lemma 2 and continuity of BL and EL, there exists some t0(<%) such
that EL(;O,T)=EL(t0) and 5L(t,1)>2L(t) for any t in (to,%].

Now, either one of the following two cases occurs: (i) there
exists some t1(>%) such that EL(t,T)>EL(t) for any t in (to,tl) and
-L L ..y =L L .
P (tl,r)=2 (tl), or (ii) p (t,t)>p (t) for amy t in (to,m). In the
first case, Lemma 4 implies that qL;;L for any t in (to,tl). Hence,
=L v tl L 4y -L v tl L ~
P (t,T)=f% r exp(-i(t-c))dedp (tl,r)exp(—i(tl—t)):;f? q exp(-i(t-t))dt
+EL(tl)exp(-i(tl—%))=BL(%), which is a contradiction. The same

-L
contradiction can be derived in the second case, too. Thus, p (t,T1)
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=BL(t) for any t>0.

Next, we show that pL(t)=5L(t,T)=BL(t) for any t. Otherwise,
either pL(t)>EL(t,r)=EL(t) or pL(t)<5L(t}T)mEL(t) for some t. In the
first case, Iﬁ(t)=0 and Iz(t)=m. Hence, by the equilibrium condition,
pL(t)=O. But, this implies EL(t,T)=EL(t)<0, which is a contradiction.
In the second case, Iz(t)=m and Ig(t)=0. Hence, L{t)=0 and, by
Assumption 2, EL(t,T)=ftrL(f,s,T)exp(—i(s—t))ds<f:qL(f,K(s),s,a)exp(
~i(s—t))ds=QL(t), which is also a contradiction. Thus, EL(t,T)=pL(t)

=_pL(t) for any t>0.

Proof of Proposition 2: From Proposition 1, the equilibrium paths of

L(t) and K(t) satisfy q°(L(t),K(t),e)=r"(L(t),t,T) and g (L(t),K(E),t)
=rK(t). Solving these two equations with respect to L(t) and K(t) yields

L(t)=£(t,T) and K(t)=§(t,r) with

sL/oT ] <0

KK
[ (z-1b) /D(1-0) * 1 [qKEH /12T [0-n] 20 as o %,

[ (x=15) /D (1~1) *] [qyy () P

9K /o

where D=quH2HKK/L2-r£[qH(HK) 2+qHKK] 0.  Then, H(£)=H(L(t,t),K(t,t))
Eﬁ(t,f) satisfies
aﬁ/BT = [(r—ib)/D(l—T)z]qHHKK/L < 0.
Next, the price of land is given by ;L(t,r)=f:qL(£(s,T),ﬁ(s,T),s)
exp(-i{s—-t))ds and we obtain BBL/3T>0, since BqL/aT=quH2HKK/L2>O.
The price net of the tax is ;L(t,T)(1—T)+Tb=f:r(f—£(s,r)

and  9r(L-L(t,7),£)/9T =-r 5L/9T<0 yields 3(p"(t,1) (1=T)+7b)/37<0.

Proof of Proposition 3: This follows immediately from Lemmas 6, 7, and 8.
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Lemma 6. The perfect foresight equilibrium path satisfies

B (e, )=pl (1), L(E)=8(K(t),t,T ) in [0,T]

EL(t,Tl)>EL(t), L(t)=L1:;¢(K(T),T,TO) in [T,T,)

BU(E,1)=p (1), L{D=0(R(D),t,7,) dn [T),@),
where T]_ may be infinite.
Proof: Applying the same argument as in Lemma 2 yields pK(t);EK(t) in
0,%)5 B-(t,1)2p () in [0,T] and 3"(e,7)2p"(t) n [T,%).

Next, it is shown that EL(O,T0)=EL(O). Suppose the contrary. Then

EL(O,TO)>BL(O) and L(0)=0. Applying the same argument as in Lemma 3

1
~L L . . =L =L
P (t,10)>E (t) for any t in [0,T]. Since p (T,T0)<p (T,Tl), we have

shows that there is no t, in [0,T] such that‘EL(tl,To)=EL(tl). Hence,
EL(T,11)>EL(T). Applying the argument in Lemma 3 again yields a
contradiction. Hence, EL(O,TO)=2L(0).

