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§ Imtroduction

Theories on error correcting codes play important roles for space
communications and design of computers and other information processors.
This paper gives basic theories for error correcting codes, especially

cyclic codes and Abelian codes.



§1 eigen polynomials on polynomial rings

Let GF(q)[x] be the totality of polynomials in x over GF(q), the
finite field of size q, q being a prime power. We consider a polynomial
2{x) € GF(q}[x] of degree n, and the ring R = GF(q)[x] mod g(x). We can
represent elements of R by polynomials of degree n-1.

Let us assume that g(x) has no multiple factors, then it is well
known that R is a semisimple riﬁg [l]. We often encounter the case
g(x) = x"=1 in coding theories. In this case if n and q are relatively
prime g(x) has no multiple factors. And ideals of R are cyclic codes.

Let GF(qm) be the splitting field of g(x), i.e. GF(qm) is the
smallest extension field of GF(q) containing all roots of g(x) = 0. And
consider R = GF(qm)[x] mod g(x) which contains R.

If a non zero polynomial
(1.1) p(x) = Pg + p1X + ...+ g ¥ € R

satisfies the equation
(1.2)  xp(x) = Xp(x), AeGF(q™)

Then p(x) is called an eigen polynomial of the transform x on R and ) is
called its eigen value.

Theorem 1 The transform x on R has n distinct eigen values Aie GF(qm)
(i=1, ..., n)} which are roots of g(x) = 0, and corresponding eigen

polynomials si(x) (i=1, ..., n). have the following properties,

(1.3) ei(x) ej(x) = §..

i ei(x), i, j=1, ..., n (orthogonal idempotents)

(1.4) ei(xj) = aij



(1.5) el(x) + ... + Bn(x) =1 (summed up to unity)

where &.. is Kronecker's delta, i.e. 6., = 1 if i=j and §,. = 0 if i#j.
ij ij ‘ ij
Proof Let g(x) = X" - g xn"l - - 2.X - g Writing the
Proof el e g4 0

condition (1.2) in the matrix form (for n=5, for simplicity) we have

A0 0 0 g ) o =0
( o
1 0 0 g oy
(1.6) 0 1 -2 0 g | 0
L0 0 1 - gy | io,

[. 0 0 0 1 g, jp,;

Clearly the determinrant of the matrix in (1.6) is equal to g(}X). So

the proper equation g(x) = 0 has n distinct roots Al, cery An in GF(qm)

because of g(x) having no multiple factors.

Now multiplying by Gj(x) both sides of Aiei(x) = x Bi(x) we have
J\iej (x)8, (x) = xej e, ) = Aj ej (o€, (),
(Ajuli)ej(x)ei(x) =0

So ei(x)ej(x)=o if i#j. Letting Gi(x) be

_ n-1 m
(1.7 8,(x) = 0,0+ 8 x+ ...+ 8 ,me1X > 945 € CF(aD)
we have
(1.8) 0%(x) = 0. 0.(x) + 6, x6,(x) + ... +0. g (x)

’ i i0'1 i1 *Yi e i,n-1 i
= (0,, t+ 0, 2.+ + 8 An_l) 6. (x) = yo.,(x)
i0 i147 o i,n-1"i i vhg
n-31 m .

where g = 8. + 6.1, + ... + 3 A ¢ GF(q ). The value of 4 is

i0 il™i i,n-1"1



not zero. Because; let 0=0 then Gi(x) = 0 from (1.8), so g(x) must devide
ei(x) in GF(qm)[x]. But g(x) has no multiple factors, so g(x) must devide
Gi(x) too, but this is imposible for ei(x) is not zero and has a lower
degree than g(x).

Of course a scalor multiple of an eigen polynomial is agin an eigen
polynomial, so if o#1 in (L1.8) then G_lei(x) is an idempotent. So we have
(1.3). |

Now from (1.3) we have Bi(x) (Gi(x)—l) = 0 which states that Gi(x)
takes values only zero or unity in {Al, A
= 0 we have Gi(Kj) = 0 for i#j. But if Bi(li) = (0 then li(x) takes zero
at n points Al’ cee, An in GF(qm) therefore Bi(x) must vanish. So
ei(xi) must be unity. This proves (1.4).

