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1. Introduction

The empirical Bayes problem is first introduced by Robbins (1955).
Fox (1970, 1978) and Susarla and O'Bryan (1979) so far considered the
empirical Bayes estimation problem for the case of uniform distrib-
utions. Besides them, Nogami (1978, 1979, 1981, 1982) considered the
squared error loss estimation (SELE) in the set-compound problem under
the family of certain retracted distributions including uniform dis-
tributions as a special case. This paper is a continuation of Fox's work
(1978) and we consider the SELE of & under the;uniform distribution
Ulg, 6+1) on the interval [8, 6+1) for 6.« Q= [c, d] where -w<c <d <,

4As notational conventions we use the following devices. A distribution
function H will also be used to denote the associated measure. The
argument of a function will not be displayed sometimes and operator
notation will be used to represent integrals, e.g., -Sg(t) du (&) might
be expressed as u(g(t)) or u(g). [A] denotes the indicator function of
the event A. y-1 often abbreviates y'. = means a defining property.

Let fe(x) = [0 <x <8+ 1]. Let G be a (unknown) prior distribution
on ¥ Defining the c.d.f. of above fe by Fe we let F(x) = er(x) dG(@)
and f(x) = Sfa(x) dG(s), i.e. F and f are respectively the marginal
c.d.£. and p.d.£. of a random wariable X. Let (Xl, XZ’ ey Xn) be n
i.1.d. past observations distributed according to F. Let X denote the
{n+l)st observation Xn+1' Let P be the product measure on the space of
(Xl, ...,'Xn, (6, X)), resulting from F* and the joint distribution of
(@, X). Let ¢G(x) denote the Bayes estimator vs G given by

x

A1) 400 = JoE (o) d6(e)/fE, (xydc(e) = § ., 096/ (CGI-6G")
X



where 0/0 is defined to be x and the affix + is intended to describe the
integration as over (x', x].

The risk of an empirical Bayes (EB) estimator t, for 6 is R(tn, G)

2
P((tn(x)-e) ). The Bayes estimator vs G achieves the Bayes envelope R

R(¢G, G) = igf R(¢, G). We eall t asymptotically optimal (a. 0.)

when Rn ~R +0 as n » ». Since when R(tn, G) and R are finite we have

(1.2) 0 <R(z, 6) - R = P(t_(0) - 9,07,

our purpose is to find rates of convergence of -P(tn - ¢G)2 to zero.

Let ¢n be the EB estimétor propesed by Fox (1978, Section 3),(where
there is a misprint and ¢n(x) = ¢ (x) should be of form x' + ¥ (x)[k(x)> 0])
and ¢§ be the EB estimator presented by Nogami (1981), adopted in the
EB problem, In this paper we shall show that under certain assumptions
for G (see Below Ai)~ Aiid)) ¢n and ¢: are both a.0. with the exact

order n_2/3

of convergence. However, from the structure of construction
¢Ilcannotbe extended to a more general family of certain retracted
distributions to the interval [8, 8+1) as, for example, in Nogami (1981),
but ¢3 can do so. But, for the sake of simplicity we shall present
bounds for R(¢n, G) ~ R in Sections 3 and 4 and by a usage of the methods
in Section 3 and a lower bound in Nogami (1981) we obtain the exact rate
for R(¢§, G) - R in Section 5.

Let EX and E be the conditional product measure on the space of

(Xl, ...,_Xn, 8ix) and the marginal probability measure of X.



Assumptions for G:

Ai) The support of G is bounded, i.e,

= [c, d] where -= <¢c < d <+,

Aii) For some (L>)h>0, sup sup G'(y) < M(< ),
se[e,d+l] a.e.
ve(s,sth)
d+1 4.
Aiii) m<)g (£(y)) " dy < K (<=),
c

We denote R(¢n, G) and R(¢g, G) by R.rl and Rg, respectively. Let v

and A denote the supremum and the infimum, respectively.

2. Construction of ¢n.

Fix X = x where x is a realization of X. Since F(x) = G(x') +

x
xf(x) - S 6 dG(p), ¢ in (1.1) is written by
x"+

(2.1) ¢G(x) = x - Yi{x)

where
(2.2) p(x) = (F(x) - Gx")}/E(x).

Since the conditional distribution of g given x is concentrated on (x'
n

Ly (X, <yl

j=1

and £(y) = h_l(Fn(y+h) - Fn(y)) where h is chosen so that 0 <h < 1.

3

x], 0 <y <1, Note that P([£(X)>0]) = 1. Let Fn(y) =n

Since f(y) = G(y) - G(y"),

(2.3) G(y) =
In

f(y-1)

=8

0



where the number of r to sum is finite. Hence, we estimate G(y) by

(2.4) G5(y) = I f(y-r).
r=0

We also estimate F(y) by the empiric distribution Fn(y) of n

observations Xy, X9, ++., X . Thus, in view of (2.1) and (2.2), Fox's

estimate ¢n(x) (at X=x) for 6 is given by

(2.5) ¢n(x) =X - (O\an(x)) Al
where
2.6) W () = (F () - Gxx"))/ER).