Now, suppose that there exists t in (0,T] such that EL(E,T0)>EL(%).
Then, we can use arguments similar to those in Lemma 4 and Lemma 5 to
obtain EL(t,TO)>EL(t) for any t in (tO,T], where t0(<¥) satisfies
EL(tO,TO)=EL(t0). Then, EL(T,Tl)>5L(T,TO)>EL(T) and the argument
in Lemma 5 yields a contradictioh. Thus, EL(t,T0)=EL(t) for any
t in [0,T].

Since ﬁL(T,r1)>5L(T,TO)=gL(T) and both EL and EL are continuous in

t, we have ﬁL(t,Tl)>EL(t) for any t in [T,Tl) for some T. in (T,=].

1

Note that Tl may be infinite.

Applying the argument in Lemma 5 also yields that, if EL(Tl,Tl)

>T, then EL(t,rl)=pL(t) for any t in [Tl,m)

L
=p (Tl) for some Tl

Lemma 7. Suppose Uéﬁl Then, pK(t)=BK(t) for any t in [0,»), and, if

T <@, then L(T )=L(T,7y)<L, and L,=L(T

Proof: The same argument as in the proof of Lemma 3 proves pK(0)=EK(O).

177
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The arguments in Lemmas 4 and 5 cannot be applied directly to
prove that pK(t)=EK(t) for any t in [0,»), since L(t) may have a jump
at T. If o<n, however, BqK(K,L,t)/aL;p and an upward jump in L(t)
cannot cause a fall in qK. Hence, a slight modification of the arguments
in the proof of Lemmas 4 and 5 proves the equality.
Next, since EL(T)=§L(T,TO) and EL(Tl,Tl)=EL(Tl)>5L(Tl,10), we have
Tl L Tl L L L
fT q exp(-i(t-—-T))dt<J‘T r exp(-i(t-T)dt. From Assumption 1, q >r and
L L . L L L -
hence q (Ll,K(T),T)<r (Ll,T,TO). But, since qL—rL<O and q (L{(T ),K(T),T)
=rL(L(T“),T,TO), we have L,>L{T)=L(T,7,).
Finally, we show that L1=L(Tl,rl). " Suppose the contrary. Then,
A . L A 7 - B L ~ -
Ll<L(Tl,Tl)._“Slnce q (L(Tl,rl),K(Tl,Tl),Tl)—r (L(?l,tl),Ti,rl) and
L L L . L
qL(L,T(L,Tl),Tl)+qK?L—rL(L,Tl,Tl)<0, it follows that q (Ll,T(Ll,Tl),Tl)
L L. ~ L, | _
~-r (Ll)?l’Tl) >q (L(Tl)Tl) ?K(Tl, Tl) ’Tl)_r (L(T13Tl) ’Tl,Tl)_O' Hence’
éL(TI)<EL(T1,Tl), which contradicts the fact that EL(t,T )>EL(t) in

(T,1,) and B-(T,,7)=p"(T)).

Lemma 8. Suppose o>n. Then BK(t)=pK(t) in [O,tO] for some t0 in [0,T],
BK(t)<pK(t) in [to,tl) for some tl in [T,Tl), and EK(t)=pK(t) in [tl,m),

where if t.=t_=T, then BK(t)=pK(t) for any t. If T <e, then L(T )

01

1

Proof: The arguments in Lemmas 2 and 3 can be applied to yield pK(t)
;EK(t) for any t and pK(0)=EK(O).