Next from (1.4) Bl(x) 4 Bz(x) + ... + Gn(x) with degree n-1 in
GF(qm){x] takes unity at n points Al, ey kn € GF(qm), therefore it must
be uniformly unity which proves (1.5).

Incidentally viewing R as a vector spaceon GF(qm) we can say that
el(x), ceay en(x) are linearly independent because of their orthogonality.

So every p(x) ¢ R is expressed on the basis el(x), cees en(x) such that

(1.9)  p(0) = a0, (x) + 00,000 + ... + a8 (X), a; e GF(QD)

1

Multiplying the both sides of (1.9) by ei(x) we have

(1.10) aiei(x) p(x) ei(x)

2 n-1
= +
ey plli+p2ai+ + P ei(x)

uj = D(Aj)

The product of any two elements, say, p(x) = alﬂl(x) + uzez(x) S

unen(x) and n(x) = Blel(x) + ...+ Bnﬂn(x) must be

93 eees ln}. And from (x—hi)Bi(x)

p(Ai)ei(x), i=1, ..

*a



(1.11) p(x)n(x) = alBlel(x) + azszez(x) + ... F angnen(x)

because Si(x)'s are orthogonal idempotents. And of course we have

(L.12) oGO + () = Cop*8)8) (0 + (ay48))0,(x) + ... + (a8 )6 (x).

From these we can easily conclude that R is isomorphic to the n-ply
, m - m m
direct product GF(q ) that is RaGF(qg ) x...x GF(q).
Further it is clear that 8, (x) R is a minimal ideal of R because
every element of Gi(x) R is a scalor multiple of Gi(x) so Gi(x) R is
one~dimensional subspace of R. So Gl(x), foa, Bn(x) are primitive orthogonal
idempotents in R. But our purpose is to find primitive orthogonal

idempotents in R.

§2 Primitive orthogonal idempotents in mono-variate polynomial rings -

for cyclic codes
Let denote by % the set of all roots of g(x) = 0. Thus
_ m
(2.1) I ={;s »-es 2} € GF(q)
Let us call the transform on GF(q™)

(2.2) £ » g4

2 k k+1
Frobenius transform and the set {f, gq, gq s ey Eq }o( Eq = ¢ and

i
£ ¢ £ for i < k) a Frobenius cycle {4]. Incidentally we call the total
of elements of the Frobenius cycle including o the trace of g, and
denote it by tr(a), i.e.,

2 k
(2.3) tr(a) = a+ o9 +ad + ... + !

o R



Now let us factor g(x) into irreducible polynomials pl(x), p2(x),
.., and pc(x) with degree Ny, 0y, ... and n, respectively over GF(q),

i.e.,
(2.4) 8(x) = py(x) py(x) ... pc(x), n=ntnt .., 4o
wvhere pl(x), pz(x), ceny pc(x) are different from each other because

g(x) has no multiple factors.

It is well known that I is decomposed into ¢ Frobenious cycles

El, 22, . Ec and Zi is composed of the all roots of pi(x) =0
and so |Ei| = ng, i=1, ..., ¢. Further for notational conveniences let
Ni = {j e {1,2, ..., n} IAj € zi}, then we have the following theorem

which is one of our main results.

Theorem 2 Though el(x), ceny en(x) are in R,

(2.5) e;(x) = 32 g, (x), i=1, ..., c.
jeNi ]

are polynomials in R, and are orthogonal idempotents and summed up to

unity. Further

(2.6) ei(lj) = 1 if Aj € Ei
=90 if A, £ L.
i i

proof From (1.3), (1.5) it is clear that el(x), cees ec(x) are

orthogonal idempotents and summed up to unity. Further from (1.4) and
{(2.3) we have (2.6).

The main difficulty is to show that ei(x) ¢ R, that is, in the form

(2.7) ei(x) =e, +e, x+,.,+ n-1

X e, b4 i=l, ..., ¢
i0 ii i,n-1 ? ’ >



eij (j=0, ..., n-1, i=1, ..., ¢) are all in GF(q).
First let us note that for any n¥n matrix A = (aij) (aije GF(qm)) its

determinant |A| has the following property,

q _ q q q
11 %12 ot %1 “11 %12 *" %1n
g q q
(2.8) %21 %22 ®on %21 %22 ®on
q q q
cLml %n2 “nn ®n1 %n2 Otnn
- - q _ q.4 q
Let |A] = = €Cyy Gy, e @, , Where e=+ 1, and |A] Zetar QoL ae.
1 2 n i 2
agi . If ¢ = p°(p being prime) and p is odd then ¢* = ¢, and if
n
p=2 then -1 =+ 1. In any case Eq = g, so we have (2.8).

