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Abstract
We extend the classical primal-dual interior point method from the Euclidean setting to the Riemannian

one. Our method, named the Riemannian interior point method (RIPM), is for solving Riemannian
constrained optimization problems. We establish its locally superlinear and quadratic convergence under
the standard assumptions. Moreover, we show its global convergence when it is combined with a classical
line search. This method is a generalization of the classical framework of primal-dual interior point
methods for nonlinear programming proposed by El-Bakry et al. in 1996. Numerical experiments show
the stability and efficiency of our method.

Keywords: Riemannian manifold, Constrained optimization problem, Interior point method, Rieman-
nian Newton method, Barrier method.

1 Introduction
We consider the following problem,

min
xPM

fpxq

s.t. hpxq “ 0, and gpxq ď 0,
(RCOP)

whereM is ad-dimensional Riemannian manifold and f : M Ñ R, h : M Ñ Rl, l ă d, and g : M Ñ Rm are
C2 (twice continuously differentiable) on the manifold. This problem is called the nonlinear programming
problem (NLP) on a Riemannian manifold, or the Riemannian constrained optimization problem (RCOP).
It appears in many applications, for instance, matrix approximation with nonnegative constraints on a fixed-
rank manifold [32] and orthogonal nonnegative matrix factorization on the Stiefel manifold [20]; for more
applications, see [23, 27].

The body of knowledge on the Riemannian unconstrained optimization problem (i.e., h, g “ 0), often
called simply Riemannian optimization, has grown considerably in the last 20 years. In particular, well-
known methods in the Euclidean setting, such as steepest descent, Newton, conjugate gradient and trust
region, have been extended to the Riemannian setting [1, 17, 5, 29]. By contrast, research on the Riemannian
constrained optimization problem is still in its infancy. The earliest studies go back to the optimal conditions
in the Riemannian case. Yang et al. [36] extended the Karush Kuhn Tucker (KKT) conditions and the
second-order necessary and sufficient conditions to (RCOP). Bergmann and Herzog [2] considered more
constraint qualifications (CQs) on manifolds. Yamakawa and Sato [34] proposed sequential optimality
conditions, called approximate KKT conditions in the Riemannian case. Liu and Boumal [23] were the
first to develop practical algorithms. They extended the augmented Lagrangian method and exact penalty
method to (RCOP). Yamakawa and Sato [34] improved the augmented Lagrangian method in order to
obtain a solution without CQs. Schiela and Ortiz [30] and Obara et al. [27] proposed the Riemannian
sequential quadratic programming method. However, to our knowledge, interior point methods have yet to
be considered for (RCOP).

∗An earlier version of this article has been circulated under the title “Superlinear and Quadratic Convergence of Riemannian Interior
Point Methods.”
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The advent of interior point methods in the 1980s greatly advanced the field of optimization [33, 37, 16].
By the early 1990s, the success of these methods in linear and quadratic programming ignited interest in
using them on nonlinear cases [10, 35]. From the 1990s to the first decade of the 21st century, a large
number of interior point methods for nonlinear programming emerged. They proved to be as successful
as the linear ones [26, Chapter 19]. A subclass known as primal-dual interior point methods is the most
efficient practical approach. As described in [24], the primal-dual approach to linear programming was
introduced in [25]: it was first developed as an algorithm in [21] and eventually became standard for the
nonlinear case as well [10, 35]. Since it seems to be an application of the Newton method for solving the
KKT conditions, it has been called the Newton interior point method in some of the literature.

In this paper, we extend the primal-dual interior point algorithms from the Euclidean setting, i.e.,M ” Rd

in (RCOP), to the Riemannian setting. We call this extension the Riemannian interior point method (RIPM).
Under meaningful assumptions in the Riemannian setting, we establish the locally superlinear and quadratic
convergence. We also show global convergence with a classical line search. Our method is a generalization
of classical local and global convergence theory of interior point methods for nonlinear programming first
proposed by El-Bakry et al. [10]. To our knowledge, this paper is the first study to apply the primal-dual
interior point method to optimization on Riemannian manifolds.

