No. 149 (82-16)

A Note on Submodular Functions On Distributive Lattices

by

Satoru FUJISHIGE

and

Nobuaki TOMIZAWA

April 1982

# A NOTE ON SUBMODULAR FUNCTIONS ON DISTRIBUTIVE LATTICES

#### Satoru FUJISHIGE

Institute of Socio-Economic Planning
University of Tsukuba
Sakura, Ibaraki, Japan 305

and

#### Nobuaki TOMIZAWA

Graduate School of Science and Engineering Tokyo Institute of Technology Nagatsuta, Midori-ku, Yokohama, Japan 227

Abstract — Let F be a distributive lattice formed by subsets of a finite set E with  $\emptyset$ ,  $E \in F$  and let R be the set of reals. Also let f be a submodular function from F into R with  $f(\emptyset) = 0$ . We determine the set of extreme points of the base polytope

 $B(f) = \{x \mid x \in R^E, x(D) \leq f(D) (D \in F), x(E) = f(E)\}$  and give upper and lower bounds of f which can be obtained in polynomial time under mild assumptions.

## 1. Definitions

Let E be a finite set, F be a distributive lattice formed by subsets of E with  $\emptyset$ , E  $\epsilon$  F and R be the set of reals. Also let f be a submodular function from F into R, i.e.,

$$f(D_1) + f(D_2) \ge f(D_1 \cup D_2) + f(D_1 \cap D_2)$$
 (1.1)

for any  $D_1$ ,  $D_2 \in F$ , and suppose  $f(\emptyset) = 0$ . Let us define a polytope B(f) by

$$B(f) = \{x \mid x \in R^{E}, x(D) \leq f(D) (D \in F), x(E) = f(E)\}, \qquad (1.2)$$

where for  $D \in F$  and  $x = (x(e):e \in E) \in R^{E}$ 

$$x(D) = \sum_{e \in D} x(e).$$
 (1.3)

We call the pair (F,f) a <u>submodular system</u> and the polytope B(f) the <u>base polytope</u> associated with the submodular system (F,f).

We shall determine the set of extreme points of the base polytope B(f) and give upper and lower bounds of f which can be computed in polynomial time under mild assumptions.

#### 2. Representation of Distributive Lattices

For a finite partially ordered set  $P = (X, \leq)$ , an ordered pair  $(W^+, W^-)$  of subsets  $W^+$  and  $W^-$  of X with  $W^+ \cap W^- = \emptyset$  and  $W^+ \cup W^- = X$  is called a <u>monotone dissection</u> of P if for every  $x^+ \in W^+$  and  $x^- \in W^-$  we do not have  $x^+ \leq x^-$ . Here, note that  $W^+$  or  $W^-$  may be empty.

The following representation theorem for distributive lattices

is classical and may be well known (see [1]).

Theorem 2.1: For any distributive lattice F formed by subsets of a finite set E with  $\emptyset$ ,  $E \in F$ , there exists a unique partially ordered set  $P = (X, \leq)$  such that

- (i) X is a partition  $\{A_1, A_2, \dots, A_n\}$  of E and
- (ii)  $D \in F$  if and only if  $D = \bigcup \{A_i \mid A_i \in W^-\}$ (2.1)

for some monotone dissection  $(W^+, W^-)$  of P.

Conversely, for any partially ordered set  $P = (X, \leq)$  with X being a partition  $\{A_1, A_2, \cdots, A_n\}$  of E, the set F of all the subsets D of E which are expressed as (2.1) for monotone dissections  $(W^+, W^-)$  of P is a distributive lattice with respect to set inclusion with  $\emptyset$ ,  $E \in F$ .

Given a distributive lattice F, the partially ordered set  $P = (X, \preceq)$  in Theorem 2.1 is determined as follows. For each  $e \in E$ , let S(e) be the unique minimal element in F with  $e \in S(e)$ , i.e.,

$$S(e) = \bigcap \{D \mid e \in D \in F\}. \tag{2.2}$$

Define a graph  $G = (E,A^*)$  with the vertex set E and the arc set  $A^*$  by

$$A^* = \{(e_1, e_2) \mid e_1 \in E, e_2 \in S(e_1)\}.$$
 (2.3)

The decomposition of G into strongly connected components yields a partition of the vertex set E and a partial order on the partition

in a natural way which define the required partially ordered set  $P = (X, \leq)$ .

