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Abstract — Let F be a distributive lattice Fformed by subsets
of a finite set E with @, E€ F and let R be the set of
reals. Also let f be a submodular function from F into R
with £(#) = 0. We determine the set of extreme points of the
base polytope

B(£) = {x |xeR",x(D) <E(D) (D eF),x(B)=£(E)}
and give upper and lower bounds of £ which can be obtained in

polynomial time under mild assumptions.
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1. Definitions

Let E be a finite set, F be a distributive lattice
formed by subsets of E with @, E€ F and R be the set of
reals. Also let f be a submodular function from F into R, 1.e.,

S :
f(Dl) + f(DZ)-= f(DngDz) + f(Dlr\Dz) (1.1)
for any Dl’ D2 € F, and suppose f(ff) = 0. Let us define a

polytope B(f) by

B(£) = {x | xeR",x(D) <E£(D)(DeF),x(E)=£(E)},  (L.2)
where for De F and x = (x(e):ecE) ¢ RE
x(D) = ] x(e). (1.3)
ecD

We call the pair (F,f) a submodular system and the polytope B(f)

the base polytope associated with the submodular system (F,D).

We shall determine the set of extreme points of the base
polytope B(f) and give upper and lower bounds of f which can

be computed in polynomial time under mild assumptions.

2. Representation of Distributive Lattices

For a finite partially ordéred set P = (X,<), an ordered
pair (W+,W_) of subsets W and W~ of X with W+f\w_ = f and

w*tﬁw‘ = X is called a monotone dissection of P if for every

+ - - -

X £ W+ and x € W we do not have x+=< x . Here, note that
+ -

W or W may be empty.

The following representation theorem for distributive lattices
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is classical and may be well known (see [1hH.

Theorem 2.1: For any distributive lattice F formed by subsets of
a finite set E with @, E e F, there exists a unique partially
ordered set P = (X,<) such that

(i) X 1is a partition {Al,A °°,An} of E and

3
(ii) D e F if and only if
D = Lf{Ai !Ai eW '} (2.1)
for some monotone dissection (W+,W_) of P.
Conversely, for any partially ordered set P = (X,=%) with
X Dbeing a partition {AI,A2,°°°,AH} of E, the set F of all
the subsets D of E which are expressed as (2.1) for monotone

dissections (W ,N7) of P is a distributive lattice with respect

to set inclusion with @, E g F.

Given a distributive lattice F, the partially ordered set

P = (X,%) in Theorem 2.1 is determined as follows. For each
e € E, let S(e) be the unique minimal element in F with e
£ S(e), i.e.,

S(e} = N{b|eeDe F}. (2.2)
Define a graph G = (E,A*) with the vertex set E and the‘arc
set A* by

A¥ = {(el,éz) ]el e Ee, ¢ S(el)}. (2.3)
The decomposition of G into strongly connected compenents yields

a partition of the vertex set L and a partial order on the partition



in a natural way which define the required partially ordered set
P=(X,<).

Without loss of generality we assume throughout the
present paper that

"each A; 8 X of the partially ordered set P = X, =)

has cardinality one" (2.4)
and we express P by (E,={) instead of (X,<) with X =
{{e} | e e E}.

It should be noted that because of this assumption both
S(e) and S(e} - {e} belong to F for S(e) (e £ E) defined
by (2.2) and that, for any integer i such that 0 < i< |E[,

there exists a set De F with [Df = i.

3. Extreme Points of the Base Polytope

First, we show the following lemma.

Lemma 3.1: Let
= . C_--- =
AO ﬁ%Alm %An E _ (3.1)
be a maximal chain in the distributive lattice F. (Note that by

the assumption (2.4) [Ai - A =1 (1<i<n) and n = [E].)