In Section 2, we give an interpretation of the Riemannian interior point methods; in particular, we define
the concept of a KKT vector field and give the formulation of its covariant derivative. The implication of
the standard assumptions motivates RIPM. We end the section by describing a prototype algorithm 2. In
Section 3, we describe the notation, preliminaries, and auxiliary results that we will need later. In Section
4, we prove locally superlinear and quadratic convergence of RIPM. In Section 5, we describe a globally
convergent RIPM with the classical line search and prove its convergence in Section 6. Section 7 is a
collection of numerical experiments. As a beneficial addition, we give an intuitive example of a barrier
method on a sphere manifold.

2 Interpretation of Riemannian Interior Point Methods
We will use three symbols to denote the various manifolds: M is the manifold appearing in (RCOP);
M :“ M ˆ Rl ˆ Rm ˆ Rm is the product manifold consisting of M and three Euclidean spaces, and M
refers to a general manifold. Following common usage in the interior-point literature, big letters denote
the associated diagonal matrix by Z “ diagpz1, . . . , znq for z P Rn, and e the vector of all ones. In the
following overview of the Riemannian interior point method, many of the symbols appearing in Riemannian
optimization will be used without giving their definitions. The readers may refer to Section 3.1 for the
detailed definitions.

2.1 KKT Vector Field
The Lagrangian function of (RCOP) is

Lpx, y, zq “ fpxq ` yThpxq ` zT gpxq,

where y P Rl and z P Rm are Lagrange multipliers. With respect to the variable x, Lp¨, y, zq is a real
function on M, and its Riemannian gradient is

gradx Lpx, y, zq “ grad fpxq `
řl

i“1 yi gradhipxq `
řm

i“1 zi grad gipxq,

where grad fpxq, tgradhipxquli“1, tgrad gipxqumi“1 are the Riemannian gradients for the component func-
tions of f, h, g. The active set Apxq “ ti : gipxq “ 0, i “ 1, . . . ,mu consists of the indices of the active
constraints at x P M. 0x denotes the zero element of the tangent space TxM. The Riemannian versions of
the KKT conditions [23, Definition 2.3] for (RCOP) are given by

gradx Lpx, y, zq “ 0x; hpxq “ 0, gpxq ď 0, z ě 0; Zgpxq “ 0. (1)

With slack variables s :“ ´gpxq, the above KKT conditions can be written as

F pwq :“

¨

˚

˚

˝

Fx :“ gradx Lpx, y, zq

Fy :“ hpxq

Fz :“ gpxq ` s

Fs :“ ZSe

˛

‹

‹

‚

“ 0w ”

¨

˚

˚

˝

0x
0

0

0

˛

‹

‹

‚

, (2)
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and pz, sq ě 0, where w :“ px, y, z, sq P M :“ M ˆ Rl ˆ Rm ˆ Rm. Note that for the Riemannian KKT
conditions, we generate a vector field F on the Riemannian product manifold M , i.e., F : M Ñ TM –

TMˆTRl ˆTRm ˆTRm, where TM denotes the tangent bundle of M . At a point w “ px, y, z, sq P M ,
the tangent space appears as TwM – TxM ˆ Rl ˆ Rm ˆ Rm under the canonical identification TvE – E
for any vector space E and any v P E . In particular, for any w “ px, y, z, sq with x P M, the first component
of F pwq is in TxM; the multipliers y and z and slack variables s, in turn, are treated as they usually are.

Definition 2.1. The vector field F on M defined in (2) is called the KKT vector field of (RCOP).

Thus, the KKT conditions for (RCOP) can be interpreted as ones for finding a singularity of a vector
field on a product manifold with partial nonnegative requirements, namely, F pwq “ 0w and pz, sq ě 0.

2.2 Implication of Standard Assumptions
The Newton method is a powerful tool for finding the zeros of nonlinear functions in the Euclidean setting.
The generalized Newton method has been studied in the Riemannian setting; it aims to find a singularity of
a vector field F P XpMq, specifically, a point p P M such that,

F ppq “ 0p P TpM. (3)

Let ∇ be the Riemannian connection on M. The covariant derivative ∇F assigns each point p P M a linear
operator ∇F ppq from and to TpM. The Riemannian Newton iteration for (3) can be performed as follows.

Algorithm 1 (Riemannian Newton Method).