If L.=L(T ), then arguments similar to those in the proofs of

1
. , K, Koa
Lemmas 4 and 5 can be applied to show that, if p (£)>p (£) for some

K K
¥ in (O,Tl}, then pK(tO)ng(tO) for some t0<% and p (t)>p (t) for any

L _ o et
t in (tO,Tl]. Hence, K(Tl)—K(tO). Now, it is shown that Ll-L(Tl)

- + . L=y L om
_®(K(t0),T ). Otherwise, L,<L(T;). But, since p (11)39 (Tl’Tl)’

1°'1
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L L L +
we have q (Ll,K(tO),Tl)ég (Ll,Tl,tl) and hence q (L(T ),K(to),Tl)
<qL (L
1

L
IRICOR SIS AR

<TI’T1)' This contradicts inequality,EL(t,Tl);QL(t) for any t, obtained

L + . . . L, 4+
Y<r (L(Tl),Tl,tl), which implies p (Tl)
>p
in Lemma 6.

Thus, there is no jump in L(tf at t=T. and argumenté similar to

1
those in Lemmas 4 and 5 yield a contradiction. Hence pK(t)=EK(t) for
any t in [O,Tl].

Next, consider the case of Ll>L(T_). It is first shown that pK(T)
>p"(T). Otherwise, p (I)=p (T) and p(T7)>p (T)>p (T'). This implies
that qK(L(T‘),K(T’),T);;K(T);QK(Ll,K(T+),T): But, since 9q~/9L<0 and
5q%/3K<0, it follows that qK(L(T‘),K(T'),T)>qK(Ll,K(T'),T);SK(Ll,K,T)
for any K;K(T-), which contradicts tﬁe aboverinequalityf

Second, arguments similar to those in Lémmas 4 and 5 show that
there exists t0 in (0,T] such that pK(t)=EK(t) f&r any t in [O,to} and
pK(t)>BK(t) for ény t in (tO,T].

Third, it is shown that qK(K(tO),@(K(to),t,ro),t)>rK(t) in (c,1],
qK(K(tO),Ll,t)<rK(t) in [7,t), and qK(K(tO),Ll,t)>rK(t) in (£ ,%).

From bK(tO);éK(tO), we obtain qK(K(to),L(tO),to)ggK(tO). Hence, by
Lemma 1, qK(K(tO),¢(K(tO),t, 0),t);;K(t) in (c,,1].

Next, we show that qKCK(tO),Ll,T)<rK(T). OtheFWise, ﬁK(T+);éK(T+).
and hence, by Lemma 1 and pK(T)>EK(T), we obtain pK(t)>EK(t) in (T,Tl].
Then the argument used in the case of L1=L(T_) can be applied to derive
L1=L(TI)=¢(K(tO),T,rl). Hence, qK(t)>rK(t) in (T,») and a contradiction
is obtained in the same way as in Lemma 5.

Thus, qK(K(tO),Ll,T)<rK(T). Since qu/dt;ng/dt, it follows that

qK(K(tO),Ll,t)qK(t) in [T,t)) and qK(K(tO),Ll,t)>rK(t) in (t,,») for
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some tl’ where tl may be infinite.

Fourth, it is shown that, if t is defined by pK(%)=EK(%) and pK(t)

n, “u
>EK(t) in (to,%), then t<T Suppose the contrary: t>T At t=t,

1 1
ﬁK(%u)!;éK(%_) and hence qK(K(tO),@(K(to),%,Tl),%)é;K(%). But,
k()0 (E, 1), Er) B ®E, 1) L E 1) BB ane
(B/BK)qK(K,Q(K,t,Tl),t)ép by concavity of H(L,K). Hence, K(to);ﬁ(?,rl)‘
But we have K(t0)=§(t0,10)<§(t,to)<ﬁ(t,rl), where the last inequality
results from Proposition 2, and a contradiction is derived.

"
Fifth, it is shown that T=t_. If t>t,, then EK(tl)=f: quxp(—i(t-tl)dt

1 1’
u 1
+2K(%)exp(fi(%-tl));jz rKexp(—i(t-tl)dt+EK(¥)exp(—i(%—tl))=EK(tl),
l .
which is a contradiction. If %<t then pK(%)=EK(%) and pK(%)<EK(%).

l:
. . K K
This contradicts p (t)2p (t).