, i1
Also define e, € E(l<izgn) by

{ei} = A, - A (3.2)

i i-1°

Then for a vector x* = (x*(e):e £ E) defined by



x*(ei} = f(Ai) - f(Ai_l) (1 <£1i<n) (3.3)
we have

x*(D) < f(D) (De P, {3.4)

x*(E) = £(E), (3.5)
i.e., x* g B(f).
(Proof) The inequality (3.4) with D =§ and equation (3.5) are
trivial.

Suppose that (3.4) is valid for any D e F with |D| <k
for some k such that 0 <k <n (= |E|]). PFor any D* ¢ F with
|D*| = k+1 let e* be an element of D* such that

{e¥} = % - A, (3.6)
and

A, 2 D (3.7)
for some i* (1 < i* < n). Then we have D* - {e*} ¢ F and it
follows from (3.6) and (3.7) and from the submodularity of f that

x*(D*) = x*(e*) + x*{D* -{e*})

A

x*(e*) + £(D* - {e*})
= £(A;) - £(A )+ £(% - {e*])
< £(D%).

The lemma follows by induction. Q.E.D.

From Lemma 3.1 we sce that the base polytope B(f} is
nonempty for any submodular function £.

For any weight vector w e RE let us consider the problem:



Pw : Minimize Z w{e)x(e)
e € E

subject to x € B(f). (3.8)
Suppose that the distinct values of w{e)} (e e E) are given by
Wy < Wy < vee < wp {3.9)
and define
s, = {e |e e E,w(e) < wi} (i=1,2,+++,p). (3.10)
Lemma 3.2: The problem P, has a finite optimal solution if
and only if for each set Si (i=1,2,+++,p) defined by {3.10)
the ordered pair (E -Si,Si) is a monotone dissection of (E, <)

which ‘represents the distributive lattice F.

Proof) ' The "if" part: By the assumption there exists a maximal
P y P

chain

A0=¢g;A1§;---gAn=E (3.11)
in the distributive lattice F such that Si (i=1,2,+++,p) are
included in (3.11}. Let x* ¢ RE be a vector defined by (3.11),
(3.2) and (3.3). Then from Lemma 3.1 we have

x* ¢ B(f). (3.12)
Furthermore, for any vector y € B(f) we have from (3.3), (3.9)

and (3.10)

Z wie)y(e) - X w(e)x*(e)
c ek eckE
) .
= k L w(r(e) - x*(e))

i=l eeg8.-5.
i "i1-1



E{ I wle) - x5 - [ w,(y(e) - x*(en}
pfi C€Si eesi—l

= (Wi - W) I (x*(e) - y(e)) + 7§ WP(Y(GJ - x*(e))

i=1 e eSi ecsS

p-1
= izl(wl_l_l = wi) (f(SlJ = Y(Sl))

liv

0, (3.13)

where SO

Therefore, x* 1is an optimal solution of Pw'

g (and Sp = E).

The '"only if" part: Let x* be an optimal solution of Pw' If
for any Sk (1 £k <p) (E —Sk,Sk) is not a monotone dissection

of (E,<), then there is a pair (el,ez) such that el=< €y

e € E - S]< and e, € Sk' Since for every D e F if e, €D
then e, € D, for any d > 0 we have
y X+ dxe - dxe e B(f), (3.14)
2 1 .
where, for e e E, Xg € RE and
1 (e" =)
X (e') = { (3.15)
0 (et ¢ E - {e]).

Consequently,

) w(edy(e) -} w(e)x*(e)

e € E e £E
= (w(ez) - w(el))d ’
< 0. (3.16)

This contradicts the optimality of x*. Therefore, (E —Sk,Sk)

must be a monotone dissection of (E, ). Q.E.D.

=1



The proof of the "if" part of Lemma 3.2 is a direct adaptation
of a proof of the validity of the greedy algorithm for submodular
functions on Boolean lattices 20 [51.

In the proof of Lemma 3.2 we have already shown the following.