(Step 1) Compute ξk P Tpk
M by solving the equation ∇F ppkqξk “ ´F ppkq.

(Step 2) Compute pk`1 :“ Rpk
pξkq, where R denotes a retraction on M. Return to Step 1.

We know that, if p˚ is a solution of (3) and the operator∇F pp˚q is nonsingular, then local superlinear and
quadratic convergence hold [12] under certain mild conditions on the map, p ÞÑ ∇F ppq. If the Riemannian
Newton method is to be applied to (2), we must formulate the covariant derivative of the KKT vector field
F at an arbitrary w P M . Let Hessx Lpwq be the Riemannian Hessian of a real function Lp¨, y, zq. It is a
linear operator on TxM such that, for any ∆x P TxM,

Hessx Lpwq∆x “

´

Hess fpxq `
řl

i“1 yi Hesshipxq `
řm

i“1 zi Hess gipxq

¯

∆x, (4)

where Hess fpxq, tHesshipxquli“1, andtHess gipxqumi“1 are Riemannian Hessian operators for the compo-
nent functions. Using the notation Hessx Lpwq, we can prove the following.

Lemma 2.2 (covariant derivative of KKT vector field). For any w P M , the linear operator ∇F pwq :
TwM Ñ TwM for the KKT vector field F defined in (2) is given by

∇F pwq∆w “

¨

˚

˚

˚

˝

Hessx Lpwq∆x `
řl

i“1 ∆yi gradhipxq `
řm

i“1 ∆zi grad gipxq

xgradhipxq,∆xyx , for i “ 1, 2, . . . , l

xgrad gipxq,∆xyx ` ∆si, for i “ 1, 2, . . . ,m

Z∆s ` S∆z

˛

‹

‹

‹

‚

(5)

where ∆w “ p∆x,∆y,∆z,∆sq P TxM ˆ Rl ˆ Rm ˆ Rm.

Proof. See Appendix A for a rigorous proof. A compact form is given in (12) later.

A prior study on Riemannian optimal conditions [36, 2] showed that the following assumptions for
(RCOP) are meaningful, see Example 7.1. Their Euclidean versions can be found in [10, Section 4].

Assumption 1 (standard Riemannian assumptions of (RCOP)).

(A1) Existence. There exists px˚, y˚, z˚q satisfying the KKT conditions (1).
(A2) Smoothness of C2. The functions f, g and h are C2 on M.
(A3) LICQ. tgradhipx

˚qu
l
i“1 Y tgrad gipx

˚q : i P Apx˚qu is linearly independent in Tx˚M.
(A4) Strict complementarity. pz˚qi ą 0 if gipx˚q “ 0 for all i “ 1, ¨ ¨ ¨ ,m.
(A5) Second-order sufficiency. xHessx Lpw˚qξ, ξy ą 0 for all nonzero ξ P Tx˚M satisfying xξ, gradhipx

˚qy “

0 for i “ 1, ¨ ¨ ¨ , l, and xξ, grad gipx
˚qy “ 0 for i P Apx˚q.

The following result motivates the use of the Newton method for solving (2). See Appendix B for the
proof, which is a generalization of [10, Proposition 4.1].

Proposition 2.3. If (A1)-(A5) hold at w˚, then the operator ∇F pw˚q in (5) is nonsingular.
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2.3 Prototype Algorithm
If we directly apply the Newton method to the KKT vector field, the Newton equation for (2) is ∇F pwq∆w`

F pwq “ 0. As in the usual Euclidean setting, once the iterates reach the boundary of the feasible region,
they are forced to stick to it. To keep the iterates sufficiently far from the boundary, we introduce a perturbed
complementary equation for some number µ ą 0 and define

F pw;µq :“ F pwq ´ µê, and ê :“ êpwq :“ p0x, 0, 0, eq. (6)

Notice that the perturbation term ê, indeed, is a special vector field on M , not a constant, because 0x is
essentially dependent on w and/or x. We call F pw;µq in (6) the perturbed KKT vector field.