In the next section we shall find an upper bound for'Rn - R.

3. An Upper bound for Rn - R.

In this section we use Lemma 4.1 of Singh (1979) and obtain a rate

n—2/3 —1/3.

0¢ ) for Rn - R with a choice of h = n

In (2.2) and (2.6), let ¥(X) = u/w and wn(x) = U/W, In view of
(1.2) with t, replaced by ¢n’

(3.1) 0 <R - R=E({E(g - 2|a1]D].

For X = x given, Lemma 4.1 of Singh (1979) leads to the inequality

(3.2) ' EX(I %— - %IA)z_i 1aA a.e.E

where



(3.8) (") Var, (B(w)) <n

where the last inequality follows because £(+) < 1.
To bound the second term of rhs(3.7) we have by transformation

theorem and the triangular inequality that

~ l-
(3.9) [E £ () - )| = IS (£(v+hy) - £(v)) dy]
0
1 1
< {G(vthy) - G(v)}dy + g {G(v'+hy) - G(v'))dy.
0 . 0 :

Since G is of bouﬁaed variation on [v, v+n] (cf. Royden (1968))
with n = hy, there exists the first derivative G' a.e. in (v, v+n).
Furthermore, G(z) is right continuous. These facts together with our
assumption Aii) satisfy the requirements for the following Taylor

expansion (cf. Singh (1978, p.639)):

G(v+hy) = G(v) +

v+hy
j G'(z) dz.

v

Above equality still holds even if we replace v by v'. Thus, by applying

these to the extreme rhs(3.9) and using Aii),

1 ,v'thy
' (z) dzdy +§ g G'(z) dzdy < M.
0

1 ,vthy
| .

|[E£(v) -~ £(v)] <
v. _-SO v

This, (3.8) and (3.7) give us the bound of the lemma.

Let €g> C1» Cpsr sres Cg be positive constants. By (3.4), (3.5),

Lemma 3.1 and weakening the resulted bound, EX|u-U[2_§ co(nh)-l + clhz.

Similarly, EX[w~W|2_§ cz(nh)"l + c3h2. Thus, 1hs(3.2) < (c4(nh)_l +

2 - -
c5h )[w[ 2 because 0 <u/w < 1. Since E(]w[ 2)_§ K(< 4o) from our



(3.3) A= 23|w|"2{EX|u—U]2 + (/) v 2"1)EX]w—W|2}.

Let N be the greatest integer less than d+2~c. In view of (2.3) and the

definition of G*, applying the ¢ _-inequality (Loeve (1963, p.152)) (N+1)

times leads to

- 2 2
3.4) 27 Juu]? < B [F)-F_(0)|
N . 2
+ T 2F Ex|f(x—r) ——f(x—r)] }.
r=1
Since E (F_(x)) =F(x).the first term of rhs(3.4) is Var, (F_(x)),

the variance of Fn(x). Because Fn(x) is the average of n i.i.d. trandom

variables with the same variance F(x)(1-F(x)),

(3.5) (the first term of ths(3.4)) = n *(F(x) (1-F(x))) < n'.

To get bounds for the second term of rhs(3.4) and Ex[w—W]2 we use

Lemma 3.1 below.

Lemma 3.1 For each re {1, 2, ..., N}, fixed, let v = x-r. Then,
with M(> Q) in Aii)

3.6) 27V E e - fw)? < w7+ v,

Proof By cr—inequality (Loéve (1962)),
(3.7)  108(3.6) < Var, (B(v) + Eg(E() ~ £v)2

To get a bound for the first term of rhs(3.7) we let Yj = [v< xjf

vt+h], j=1, 2, ..., n. Since f(v) = (nh)"l E?=l Yj, Yj's are independent

v+h
and EXYj = Sv f(z)dz,



assumption Aiii), in view of (3.1) we obtain the following theorem:

Theorem 3.1 With a unknown prior G satisfying assumptions Ai), Aii1) and

Alii),
(3.10) 0 <R -R <ec, (nh)" T+ cnZ
) - n — 6 7
From above Theorem 3.1 we can see that with a choice of h = nl/3,
R - R=0@ >3,
~2/3
4. A lower bound for Rn—R and the exact rate n for ¢n.

In this section we assume that G is a degenerate distribution
function at some peoint 60 € . Furthermore, without loss of generality

we assume 6, 0. Then, ¢G(x) =0 and thus

0
4.1) R -R=P@F)
. 0 o)
In Section 3 we have shown that with h = nu1/3, R -R= O(n_2/3). Let

n

kO and kl be positive constants. In this section we shall obtain Theorem
4.1 where for h=hn where nh+>e and k0, R, -~ R z_ko(nh)—l. Hence,

combining these results together we shall see that for sufficiently

large n dnd a choice of h = n—1/3,

- ~-2/3
(4.2) kgn <R -R<ckpn .