Without loss of generality we assume throughout the present paper that

"each  $A_i \in X$  of the partially ordered set  $P = (X, \leq)$  has cardinality one" (2.4) and we express P by  $(E, \leq)$  instead of  $(X, \leq)$  with  $X = \{\{e\} \mid e \in E\}$ .

It should be noted that because of this assumption both S(e) and S(e) -  $\{e\}$  belong to F for S(e) (e  $\epsilon$  E) defined by (2.2) and that, for any integer i such that  $0 \le i \le |E|$ , there exists a set  $D \epsilon F$  with |D| = i.

# 3. Extreme Points of the Base Polytope

First, we show the following lemma.

### Lemma 3.1: Let

$$A_0 = \emptyset \subseteq A_1 \subseteq \cdots \subseteq A_n = E \tag{3.1}$$

be a maximal chain in the distributive lattice F. (Note that by the assumption (2.4)  $|A_i - A_{i-1}| = 1$   $(1 \le i \le n)$  and n = |E|.) Also define  $e_i \in E$   $(1 \le i \le n)$  by

$$\{e_{i}\} = A_{i} - A_{i-1}.$$
 (3.2)

Then for a vector  $x^* = (x^*(e) : e \in E)$  defined by

$$x^*(e_i) = f(A_i) - f(A_{i-1}) \qquad (1 \le i \le n)$$
 (3.3)

we have

$$x^*(D) \le f(D)$$
 (D  $\varepsilon F$ ), (3.4)

$$x^*(E) = f(E),$$
 (3.5)

i.e.,  $x^* \in B(f)$ .

(Proof) The inequality (3.4) with  $D = \emptyset$  and equation (3.5) are trivial.

Suppose that (3.4) is valid for any  $D \in F$  with  $|D| \leq k$  for some k such that  $0 \leq k < n$  (= |E|). For any  $D^* \in F$  with  $|D^*| = k+1$  let  $e^*$  be an element of  $D^*$  such that

$$\{e^*\} = D^* - A_{i^*-1}$$
 (3.6)

and

$$A_{i^*} \supseteq D^* \tag{3.7}$$

for some i\*  $(1 \le i^* \le n)$ . Then we have  $D^* - \{e^*\} \in F$  and it follows from (3.6) and (3.7) and from the submodularity of f that

$$x^{*}(D^{*}) = x^{*}(e^{*}) + x^{*}(D^{*} - \{e^{*}\})$$

$$\leq x^{*}(e^{*}) + f(D^{*} - \{e^{*}\})$$

$$= f(A_{i^{*}}) - f(A_{i^{*}-1}) + f(D^{*} - \{e^{*}\})$$

$$\leq f(D^{*}).$$

The lemma follows by induction.

Q.E.D.

From Lemma 3.1 we see that the base polytope B(f) is nonempty for any submodular function f.

For any weight vector  $\mathbf{w} \in \mathbf{R}^{E}$  let us consider the problem:

$$P_{W}$$
: Minimize  $\sum_{e \in E} w(e)x(e)$ 

subject to 
$$x \in B(f)$$
. (3.8)

Suppose that the distinct values of w(e) (e  $\epsilon$  E) are given by

$$w_1 < w_2 < \cdots < w_p$$
 (3.9)

and define

$$S_{i} = \{e \mid e \in E, w(e) \leq w_{i}\}$$
 (i=1,2,...,p). (3.10)

Lemma 3.2: The problem  $P_w$  has a finite optimal solution if and only if for each set  $S_i$  (i=1,2,...,p) defined by (3.10) the ordered pair (E- $S_i$ , $S_i$ ) is a monotone dissection of (E, $\preccurlyeq$ ) which represents the distributive lattice F.

(Proof) The "if" part: By the assumption there exists a maximal chain

$$A_0 = \emptyset \subseteq A_1 \subseteq \cdots \subseteq A_n = E$$
 (3.11)

in the distributive lattice F such that  $S_i$  (i=1,2,...,p) are included in (3.11). Let  $x^* \in \mathbb{R}^E$  be a vector defined by (3.11), (3.2) and (3.3). Then from Lemma 3.1 we have

$$x^* \in B(f). \tag{3.12}$$

Furthermore, for any vector  $y \in B(f)$  we have from (3.3), (3.9) and (3.10)

$$\sum_{e \in E} w(e)y(e) - \sum_{e \in E} w(e)x^*(e)$$

$$= \sum_{i=1}^{p} \sum_{e \in S_i-S_{i-1}} w_i(y(e) - x^*(e))$$

$$= \sum_{i=1}^{p} \left\{ \sum_{e \in S_{i}} w_{i}(y(e) - x^{*}(e)) - \sum_{e \in S_{i-1}} w_{i}(y(e) - x^{*}(e)) \right\}$$

$$= \sum_{i=1}^{p-1} (w_{i+1} - w_{i}) \sum_{e \in S_{i}} (x^{*}(e) - y(e)) + \sum_{e \in S_{p}} w_{p}(y(e) - x^{*}(e))$$

$$= \sum_{i=1}^{p-1} (w_{i+1} - w_{i}) (f(S_{i}) - y(S_{i}))$$

$$\ge 0,$$

$$(3.13)$$

where  $S_0 = \emptyset$  (and  $S_p = E$ ).