Note that the covariant derivative of the perturbed KKT vector field is the same as that of the original.
From the linearity of the connection ∇, we have at any point w P M ,

∇F pw;µq “ ∇F pwq ´ µ∇êpwq “ ∇F pwq, (7)

since ∇êpwq∆w “ p0x, 0, 0, 0q for all ∆w P TwM . Applying the Newton method to F pw;µq “ 0 yields
the perturbed Newton equation, ∇F pw;µq∆w`F pw;µq “ 0. From (6) and (7), this equation is equivalent
to ∇F pwq∆w ` F pwq “ µê, which reduces to the ordinary Newton equation when µ “ 0.

On the other hand, the next lemma gives a homotopy (or, continuation) derivation that is similar to
the case of the Euclidean interior point method [26, Chapter 19]. Note that, very recently, Séguin and
Kressner [31] developed continuation methods for Riemannian optimization, which are closely related to
our Riemannian interior point method.

Lemma 2.4. Under the standard assumptions (A1)-(A5) at w˚, there exist a sufficiently small µ̄ ą 0 and a
smooth curve w : r0, µ̄q Ñ M such that wp0q “ w˚ and F pwpµq;µq “ 0,@µ P r0, µ̄q.

Proof. By Proposition 2.3, we have that F pw˚; 0q “ 0 and ∇F pw˚; 0q is nonsingular. The proof uses the
same technique as in [31, Theorem 3.1]. Roughly speaking, it applies the implicit function theorem to the
local coordinate representations of the vector field F and its full-rank Jacobian matrix at the solution.

This smooth curve µ ÞÑ wpµq is called the central path, whose endpoint wp0q “ w˚ is a solution of
(RCOP). µ is customarily called the barrier parameter because F pwpµq;µq “ 0 can be interpreted as the
Riemannian KKT conditions of the following barrier problem:

minpx,sqPMˆRm fpxq ´ µ
řm

i“1 log si
s.t. hpxq “ 0, gpxq ` s “ 0.

(8)

See section 7.1 for an illustrative example. Now, let us describe the Riemannian interior point method.

Algorithm 2 (Prototype Algorithm of RIPM).

(Step 0) Let R be a retraction on M. Set w0 “ px0, y0, z0, s0q P M with pz0, s0q ą 0; µ0 ą 0, k Ð 0.
(Step 1) Check whether wk satisfies a stopping test for (RCOP).
(Step 2) Solve the following linear system for ∆wk “ p∆xk,∆yk,∆sk,∆zkq,

∇F pwkq∆wk “ ´F pwkq ` µkê. (9)

(Step 3) Choose γk where 0 ă γ̂ ď γk ď 1 for some constant γ̂ and compute the step size,

αk :“ min
!

1, γk mini

!

´
pskqi

p∆skqi
| p∆skqi ă 0

)

, γk mini

!

´
pzkqi

p∆zkqi
| p∆zkqi ă 0

))

. (10)

(Step 4) Update: wk`1 “ R̄wk
pαk∆wkq, i.e., pxk`1, yk`1, sk`1, zk`1q “ pRxk

pαk∆xkq, yk`αk∆yk, sk`

αk∆sk, zk ` αk∆zkq. Choose µk`1 ă µk; k Ð k ` 1. Return to Step 1.

2.4 Condensed Form of Perturbed Newton Equation
We will focus our attention to the solution of the linear system (9). To make the formulation of ∇F pwq in
(5) look simpler, we will introduce the following symbols. For x P M, we define two maps Hx : Rl Ñ TxM
and Gx : Rm Ñ TxM by

Hxv :“
řl

i“1 vi gradhipxq, Gxv :“
řm

i“1 vi grad gipxq, (11)
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respectively. We can see that for every v P Rl and ξ P TxM, xHxv, ξyx “
řl

i“1 vi xgradhipxq, ξyx . Hence,
the adjoint operator of Hx is given by H˚

x : TxM Ñ Rl,

H˚
xξ “ rxgradh1pxq, ξyx , ¨ ¨ ¨ , xgradhlpxq, ξyxs

T
,

Similarly, we have G˚
x : TxM Ñ Rm and G˚

x ξ “ rxgrad g1pxq, ξyx , ¨ ¨ ¨ , xgrad gmpxq, ξyxs
T
. By using

those symbols, we can obtain a compact form of (5) as follows:

∇F pwq∆w “

¨

˚

˚

˝

Hessx Lpwq∆x ` Hx∆y ` Gx∆z

H˚
x∆x

G˚
x∆x ` ∆s

Z∆s ` S∆z

˛

‹

‹

‚

. (12)

If M ” Rd, then Hx,Gx are expressed as the Jacobian matrices of h, g, and H˚
x ,G˚

x are their transposes.

