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Abstract — A. Frank introduced a concept of generalized polymatroid.
We show that a generalized polymatroid is a projection of a base
polytope of a submodular system and vice versa. The intersection

theorem for generalized polymatroids easily follows from this fact.



1. Introduction

!

A. Frank [5] introduced a concept of generalized polymatroid

which is defined in terms of a pair of a submodular function and a
supermodular function satisfying a certain condition. We shall show
that a generalized polymatroid is a projection of a base polytope of
a polymatroid [1] or a submodular system [7], [8] and vice versa.

It easily follows from this fact that the intersection of two integral

generalized polymatroids has the integrality property.

2, Definitions

Let E be a finite set and F be a family of subsets of E.

We say a pair of X, Y ¢ F 1is an intersecting (or a crossing) pair

if XaY# P (or XnY# 4@, Xa(BE-Y) #8, (B-X)nY #@ and (E-X) n(E-Y)

#9). F is called an intersecting (or a crossing) family if for every

intersecting (or crossing) pair of X, Y ¢ F we have XVY, XnY ¢ F.

A function f£: F = R({the set of reals) is called a submodular function

on an intersecting (or a crossing) family F if for every intersecting

(or crossing) pair of X, Y ¢ F we have
£(X) + £(Y) > FXVY) + £(XnY). (z.1)
For a distributive sublattice T of the Boolean lattice ZE we call

f: ? + R a submodular function on the distributive lattice D if

for every pair of X, Y ¢ D the inequality (2.1) holds., A function g

is a supermodular function if -g is a submedular function.




Throughout the present paper we assume that for any function

f the empty set is in the domain of f and f£(f) = 0.

1

For a submodular function f: U + R on a distributive lattice

Dc oF

with E ¢ U we define the dual supermodular function f : U + R,
of £, on the dual distributive lattice D = {E-X|XeD} of D by
FE-0 = £(B) - £00 (X< D) (2.2)
(cf. [6], [12]).
Suppose that F and G are intersecting families formed by
subsets of E satisfying
(*) for any X e F and Ye G if X -Y # f, then X -Y ¢ F
and if Y - X #@p, then Y - X e G. (2.3
Also, suppose that f: F+ R and g: G~ R are, respectively, a -
submodular function on F and a supermodular function on G and that
for any X e F and Y ¢ G we have
£(X) - g(¥) 2 £(X-Y) - g(¥ -X). (2.4)
Then the polytope Q given by
Q= {x | xeRE,x(NLE (X e F),x(V)28(Y) (Y € )} (2.5)

is called a generalized polymatroid by Frank [5], where for x ¢ RE

and X e F or G we define

x(X) = T x(e). (2.6)

e e X
Given a distributive lattice D = 2E and a submodular function

£: D+ R on D, we call the pair (D,f) a submodular system [7], [8].

When E e D, the polytope B(f) given by

B(£) = {x|xeRE,x(X)<EOD (X e D), x(E)=£(E)) (2.7)



is called the base polytope of the submodular system (U,f).

3. A Simple Characterization of Generalized Polymatroids

Let Q be a generalized polymatroid given by (2.5). Here,
without loss of generality we assume that F and G are distributive
sublattices of 2B because for any submodular function £' on an
intersecting family F!' = ZE there exists a submodular function £ on
a distributive lattice F ¢ ZE such that ‘

{x [ x e RE,x(X")<E (X (X' € F1)}

= {x | x e RE,x(0<EX (X e PY, (3.1)
where F and f uni#géi;-exist, F is formed-by fﬁose sets.wiwé E
for which there is at least ome partition {xl,xz,...,xn} of X
with Xi e F! (i=1,§,...,n) and £ is given by

f(X) = min{izlf'(xi) I{Xl,Xz,...,Xn}:a partition -of X,

i X; €F'(i=1,2,...,m)} (3.2)
for each X ¢ F (see [8] and also [4]).

Moreover, let e be a new element not in E and define

E = EV{e}, (3.3)
G° = {E-X|XeG}, (3.4)
D= Fuge. (3.5)

Note that D is a distributive lattice with E e § since BeG
and since for any X ¢ F and Y ¢ G° we have

XnyY

X-(E-Y)ekF, (3.6)

XUY =E - ((E-Y) = X) ¢ G° 3.7)



because of {2.3). Also define a function f: ﬁ +~ R by

X)) = £(X (X e F), - (3.8)

0 =@ -gE-0 X8 | (3.9)
and

£(E) = ¢, (3.10)

where c¢ 1is an arbitrary but fixed real.