Let us assume that Al’ ey An are ordered and decomposed into

Zl, 22, veey ZC such that

- =34 =9 = 14 - 14
R L S s P . I I CHE D\
: 1 1 1
|
) £.= {A A = 33 A = 4 b = Aq

k] > ] -
\ 2 nl+l nl+2 n1+l nl-l-n2 nl+n2 1 nl+l nl+n
(2.9) l( ............
- _ 44 _ 14 ~ 19
Lo {ANC+1’ ANC+2 ANC+1’ s Ay T AL ) (ANC+1 A

= + ... .
where Nc ny + nc_l

Now for i=1 we write down (2.6) in the form of (2.7) and (2.9)

then we have



I 2 n-1 7~ 7 r
1 Al ll .ae Al elO =§ 1
: |
. 2 n-1 !
i 1 AZ Az . AZ ell F 1
e B
: n-1 :
1 2 A by '
n; ny n, | 1 !
! |
‘ -
2 n-1 ! i
L Anl hnl+1 nl+l o 0 f
_ l,n—lJ 5
2 n-1 | |
1 A A 0
{ An'.‘f_-l~-2 nl+2 nl—!-l }
..... ; N
210 2 a1 -
1 2 A . X ! S0
nl+n2 nl+n2 nl-l-n2
! -
1 ..................... ; : !
2 1 | ]
n—
&y 41 oL AN 41 0
c c
2 n—l { 3
L Ny N oo N 0
f (o C C
i
U e ea e
!
: 2 n-1
Loy A Ao | 9]

Let denote by 4 the determinant of the matrix in the left hand side
of (2.10), and by éj the determinant obtained from A by changing the .
j~th column with the right hand side vector in (2.10). Then elj = Aj/A,
s0 eﬁj = 4?/&1. From (2.8) and (2.9) we can state that Al and Ag incur
only the same permutations of rows. 8o we have

(2.11) eij = A?/Aq = Aj/i). = e i=l, ..., n

15°

which proves elj € GF(q) (see e.g. [4]).



We can prove that eije GF(q), i=2, 3, ... with the same way.

Theorem 3 For each i=l, ..., ¢ the ideal

(2.12) ei(x) R = {ei(x) £(x) | £(x) ¢ R}

coincides with the ideal qi(x) R, where qi(x) = g(x)/pi(x), therefore it

is a minimal ideal of R. Thus el(x), cany ec(x) are primitive orthogonal
idempotents.
proof For any root A of qi(x) = pl(x) - pi_l(x) pi+l(x)

p.{x) = 0 we have ei(k) = 0 fxom (2.6). 8o q,(x) divides ei(x), that
is ei(x) € qi(x) R. But qi(x) R is a minimal, so ei(x) R = qi(x) R ;
Thus the formula (2.5) in Theorem 2 gives us the simple algorithm
to find orthogonal primitive idempotents of R.
Example 1 Let R = GF(3)([x] mod g(x), GF(3) = {0, 1, 2} mod 3,

and g(x) = x6 + X5 + 2x4 + 2x3 + x2 +x+ 2= (x3 + 2x + l)(x3 + x2

+ 2),
_ 3 3 2 . ,

where pl(x) =x~ + 2x + 1 and PZ(X) =%+ x~ + 2 are irreducible over

GF(3). The splitting field of g(x) is GF(33)= Let o be the primitive

elment of GF(33) satisfying a3 = 24a. Then

™~
il

{Al=a, l2=a3, A3=a9}: the set of roots of pl(x) =0

r, = {14=a4,k5=a12, l6=alo}: the set of roots of pz(x) = 0.

By (1.2) or (1.6) we can easily obtain the coefficients of the
eigen polynomial ej(x) corresponding to Aj’ j=l, 2, .., 6, which are
shown in Table I, and using (2.5) we get ei(x) (i=1, 2) from ej(x)

{(j=1, ..., 6). The coffeicients of ei(x) are also shown in Table I.