Remark 2.5 (Implementation Details). IfM is a Riemannian submanifold ofRn equipped with the inherited
metric xa, by “

řn
i“1 aibi, we can express Hx and H˚

x by using only Euclidean gradients. Let Projx be the
orthogonal projector from Rn onto TxM Ď Rn, and egradhipxq be the Euclidean gradients of hi at x. It
follows from the linearity of Projx and gradhipxq “ Projx egradhipxq [5, Proposition 3.61] that Hxv “

Projxp
řl

i“1 vi egradhipxqq “ Projx pegradx xv, hpxqyq .On the other hand, sinceProjx is self-adjoint and
Projx ξ “ ξ for every ξ P TxM , we have xgradhipxq, ξyx “ xegradhipxq,Projx ξy “ xegradhipxq, ξy .

Thus, H˚
xξ “ rxegradh1pxq, ξy , ¨ ¨ ¨ , xegradhlpxq, ξys

T
. The above can be applied verbatim to Gx, G˚

x .

Suppose that pz, sq ą 0. We will solve the next system by using the compact form (12) and the notation
in (2):

¨

˚

˚

˝

Hessx Lpwq∆x ` Hx∆y ` Gx∆z

H˚
x∆x

G˚
x∆x ` ∆s

Z∆s ` S∆z

˛

‹

‹

‚

“

¨

˚

˚

˝

´Fx

´Fy

´Fz

´Fs ` µe

˛

‹

‹

‚

. (13)

From the fourth line we can deduce that ∆s “ Z´1 pµe ´ Fs ´ S∆zq . Substituting it into the third
line, one has G˚

x∆x ´ Z´1S∆z “ ´Z´1µe ´ gpxq. A further substitution from the third line ∆z “

S´1 rZ pG˚
x∆x ` Fzq ` µe ´ Fss into the first line yields (13) in a condensed form on TxM ˆ Rl:

T p∆x,∆yq :“

ˆ

Aw∆x ` Hx∆y

H˚
x∆x

˙

“

ˆ

c

q

˙

, (14)

where
Θ :“ GxS

´1ZG˚
x , Aw :“ Hessx Lpwq ` Θ,

c :“ ´Fx ´ GxS
´1 pZFz ` µe ´ Fsq , q :“ ´Fy.

(15)

Accordingly, the question of how to solve the linear system (14) becomes critical. Like the interior point
methods in the Euclidean setting, (14) is essentially a symmetric indefinite linear operator equation. Note
that Θ and Aw are self-adjoint operators from and to TxM. Hence, T is self-adjoint on the product space
TxM ˆ Rl with inner product xp∆x,∆yq, p∆x1,∆y1qy :“ x∆x,∆x1yx `

řl
i“1 ∆yTi ∆y1

i. Indeed, (14) is a
saddle point problem defined on Hilbert spaces. From the above discussion, if pz, sq ą 0 holds, then the
operator ∇F pwq in (5) is nonsingular if and only if T in (14) is nonsingular. The following theorem states
two sufficient conditions to ensure that T is nonsingular. They are a direct extension of the classical results.
Note that Hx in (11) is injective if and only if the set tgradhipxqu

l
i“1 is linearly independent in TxM.

Corollary 2.6. In (14), the operator T is nonsingular if: (i) Aw and H˚
xA´1

w Hx are nonsingular; alterna-
tively, (ii) Hx is injective and Aw is positive definite on the null space of H˚

x .