Sixth, we show that pK(t)=EK(t) for any t in [t Tl]. If pK(%)>EK(%)

1°
for some t in [tl,Tl], then arguments similar to those in Lemmas 4 and 5
yield pK(t)>2K(t) for any t in [%,Tl]. Hence, the argument used above
can be applied to obtain continuity of L(t) at T . Then, arguments
similar to those in Lemmas 4 and 5 can.be used again to derive a
contradiction. Thus, pK(t)=EK(t) for any t in [tl,Tl].

Regardless of L(t) having a jump at T., an argument similar to that

l!
in the proof of Lemma 7 proves that if Tiéw, then ﬁ(T-)<Ll.
< = . .
Next, we show that Ll L(Tl,Tl) and K(Tl) (Tl,Tl) Otherwise,

oz R -2 N e Koo Kooy
L1<L(Tl,rl)—L(Tl) and/or K(Tl)<K(Tl,Tl)—K(Tl). Since p (t)=p (&) in

K - K Ko ot +
[t Tl]’ we have ¢ (Ll,K(Tl),Tl)—r (Tl). Hence, g (L(Tl),K(Tl),Tl)

l’
<qK(L K(T+) T )<qK(L K(T),T )=rK(T ), where one of the inequalities
= IR A S 1’ 1771 1

. . Koty K, \ . .

is strict. Hence, P (T )>p (T ), which is a contradiction.

Finally, arguments similar to those in the proofs of Lemmas 4 and 5

yield p(£)=p(t) in [T, ,®).

l’
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Proof of Proposition 4: Since pL(T)=5L(T,T Y, pL(T )=1_JL(Tl T,), and’
T T
1L L
(T) =/ q eXP(~1(t—T))dt+p (T, )exp(-1i(T —T))-p (T,7o)=/q L
T

exp(—i(t—T))dt+p (Tl,TO)exp(—i(Tl—T)), we obtain fT [q (Ll,K(t),t)

7’

_rL(Ll,t,TO)]exp(-i(t-T))dt=—[(Tl-TO)/(l-TO)(l—rl)]{f;l[s(i-ﬁ(t,rl),t)
-iblexp(~i(t-T)}dt . Hence, if oz<n, then K(t)=¥(Ll,t) in [T,Tl) and

BLl -l

= [(l -T )qq (H/L) +(q, L(H ) +q )r ]
aTy - A(1-7 ) (l ) T D H HKK H HK ek

exp(-i(t-T))dt > 0 (*)
T

where it is easy to see that A=IT1 Jexp(-i(t-T))dt<0.

[qL‘rL+qKL
If o>n, then K(t)=K(t ) in [T,t ) and K(t)=W(Ll,t) in [t ,T ).
Since p (t )Y=p (t ) and p (t ) =p (t ), K(t ) satisfies ft q (@(K(t ),t,T )
t 0t
K
K(t Y, t)exp(—i(t-t )dt+f q (Ll,K(t ),elexp(-i(t-t 0))dt~ f lr (t)exp(—l(t—t Jlde.
Totally differentiating the above equality and noting that qK=rK at
1k T K LK
t=t, and t=t,, wetobtain dK(tO)/dLl=--[fT qLexp(-i(t--tO))dt]/[ft (qL®K+qK)
exp{(-i{t—-t ) }dt+sr lquxp(—i(t—t y)dtl. Since qK<0, qK<O, and q @
0 T 'K ¢ 0 Lt K T,

. 1 K . 1K ,
we obtain O>dK(t0)/dLl>-[fT qLexp(—l(t-tO))dt/fT quxp(-l(t—tO))dtI.