Table I
2 3 4 5
1 X X X X X
Al=a a6 a21 az ala al6 a7 el(x)
A2=u3 alS all u6 a2 0£22 a21 Bz(x)
A =u9 uz u7 uls a6 al4 all 8., (x)
3 . 3
2 2 2 2 0 2 el(x)
A4=a4 u4 a20 a25 a24 -1 a8 Ga(x)
A5=u12 u12 u8 a23 a20 1 a24 es(x)
A6=alo alO a24 al7 a8 1 0t20 96(X)
2 1 1 1 0 1 ez(x)

Note that for each k the coefficients of xk in ej(x) (je Ni) constitute
the Frobenius cycle, so the coefficients in ei(x) is the trace of the

one in Bj(x).

5

Example 2 Let R = GF(2)[x] mod (xl -1), GF(2) = {0, 1} mod 2, and

x15 - 1= (x+ l)(x2 + x + l)(x4 + x3 + x2 + x + l)(x4 + x + l)(x4 + x3~kl),

where

pl(x) =x + 1, pz(x) = xz +x + 1,

x4 + x3 +x+1,

i

p3(X)

4

P4(X) =x +x+1, P5(X) 4 3

x +x7 +1

are irreducibleover GF(2). The splitting field of xls—l is GF(24).

10



11

Let ¢ be the primitive element of GF(24) satisfying a4 = 04+ 1, Then

El={Al=a =l}
B s 10
I, = {Az =a”, Ay =a 1
3 6 12 9
Iy = {A4 =aqa", A5 =q, A6 =g, A7 = a’}

_ _ _ 2 4 _ 8
Z&“{?\S—OL,?\9-{1,?\10—05,)\11—0&}

1

_ 7 14 13 11
}:5"{112_&:}\13_0’- ’Al'il' a:)tlS"‘ur}

As in Example 1 we get coefficient, of Bj(x) (j = 1+13) and ei(x)
(i=1, ..., 6) in Table II. These five primitive orthogonal idempotents
are shown in the example (on page 54) of [5] which are comstructed
by step-by-step algorithms..

It is easily seen that in the case of g(x) = X" - 1, i.e. the cyclic
code case, the coefficient of xn_l in ej(x) is always its eigen vaiue

n-k k
1

ej and that of x s Aj. So we have only to calculate the trace {or

. , 2 3 n-1 .
its scalor multiple), of Aj, Aj’ Aj’ Aj’ cees Aj (Aj € Zi) in order
to get the coefficients of xn_l, Xn~2’ ceey X.and 1 in ei(x) respectively.

J

§3 primitive orthogonal idempotents in multivariate polynomial rings

for Abelian codes

Here we confine ourselves to consider the ring

(3.1) R = GF(q)[xl, Xos vees xn] mod (gl(xl), gz(xz), . gn(xn))

More generally we might consider the ring



Table TII

Ay=af 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1| e@®@H&
Ap=a® 1 ol0 a5 1 al0 g5 1 2045 1 qlU g5 1 gl0 45 84 (x)
Ay=a 10 1 0® a'® 1 a% a0 1 o5 ol0 31 o5 ol0 1 o 10| gy(x)
61 1 ¢ 1 ¥ 0 1 1 0 1 1 o0 1 1 e, (x)
Ay=a 1 oal2 a9 o6 o3 1 al2 49 b a3 1 ol2 g9 o6 43 8y (%)
Ag=ab 1 o? o al24®6 1 o9 a3 @l246 1 of a3 gl2 o6 85(x)
Ag=alt2 1 a3 of o ol?2 1 o3 ab: 0% ol2 1 o3 of ¥ gl2 Bg (x)
Ay=a? 1 a® al?2a3 o 1 of al2 g3 o3 1 ob gl2 g3 9 87(x)
0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 |es
Ag =a 1 ol% gl3 wl2 gll gl0 49 48 a? @b g3 gt g3 0?2‘ a g (x)
Ag =a2 1 aldall o o7 oS o o al® 12 10 8 o6 o o2 | g, (x)
Ao=ot | 1 all a7 o3 o4 o0 g8 o2 13 49 o5 o gl2 o8 g | O10(y
AL 1=a® 1 a7 alt g6 o3 o5 ol2 o ll o3 10 42 o9 4 o8 | 0q4x)
0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 e, (x)
Me=? [ L of o «f o2 all od oll g gl2 o5 ol3 g6 Gl o7 [ gy, (x)
Mgzl |1 a0 a2 a3 ot a5 af a7 48 4 al0 ll g2 613 G14] g . (x)
My=ald | 1 o2 ot oF o8 ol0 g2 o1% o o3 a5 o7 o 1l o13] g1, (w)
Ms=ll | 1 a% of al20 o5 o9 old a2 of al0 gl% o3 o7 oli| 6ys(x)
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 es(x)