Now, we have

Theorem 1: The following (i) and (ii) are valid.
(i) The function f: D > R defined by (3.8) - (3.10} is a submodular
function on the distributive iattice 7.
(ii) The generalized polymatroid Q given by (2.5) is expressed as
Q = {x|xeRE,HozeR:(x,a)eB(%)}, (3.11)
where B(%) is the base polytope of the submodular system (5,%).
{Proof) (i): It is sufficient to show the inequality
Ex) + B > EXUY) + E(XnY) (3.12)
for any Xe¢ F and Y ¢ G°. It follows from (2.4), (3.8) and (3.9)
that for X e F and Y e G° we have |

Fx) + By = £00 + EE) - g(E-Y)

F(X-(E-Y)) + F(B) - g((E-Y) -X)

nv

£F(XnY) + F(E) - g(E-(XVY)

FxnY) + FXVUY). (3.13)
(ii): We see that (x,a) ¢ B(f) if and only if
x(X) < F0 = £0. (Xe F), (3.14)

x(X-{e}) +a < £X) = E(®) - g(E-X) (X e ),  (3.15



X(E) +a = £(E). " (3.16)
Eliminating « in (3.15) by using (3.16), we have |

x(X-{e}) + 2B - x(B) < 2(B) - g(E -X) (X e8) (3.7
or

x(Y) 2 g(Y)  (Ye6). (3.18)

Therefore, we have (3.11). ‘ 0

From (3.11) we say that the generalized polymatroid Q 1is a

projection, along the e-axis, of B(f).

Conversely, we have

Theorem 2: Let £: D =R be an arbitrary submodular function on an

o

E with £ e D. Then, for any

arbitrary distributive lattice D c 2
e ¢ £ the projection along the e-axis of the base polytope B(%) of
the submodular system (ﬁ,%) is a generalized polymatroid.

(Proof) Let us define distributive sublattices F and G of D by

F

1}

{X|edXeD}, ' (3.19)

G={E-X]eexeDl. (3.20)

Also define a submodular function f£: F=+ R and g: G~ R by
£X) = FX) X e P), (3.21)
g(Y)

We easily see that F and G given by (3.19) and (3.20) satisfy (2.3),

oy xeo. (3.22)

that £ and g given by (3.21) and (3.22) satisfy (2.4} and that
X ¢ RE satisfies the inequalities

x(X) < £(0  (Xe P, (3.23)



x() > g(¥) (Y ¢ 6) . (3.24)

if and only if for some o ¢ R we have (x,a) ¢ B(E). 0

Here, it should be noted that if £ appearing in Theorem 2 is
taken as % in Theorem 1, then f and g defined by (3.21) and (3.22),
respectively, coincide with f and g which define f in Theorem 1

by (3.8)-(3.10).

Remark 1: For the generalized polymatroid Q and the base polytope
B(%) associated with it in Theorems 1 and 2, Q and B(%) have the
same combinatorial structure and there is a one-to-one correspondence
between the set of extreme points of Q and the set of extreme points
of .B(%). It should be noted that for any extreme point X of B(%)
there exists a maximal chain

P=s,58 g rgs = (3.25)

in the distributive lattice ? such that

|Si -

s; ., =1 (i=l,2,....m), - (5.26)

X(8; -85 )

(cf. [8]), from which follow formulae for extreme points of Q.

£(sy) - E(s; ) (i=1,2,...,n) (3.27)

Moreover, the intersection theorem for generalized polymatroids in [5]

easily follows from [1] and Theorems 1 and 2.

Remark 2: Generalized polymatroids are also considered by R. Hassin [10],

though the domains of the relevant submodular functions and supermodular



functions are Boolean lattices, and "greedy' and Jgenerous” solutions for
polytopes of generalized polymatroids on Boolean lattices are examined

in [10, pp. 18-20]. The result is, however, immediately de&uced from
the greedy algorithm for polymatreids ([1], [2]) and Theorems 1 and 2

of the present paperx.

Remérk 3: It may be well-known that if 7 1is a distributive sublattice
of the Boolean lattice ZE and f is an integer-valued submodular
function on 7T, then the system of inequalities in (2.7) is totally
dual integral (see [3] and [11] for the definition of total dual integrality).
Therefore, from Theorem 2 the system of inequalities in (2.5) is totally
dual integral if f and .g are integer-valued and defined on distributive
lattices. Note that if £' and g' are, respectively, a submodular
function on an intersecting family F' ¢ 2E and a supermodular function
on an intersecting family G' ¢ ZE, then there exist a submodular
function f on a distributive lattice F = 2E given by (3.2) and a
supermodular function g on a distributive lattice G ¢ ZE given
similarly as (3.2) such that

x| x e RE,x(X)<E (XN (XT e F1Y,x(Y)2g (Y (Y' €6}

= {x | x e R, x(X)<E(X) (X e F) ,x(¥) 2g(Y) (¥ € 6) }. (3.28)
By virtue of (3.1) and (3.2) and similar relations between g' and ¢
we see that the system of inequalities in the left-hand side of (3.28)
is totally dual integral if and only if the one in the right-hand side
of (3.28) is totally dual integral and thus that the former is totally

dual integral,



Remark 4: If F and G are intersecting familieg of subsets of E,
then D given by (3.3)-(3.5) 1s a c¢rossing family of subsets of E

and, conversely, if ﬁ is a crossing family of subsets of E, then F
and ‘G, respectively, given by (3.19) and (3.20) are intersecting
families of subsets of E = E - {e}. Since each submodular function on
a crossing family determines a base polytope of a submodular system [8],
each pair of a submodular function and a supermodular function on

intersecting families determines a generalized polymatroid as in [5].
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