K+qK<0

Now, in the same way as in the case of o<n, it can be seen that

satlsfles the equality in (%), where A=f l[qi ri+q;dK(t )/dL ]
l L L, L
l[qL r ety
the right hand side is negative as in the previous case. Next, we show
t
that the first integral is negative. Define QH=lequxp(-i(t—T))dt
t
and Q=Iquexp(—i(t—T))dt. Then, since L{t)=L

oL /aTl

exp(~i(t~T))de+S Jexp(-i(t-T))dt. The second integral on

1 and K(t)=K(t0) in [T,tl)

L 2 L_ K_ 2 . .
and qL—qH(HL) +qHLL, qK-qHHKHL+qHLK, qK—qH(HK) +qHKK, the first integral

satisfies
h l[ L_ L+qLdK(t ) /dL. Jexp(~1(t-T))dt
9y~ T ey 1
tl L t I

[qL—rE—qK(IT qLexp(—i(t—T))dt/f 1q§exp(-i(t-T))dt)]exp(-i(t-r))dt

<(,) 2ot - (B, O+ Q) (L H, QuHEL 0) / ((By) 20+ @)
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_ 1
(1 ) qHQ
sam (B P )M o1y <o

1/2)2

(0 [, - (8, ) 1+ QT (i (i) 2 ()

Hence, A<Q and aLl/aTl>0. The Proposition now follows.

Proof of Proposition 5: Similar to the proof of Proposition 1 and omitted.

Proof of Proposition 6: From Proposition 5, we have q(H(L(t),K(t)),t)

HL(L(t),K(t))=r(f—L(t),t) and q(H(L(t);K(t)),t)HK(L(t),K(t))=(i+T)pK(t)
—ﬁK(t), which can solved to yield L(t)=£(t,r) and K(t)=ﬁ(t,r), where

aL/5% z

(0" (£) /Dlq (AK/L)H [o-n] 20 as o %n

ORI

-

Il

(HL)2+qH tr ] <0

3K/at Aol

-
and D is the same as that in the proof of Proposition 2. Hence, H(t,T)
=H({L(t,T),K(t,T)) satisfies
- K 2
9H/3T = [p (£)/D][q(HK/L )HKK+LHKrL] < 0,

Next, define ;L(t,T)=f:r(f—L(s,T),s)exp(-(i+T)(s—t))ds. Then

B;L/ET I:[—rL(3£/31)+(t-s)r]exp(—(i+T)(s—t))ds

li

o ~ L .
-/ Lx (3L/3T)+p™ (8) Jexp (- (i47) (s-t) ) ds,
where the second equality follows from integration by parts. The integrand
is

~ L 1, L 2 X L
rL(BL/BT)+p = D{p qu(H/L) HKK+rL(p q(K/L)HKK+p qd., )

KK
L
+quHLHK(p HK-pKHL)].
At the steady state, ﬁL/pL=§K/pKEn. Then, qHL=(i+T—n)pL and qHK=(i+T-n)pK.
Hence 7

rL(ai/ar)+pL ='%[quqH(H/L)ZHKK+rL(qu(K/L)HKK+quHKK)I > 0

and apL/BT<O.



35.

Footnotes
See, for example, Henderson (1977) and Kanemoto (1980) for the
static analysis of the residential market in a spatial model, and
Mieszkowski (1972), Courant (1977), Sonstelie (1979), and Ch.9 of
Henderson (1977) for the static analysis of the prdperty tax.
They also analyzed the monopolistic behaviour of developers and
compared the monopolistic solution with the competitive solution.
The assumption of rt>0 and the later assumption of qt>0 are made to
ensure that the equilibrium path of land price rises over time.
Otherwise, the analysis of the capital gains tax is meaningless
since there are no capital gains. -
No generality is lost by assuming that the discount ratéjis i;“since
the utility function is time dependent.
This budget constraint implicitly assumes that the consumer can
borrow money at the same interest rate as the rate of return on the
bond. Because of this assumption, the equilibrium path does not
depend on the time profile of income, y{(t), as long as the discounted
sum remains the same.
As mentioned in the Introduction,Weiss (1978) analyzed the effect of

capital gains taxes on the choice between renting and owning a house.
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