3 Preliminaries
Here, we describe some of the preliminary and auxiliary results necessary for understanding Riemannian
optimization on the basis of the literature [5, 19, 18]. All symbols are defined in Section 3.1.
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3.1 Notation
Let E and E 1 be two finite-dimensional normed vector spaces, on which norms are induced by inner products
x¨, ¨yE and x¨, ¨yE 1 , respectively. Let T : E Ñ E 1 be a linear operator. The adjoint of T is the linear operator
T˚ : E 1 Ñ E defined by the property: for all v P E , u P E 1, xTv, uyE 1 “ xv, T˚uyE . The norm of T is
}T } :“ sup t}Tv}E 1 : v P E , }v}E “ 1, or, }v}E ď 1u. T is self-adjoint if T “ T˚. Sympdq denotes the
set of symmetric matrices of order d. Given two nonnegative sequences tuku, tvku, we write uk “ Opvkq

if there is a positive constant M such that uk ď Mvk for all sufficiently large k. We write uk “ opvkq if
vk ą 0 and the sequence of ratios tuk{vku approaches zero.

Riemannian metrics and gradients Let M be a finite-dimensional manifold. The tangent space TxM
contains all the possible directions of curves on M passing through x P M. The elements of TxM are
called tangent vectors and TM :“ tpx, ξq : x P M, ξ P TxMu is called the tangent bundle. A vector field
on a manifold M is a map V : M Ñ TM with V pxq P TxM. The set of all smooth vector fields on M
is denoted by XpMq. The inner product x¨, ¨yx on TxM is a positive-definite symmetric bilinear form. It
induces the norm }ξ}x :“

a

xξ, ξyx. A Riemannian metric on M is a choice of inner product x¨, ¨yx for
each x P M and for all smooth vector fields V,W on M, the function,

x ÞÑ xV pxq,W pxqyx, (16)

is smooth from M to R. A manifold with a Riemannian metric is called a Riemannian manifold. Let
FpMq denote the set of all smooth scalar fields (i.e., real-value function) f : M Ñ R. The Riemannian
gradient of f is the vector field, grad f , uniquely defined by the identities: Dfpxqrξs “ xξ, grad fpxqy for
all px, ξq P TM, where Dfpxq : TxM Ñ R is the differential of f at x. For f P FpMq, grad f is a smooth
vector field, hence x ÞÑ }grad fpxq}x is a smooth scalar field by (16).

Covariant derivatives and Hessians A Levi-Civita or Riemannian connection onM is the unique operator
∇ : XpMq ˆ XpMq Ñ XpMq : pU, V q ÞÑ ∇UV which has the following properties: FpMq-linearity in
U , R-linearity in V , the Leibniz rule, symmetry and compatibility with the metric. ∇UV at x depends on
U only through Upxq. Thus, we can write ∇ξV to mean p∇UV q pxq for arbitrary U P XpMq such that
Upxq “ ξ. The covariant derivative of F P XpMq determined by ∇ defines a linear operator at each x P M:
∇F pxq : TxM Ñ TxM, by ∇F pxqξ :“ ∇ξF . Particularly, the Riemannian Hessian of f P FpMq at x is
a self-adjoint operator on TxM that is defined as Hess fpxqξ :“ ∇ξ grad f.

Retraction and vector transport A retractionR : TM Ñ M onM is a smooth map having the following
properties: Rx p0xq “ x, where Rx denotes the restriction of R to TxM and 0x denotes the zero element
of TxM; with the canonical identification T0xpTxMq – TxM, DRx p0xq “ idTxM. A vector transport
T on M is a smooth map TM ‘ TM Ñ TM : pη, ξq ÞÑ Tηpξq P TM having the following properties,
where ‘ denotes the Whitney sum: there exists an associated retraction R such that Tηx

pξxq P TRxpηxqM;
T0x pξxq “ ξx; Tηx

paξx ` bζxq “ aTηx
pξxq ` bTηx

pζxq for all a, b P R and ηx, ξx, ζx P TxM.

Distance, geodesics and completeness Given a piecewise smooth curve γ : ra, bs Ñ M, we define the
length of γ as Lpγq :“

şb

a
}γ1ptq}γptq dt. The Riemannian distance dpp, qq is defined to be the infimum of

Lpγq over all piecewise smooth curves γ joining p and q. It induces the original topology on M; namely,
pM, dq is a metric space. The open ball of radius r centered at p is Brppq :“ tq P M : dpp, qq ă ru. A
vector field V along a smooth curve γ on M is said to be parallel if ∇γ1V “ 0. When γ1 itself is parallel
we call γ a geodesic. A geodesic joining p and q is minimal if its length equals dpp, qq. M is complete if
the geodesics are well-defined on R. Hopf-Rinow’s theorem asserts that every pair of points in a complete
Riemannian manifold M can be joined by a minimal geodesic segment. If a unique geodesic joining p to q
exists, we denote it by γpq . Throughout this paper, M is a complete Riemannian manifold.