Corollary 3.3: For any weight vector w € RE, if the problem Pw
has a finite optimal solution, an optimal solution x* is given by
* - - i = san
x*(e;) = £(A) - £(A; ) (i=1,2,-++,n), (3.17}
where
= C__, L) =
Mg =P GA e CA =B (5.18)

is a maximal chain in F with

{ei} = Ai - A (i=1,2,+++,1) (3.19)

i-1

and

w(el) ézw[ez) < v é}w(en). {3.20)

Corollary 3.3 provides an algorithm for solving the
problem Py which i1s an extension of the socalled ''greedy

algorithm" for (poly-)matroids [3].

Theorem 3.4: The extreme points of B(f) are exactly those which
are given by (3.17) - (3.19), each c;rresponds to a maximal chain
(3.18) chosen from F.

(Proof) Becausc of Corollary 3.3 we have only to show that

for any véctor x*¥ given by (3.17) - (3.19} there exists a

. E . . - .
welght vector w € R™ such that x* is a unique optimal solution



of the problem Pw. For such a vector x*, let us choose a weight
vector w g RE such that
sse .
w(elj < w(ez) < w(en) (3.21)

ale

Then x* 1is an optimal solution of Pw due to Corollary 3.3,
Moreover, Xx* is a unique optimal solution because for any optimal

selution vy of P we have, similarly as (3.13),

0= 7§ W(e)y(e) - ) w(e)x*(e)
e E e e E
n-1
= Z (wley,p) - wle ) (£(A) - y(A,))
20, (3.22)

where A, = {el,ez,°--,ei} (i=1,2,+++,n). From (3.21) and (3.22),

x(A) = £(A) = y(A)  (i=1,2,00,m),

x(e) = y(e) (e e E).

This concludes the proof of the theorem. Q.E.D.

Theorem 3.4 is a generalization of the extreme point theorem

for (poly-)matroid polytopes by J. Edmonds [2].

4. Upper and Lower Bounds of Submodular Functions

We need some lemma to obtain an upper bound of f.

Lenma 4.1: For a vector x = (x(e):e € E) defined by



x(e) = £(8(e)) - £(S(e) - {e}) (4.1)
we have

x(D) > £(D) (4.2)
for any D e F, where S(¢) (e € E) are defined by (2.2).
(Proof) The inequality (4.2) is trivial for D = B.

Suppose that, for some integer Xk such that 0 k< IE],

(4.2) is valid for any D e F with |D| £ k. Then for any D* e F
with [D*| = k+1 let e* be a maximal element of B* in P =
(E, €). By the assumption and the submodularity of f we have

x(D*) = X(e*) + x(D* - {e*})

< X(e*) + £(D* - {e*])

n

£(8(e*)) - £(S(e*) - {e*}) + £(D* - {e*]})
£ £(D*),
vhere note that D* - {e*} & F and S(e*) C D*.

Therefore, the lemma follows by induction. Q.E.D.

From Lemma 4.1 we have an upper bound B of f given by
B = ){x(e) | e e E,X(e) > 0}. (4.3)
Furthermore, a lower bound of f is given as follows.
Let x* be an extreme point of B(f). Then
B = J{x*(e) |e € E,x*(e) < 0} (4.4)
is a lower bound of f since
B < x*(D) £ £(D) - (4.5)

for any D e F.



The upper and lower bounds B and B given by (4.3) and
(4.4}, respectively, can be obtaiﬁed in polynomial time with
Tespect to ]E| if we assume that the following two operations
are carried out in unit time:

(1) to evaluate £(D) for each D e F;

{2) to discern whether or not there is a set D e F such

that e € B and e, £ D for each e, &, € E.

It should be noted that the Hasse diagram of the partially ordered
set P = (E,=) can be obtained in polynomial time when operation
(2) is carried out in unit time.

It was shown in [4] that when f is an integer-valued

submodular function the minimization of £ can be performed in

time polynomially bounded by IE] and log B under the assumptions

that operations (1) and (2) are carried out in unit time and that
an integral upper bound B for [f(D)| (De F) is previously
known. We see that the latter assumption is not necessary for

the polynomial-time solvability of minimizing submodualr functions.
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