Therefore,  $x^*$  is an optimal solution of  $P_w$ .

The "only if" part: Let  $x^*$  be an optimal solution of  $P_w$ . If for any  $S_k$   $(1 \le k \le p)$   $(E - S_k, S_k)$  is not a monotone dissection of  $(E, \le)$ , then there is a pair (e, e, b) such that  $e \in P_w$ 

of (E, $\preccurlyeq$ ), then there is a pair (e<sub>1</sub>,e<sub>2</sub>) such that e<sub>1</sub>  $\preccurlyeq$  e<sub>2</sub>, e<sub>1</sub>  $\epsilon$  E - S<sub>k</sub> and e<sub>2</sub>  $\epsilon$  S<sub>k</sub>. Since for every D  $\epsilon$  F if e<sub>2</sub>  $\epsilon$  D then e<sub>1</sub>  $\epsilon$  D, for any d > 0 we have

$$y \equiv x + d\chi_{e_2} - d\chi_{e_1} \in B(f),$$
 (3.14)

where, for e  $\epsilon$  E,  $\chi_{e}$   $\epsilon$   $R^{E}$  and

$$\chi_{e}(e') = \begin{cases} 1 & (e' = e) \\ 0 & (e' \in E - \{e\}). \end{cases}$$
 (3.15)

Consequently,

$$\sum_{e \in E} w(e)y(e) - \sum_{e \in E} w(e)x^*(e)$$

$$= (w(e_2) - w(e_1))d$$

$$< 0.$$
(3.16)

This contradicts the optimality of  $x^*$ . Therefore,  $(E-S_k,S_k)$  must be a monotone dissection of  $(E, \preccurlyeq)$ . Q.E.D.

The proof of the "if" part of Lemma 3.2 is a direct adaptation of a proof of the validity of the greedy algorithm for submodular functions on Boolean lattices  $2^{E}$  [5].

In the proof of Lemma 3.2 we have already shown the following.

Corollary 3.3: For any weight vector  $w \in R^E$ , if the problem  $P_w$  has a finite optimal solution, an optimal solution  $x^*$  is given by

$$x^*(e_i) = f(A_i) - f(A_{i-1})$$
 (i=1,2,...,n), (3.17)

where

$$A_0 = \emptyset \subseteq A_1 \subseteq \cdots \subseteq A_n = E \tag{3.18}$$

is a maximal chain in F with

$$\{e_i\} = A_i - A_{i-1} \quad (i=1,2,\dots,n)$$
 (3.19)

and

$$w(e_1) \le w(e_2) \le \cdots \le w(e_n). \tag{3.20}$$

Corollary 3.3 provides an algorithm for solving the problem  $P_{W}$  which is an extension of the socalled "greedy algorithm" for (poly-)matroids [3].

Theorem 3.4: The extreme points of B(f) are exactly those which are given by (3.17) - (3.19), each corresponds to a maximal chain (3.18) chosen from F.

(Proof) Because of Corollary 3.3 we have only to show that for any vector  $\mathbf{x}^*$  given by (3.17) - (3.19) there exists a weight vector  $\mathbf{w} \in \mathbf{R}^E$  such that  $\mathbf{x}^*$  is a unique optimal solution

of the problem  $P_w$ . For such a vector  $x^*$ , let us choose a weight vector  $w \in R^E$  such that

$$w(e_1) < w(e_2) < \dots < w(e_n).$$
 (3.21)

Then  $x^*$  is an optimal solution of  $P_w$  due to Corollary 3.3.