For Xn+ = x fixed, let wn(x)

1 % - wn(x) in (2.6). Letting u =

e
N o

[0 E.Xj < x] and v =

[x <X, < x+h] we have
1 j 3=

1



n
(4.3) @ (x) = v—l{xv -~ hu+ I [0<X. < x"+h]} a.e.E .
t j=1 ] — x

" Note that in (2.5) ¢n = x! V‘Pn for xe [0, 1-h); = (x' VUJn) A x for
xe [1-h, 1).

let B = [¢n > x', x<1-h]. By (4.3) and the difinition (2.5) of ¢n

.4 peZ > 2 B).

Define Y = (nx(l—x))_llz(u—nx) and Z = (nh)_l/z(v-nh). Then,

O ke R e

(4.5) b o(x) = - e
n L+(nn) "1/ 2z 1+ (ah) "1/ 27

To prove Theorem 4.1 below we use Lemmas 2.2 and 2.4 of Nogami (1L981)
which are furnished to get a lower bound of the modified regret for the

estimate ¢* for Bl= . =Bn==0. For convenience we write the explicit form

of ¢* as follows:

(4.6) P (x) = (x"V P(x))A x

where for every x ¢ [0, 1)

n n -
(4.7) Y(x) = { T (X,-h)[x< X, <xth] ~h I [0<X, <x] - h

- J J— =1 J -

J J

n n

+ ¢ [0 < X, < x"+h]}/ £ [x< X, < x+h]
j=1 ) =1
a.e.EX

Theorem4.l. If h is a function of n such that nh +® and h+0, then

for any 0 <e-<%3 there exists NO<"+m so that for all n 3_N0,

_ iy L
Rn R>( 3 e) nh °



Proof Fix xe (0.1) until (4.8). 1In view of (4.3) and (4.7),

< @n. Hence by Lemma 2.4 of Nogami (1981),

(4.8) EX[!TJn < x] f-Ex[w < x] -0 for given x

Let 2 and E denote convergence in distribution and convergence in
probability respectively. Also, N(a, b) denotes the normal distribution
with mean a and variance b. Siﬁce by Lemma 2.2 of Nogami (1981) (Y,

Z)R N(0, I) where 0 is 2 dimensional zero vector and I, 2x2 identity
matrix, and since by (4.8)-B i1 1, it follows from Slutsky's theorem

applied to rhs(4.5) that if x e (0, 1), then

T 2 v, x5,

As a conmsequence of a convergence theorem (cf. Loéve (1963, 11.4, A(i)))

we have
. ~2 2
(4.9) lim (nh) Ex(¢nB) > x [0 < x < 1],

Thus, by Fatou's Lemma applied to the lhs below

1
lim EE_((nh)$2B) » P(lhs(4.9)) » S y2dy =
X n - 0

W[

Therefore, in view of (4.1) and (4.4),

Lim (ah) (R -R) > 37

and the definition of lim inf leads to the conclusion.

Theorems 3.1 and 4.1 leads to (4.2).
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5. Exact rate n for Rﬁ - R,

2/3

We introduce another EB estimate ¢§ with the exact order n of

convergence for Ri - R. The construetion of the ¢§ is similar to the
set compound estimator ¢* presented by Nogami (1981). ¢§ coincides with

¢* as in (4.6) when X X are i.i.d. with U[0, 1). Hence, lower

1?2 777 Tntl
bounds in Theorem 2.l in Nogami- (1981) apply for those for Rg ~ R.

Since (x) in (1.1) is alternatively written as
%

1

4o () = x - {(S G(x" )t - G(x'))/E()},

0

estimating G by G* in (2.4) and f by f we obtain another EB estimate

¢§(x) given by

Px(x) = x ~ (Ovix(x)) Al
where
l ~
wﬁ(x) = 6 GF{x'+t)dt - Gx(x")}/ £(x%).
0

In view of (2.5) we can see that the only difference between ¢n and ¢§ -
is the first terms of the numerators of respective P, and wg.

To get an upper bound for Rg - R, we can proceed in the same way as
we have done in Section 3 for Rn - R. However, the first term of rhs{(3.4)

is now replaced by

1 N . 2
g I 2r{EX(|f(x+t—r) - £(X+t-r){7)}dt
0 r=1

by a usage of Fubini theorem and N usages of cr—inequality (Loéve (1963,



11

p.152}). Thus, applying Lemma 3.1 we can easily obtain that

-1 2
(5.1) 0 < Rﬁ - Rn < ao(nh) + alh

where ag and a; are positive constants.
A lower bound for R;'; - R is obtained from Theorem 2.1(ii)} of Nogami
(1981); If h is a function of n such that nh +®, h> 0 and nh3 = 0(1),

then for any 0 <eg< '3_1, there exists Ng <+> so that for all n > No

RY - R > (37—¢) (nh) L.

Fe

Thexefore, by above inéquality and (5.1) we obtain with h = n_l/3

n-2/3 < R¥ = R ¥-3 n—2/3.

and for positive constants a, and d35 @y < R% % ag
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