12

G
F(q)[xl,xz,...,xn] mod (gl(xl,...,xn), gz(xl,...,xn),...,gk(xl,...,xn)),

but its structure is too complicated. The ring

m iit

m
GF(q)[xl,xz,...,xn] mod (xll—l, x

2 n
2 =1, ..., X -1

is isomorphic to the group algebra GF(q)+A on an Abelian groop A which is
the direct produet of cyclic gréups of order m, (i=1l, ..., n). An Abelian
code is defined as a ideal of a GR{q)-A. So it suffices to consider the
ring R defined in (3.1) to analize Abelian codes.

Further here we consider 2-variable case for simplicity, and only

a formal task suffices to generalize it to n-variable case. Thus let

(3.2) R = GF(q)[x, y] mod (g(x), h(y)).

And let g(x) and h(x) have no multiple factors as before, and have
degrees m and n respectively. We can represent elements of R by 2-variate
polynomials of degree m-1 in x and of n-1 in y.

In mono-variable case eigen polynomials plaved fundamental roles.

Instead we consider,
(3.3) Gij(x, y) = Ti(X) oi(y), i=1, ..., m, j=1, ..., n

in the ring
(3.4) R = GF(g%[x, y] mod (g(x), h(y))
where
CF(qt): the minimal extension field containg GF(q ) and GF(q"°)

GF(qr): the splitting field of g(x)



GF(qS): the splitting field of h(x)

Ti(x): the eigen polynomial with eigen value Ay of the transform

x on GF(q")[x] mod g(x)

Uj(X): the eigen polynomial with eigen value ”j of the transform

X on GF(qS)[x] mod h(x).

From Theorem 1 and (3.3) it is clear that Bij(x, y) (i=1, ..., m,
j=l, ..., n) are orthogonal idempotents and summed up to unity and
(3-5) el‘]()\k’ ‘iy)) =1 if (k-: L) = (1: J)

=0 if (k, ) # (i, 3)

Every polynomial p{x, y)e R is expressed on the basis eij(x, v)

(i=1, ... m, j=1, ..., n)} such that

. ¢} n t
(3.6) p(x, y) = Zie1Zi=1 %43 Oij (x, ¥, ay; € GF(q ")
where
(3.7) aij = Q(Ai’ Uj): i=l, ..., m, =1, ..., n,

And the product and sum of any two elements, say, p(x, y) and ni{x, y)

= I.T.B..0..(x, y) are

i"374i3743
(3.8) p(x, ¥)nlx, y) = E4E aijsijeij(x, y)
(39) p(X, Y) +T’1(X, Y) = Xizj (“ij'*ﬁij)eij(x’ Y)-

So R is isomorphic to the mn-ply direct product of GF(qt). From this R is
a semisimple ring and its subring R is also semisimple {1].
Let denote by Z the set of all pairs (Ai, uj) of eigen values Ai

and uj (i=1, ..., m, j=1, ..., n). Thus

13



14

) , < 2
(3.100 T ={0y ) [i=1, ..y m, 3=, .., n )e GF(q")~.

Let us call the transform on GF(qt)2
Ly 2
Gan @, = €L Y, &, n) e er D)
(2-dimensional) Frobenius transform, and the set

2

-2 k
{(Cl:: B), (Olq; Bq): (U.q s sq ): s ey (Ciq

k qk+l letl
8N LY ) = (@, B,
q* q* < .
(e’ 87 ) # (¢, 8) for 3 = k) a Frobenius cycle. Then it is clear
that I is decomposed into Frobenius cycles Zl’ 22, ey ZC. Further let
Ni = {(k, %) ] (Ak, uz) € Ei}, i=1l, ..., ¢, then the following is another

main result.