Moreover,  $x^*$  is a unique optimal solution because for any optimal solution y of  $P_W$  we have, similarly as (3.13),

$$0 = \sum_{e \in E} w(e)y(e) - \sum_{e \in E} w(e)x^*(e)$$

$$= \sum_{i=1}^{n-1} (w(e_{i+1}) - w(e_i))(f(A_i) - y(A_i))$$

$$\geq 0,$$
(3.22)

where  $A_i = \{e_1, e_2, \dots, e_i\}$  (i=1,2,...,n). From (3.21) and (3.22),  $x(A_i) = f(A_i) = y(A_i)$  (i=1,2,...,n),

i.e.,

$$x(e) = y(e)$$
 (e  $\epsilon$  E).

This concludes the proof of the theorem.

Q.E.D.

Theorem 3.4 is a generalization of the extreme point theorem for (poly-)matroid polytopes by J. Edmonds [2].

# 4. Upper and Lower Bounds of Submodular Functions

We need some lemma to obtain an upper bound of f.

Lemma 4.1: For a vector  $\overline{x} = (\overline{x}(e):e \in E)$  defined by

$$\bar{x}(e) = f(S(e)) - f(S(e) - \{e\})$$
 (4.1)

we have

$$\overline{x}(D) \ge f(D)$$
 (4.2)

for any  $D \in F$ , where S(e) (e  $\in E$ ) are defined by (2.2). (Proof) The inequality (4.2) is trivial for  $D = \emptyset$ .

Suppose that, for some integer k such that  $0 \le k < |E|$ , (4.2) is valid for any  $D \in F$  with  $|D| \le k$ . Then for any  $D^* \in F$  with  $|D^*| = k+1$  let  $e^*$  be a maximal element of  $D^*$  in  $P = (E, \leqslant)$ . By the assumption and the submodularity of f we have

$$\overline{x}(D^*) = \overline{x}(e^*) + \overline{x}(D^* - \{e^*\})$$

$$\leq \overline{x}(e^*) + f(D^* - \{e^*\})$$

$$= f(S(e^*)) - f(S(e^*) - \{e^*\}) + f(D^* - \{e^*\})$$

$$\leq f(D^*),$$

where note that  $D^* - \{e^*\} \in F$  and  $S(e^*) \subseteq D^*$ .

Therefore, the lemma follows by induction. Q.E.D.

From Lemma 4.1 we have an upper bound  $\overline{B}$  of f given by  $\overline{B} = \sum {\overline{x}(e) \mid e \in E, \overline{x}(e) > 0}.$  (4.3)

Furthermore, a lower bound of f is given as follows.

Let  $x^*$  be an extreme point of B(f). Then

$$\underline{B} = \sum \{x^*(e) \mid e \in E, x^*(e) < 0\}$$
 (4.4)

is a lower bound of f since

$$\underline{B} \le x^*(D) \le f(D) \tag{4.5}$$

for any  $D \in F$ .

The upper and lower bounds  $\overline{B}$  and  $\underline{B}$  given by (4.3) and (4.4), respectively, can be obtained in polynomial time with respect to |E| if we assume that the following two operations are carried out in unit time:

- (1) to evaluate f(D) for each  $D \in F$ ;
- (2) to discern whether or not there is a set  $D \in F$  such that  $e_1 \in D$  and  $e_2 \notin D$  for each  $e_1$ ,  $e_2 \in E$ . It should be noted that the Hasse diagram of the partially ordered set  $P = (E, \preceq)$  can be obtained in polynomial time when operation (2) is carried out in unit time.

It was shown in [4] that when f is an integer-valued submodular function the minimization of f can be performed in time polynomially bounded by |E| and  $\log B$  under the assumptions that operations (1) and (2) are carried out in unit time and that an integral upper bound B for |f(D)| (D  $\epsilon$  F) is previously known. We see that the latter assumption is not necessary for the polynomial-time solvability of minimizing submodual functions.

## References

- [1] G. Birkhoff, "Lattice Theory," American Mathematical Society Colloquium Publications 25, Third edition, Providence, RI, 1967.
- [2] J. Edmonds, Submodular functions, matroids, and certain polyhedra, in Proceedings of the Calgary International Conference on Combinatorial Structures and Their Applications (Gordon and Breach, 1970), 69-87.
- [3] J. Edmonds, Matroids and the greedy algorithm, Mathematical Programming 1 (1971), 127-136.
- [4] M. Grötschel, L. Lovász and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization,

  Combinatorica 1 (1981), 169-197.
- [5] N. Tomizawa, Theory of hyperspace (III) Maximum deficiency = minimum residue theorem and its applications, in Proceedings of the Research Meeting on Circuits and Systems (The Institute of Electronics and Communication Engineers of Japan, September 1980), CAS 80-74, 41-46 (in Japanese).