Theorem 4 Though Bij(x, y) are in R

{3.12) ei(x, y) = 1 Bk 2(x, y), i=1l, ..., ¢,
(k,z)eNi ’

are in R, and are orthogonal idempotents and summed up to unity. Further,

(3.13) ei(Ak, UE) =1 if (k, &) € Ni

I
<o

if (k, 8) £ N,

Proof It is clear that ei(x, y), i=1, ..., ¢, are orthogonal idempotents
and summed up to unity and (3.13) is valid.

To show that ei(x, y) € R, let

_ o1 n-l P =
e, (x, y) = T=g Tg=0 C1,k XV > C5 € GF(q")

Writing (3.5) in the form of mn linear equatiouns in mn unknown values

like (2.10), we can easily prove that e, ¢ GF(q) by the same

¢ ik

i,ke
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reasoning as the proof of Theorem 2.

Theorem 5 Tor each i=1, ..., c, ei(x, v) R is a minimal ideal of
R. Thus ei(x, v), i=1, ..., ¢, are primitive orthogonal idempotents in R.

proof First note that for any nonzero polynomial f{x) € ei(x, y) R,

the right hand side of

(3.14) f£(x, y) = L £y ”z)ek,z(x’ y). (see (3.7))
(k,2)eN,
1
has not zero terms, i.e. f(Ak, ”g) ((k, &) ¢ Ni) are all nonzero. Because

if one of f(Ak, uz) ((k, ) ¢ Ni) is zero then f(lq, Hz) = (f(lk,uz))q =0
(for £(x, v) ¢ R), so all f(Ak, uz)((k, 2).5'Ni) are zero and f(x, y) = 0
to contradict.

Now let M S ei(x, ¥y) R be a minimal ideal of R the M.has a generating.
idempotent, say, d(x, y)€ M, because R is a semisimple ring [1]. That

2
is d(x, y) =d(x, y) and M = d(x, y) R. Let

(3.15)  d(x, y) = =% 6 (x, ¥), ¢ GF(q")
(K, ) ¥, k2 kg ke
then
2 2
d"(x, y) = I e, By .(x, ¥)
(K, Den, ke kg

2 2 _
From d”(x, y) = d(x, y) we have €y = €pg 50 8§y = 0or 1l ({(k 2) eN.,).
Every nonzere polynomial in ei(x, ¥y) R has not zero coefficients in the

form (3.14), therefore

d{x, y) = I 0, (%, ¥) = e (x, y)
{k, L)eNi k2 *

which implies M = ei(x, v) R.



le

Example 3 Let R = GF(2)[x, y] mod (x3—l, y3-l). And we can factor

x3-1 into irreducible polynomials x-1 and x2+x+1, whose sgplitting field

is the GF(ZZ). Let o be the primitive element of GF(22) satisfying

a2 = I+,

The eigenvalues and eigen polynomials of the transform x on

GF{2)[x] mod (x3-1) are

S
[

Tl(X)

fl

TZ(X)

T3(X) =1+ gx+ a2x2 =

95

1 +x+ x2 = cl(x),

1 +‘a2 + axz = GZ(X),

(x).

Decomposing L = {(al, aj) |i, j =0, 1, 2} into Frobenius cycles

™~
[l

™~
|

we have
el(xs
e2 (x$
33(x5
ea(x,

es(x,

y)
y)
y)
y)

¥)

il

T, (x)0; ()
T, (K)o, (y)
T, (00, (y)
7,(x)0, (y)

TZ(X)G3(Y)

-+

13(X)ol(y)

(L DY, 5, = {, D65 DY, 5y = (A, a,Q, o5}

= (@ @, @, 6D}, 5= (G, D), @5 o),

(1 + x + xz)(l +y + yzﬁ,

= (x + xz)(l +y + yz),

T, (Do, (y) =

13(X)o3(y)

= TB(X)Gz(Y)

=x+y+ x2 + yz + xy + xzy ,

(L+x+x)(y +y9),

2

x+vy+ xz + y2 + xy2~+-x2y.

These are shown in the example of [3], where MacWilliams constructed

them by other algorithms.

-
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