Exponential mapping and parallel transport For every ξ P TxM, there exists an interval I around zero
and a unique geodesic γptq : I Ñ M such that γp0q “ x and γ1p0q “ ξ. The map ξ ÞÑ expx ξ :“ γp1q is
called the exponential map, which is a retraction. The domain of expx is the whole TxM for all x P M if
and only if M is complete. Given a smooth curve γ on M, parallel transport of the tangent space at γpt0q

to the tangent space at γpt1q along γ, Pt1Ðt0
γ : Tγpt0qM Ñ Tγpt1qM is defined by Pt1Ðt0

γ puq “ Zpt1q,
where Z is a unique parallel vector field such that Zpt0q “ u. In particular, parallel transport is an isometry.
Let R be a retraction on a manifold M; then Tηx

pξxq :“ P1Ð0
γ ξx is a vector transport with an associated

retraction R, where Pγ denotes parallel transport along the curve t ÞÑ γptq “ Rx ptηxq.
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Riemannian product manifold At a point w “ px, y, z, sq in the Riemannian product manifold M “

M ˆ Rl ˆ Rm ˆ Rm, we have TwM – TxM ˆ Rl ˆ Rm ˆ Rm. For ξ “ pξx, ξy, ξz, ξsq and ζ “

pζx, ζy, ζz, ζsq in TwM , the Riemannian product metric is defined as xξ, ζyw :“ xξx, ζxyx `ξTy ζy `ξTs ζz `

ξTz ζs. The induced norm }ξ}w :“
a

xξ, ξyw. The product distance on M is defined as dpw1, w2q :“
b

d2px1, x2q ` }y1 ´ y2}
2

` }z1 ´ z2}
2

` }s1 ´ s2}
2
, where } ¨ } denotes the l2 norm. For all pw, ξq P

TM , R̄wpξq :“ pRxpξxq, y ` ξy, s ` ξs, z ` ξzq defines a retraction on M . Let Rl and Rm equipped
with the canonical Euclidean connection; then, the connection ∇ on M determines a connection on M (see
Lemma A.1). We will conflate the notations ∇ and d on M and M since they are clear from context.

3.2 Preliminaries and Auxiliary Results
From DRx p0xq “ idTxM and the inverse function theorem, there exists a neighborhood V of 0x in TxM
such that Rx is a diffeomorphism on V , i.e., R´1

x pyq is well defined for all y P M sufficiently close to
x. In this case, RxpV q Ď M is called a retractive neighborhood of x. Furthermore, the existence of a
totally retractive neighborhood [38, Theorem 2] shows that for any x̄ P M there is a neighborhood W of
x̄ such that R´1

x pyq is well defined for all x, y P W . In what follows, we will suppose that an appropriate
neighborhood has been chosen by default for the well-definedness of R´1

x pyq.
Multiple Riemannian versions of Lipschitz continuity have been defined [5, Section 10.4]. Here, we

consider Lipschitz continuity with respect to general vector transport and its associated retraction. Let M
be a Riemannian manifold endowed with a vector transport T and an associated retraction R.

Definition 3.1 ([18, Definition 5.2.1]). A function f : M Ñ R is Lipschitz continuously differentiable with
respect to T in U Ď M if it is differentiable and if there exists a number κ ą 0 such that, for all x, y P U ,
}grad fpyq ´ Tξ grad fpxq} ď κ}ξ}, where ξ “ R´1

x y.

Lemma 3.2 ([18, Lemma 5.2.1]). If a function f : M Ñ R is C2, then, for any x̄ P M, there exists a
neighborhood U of x̄ such that f is Lipschitz continuously differentiable with respect to T in U .

We get the following result when the gradient is replaced by a general vector field.

Definition 3.3. A vector field F is Lipschitz continuous with respect to T in U Ď M if there exists a number
κ ą 0 such that, for all x, y P U , }F pyq ´ TξF pxq} ď κ}ξ}, where ξ “ R´1

x y.

Lemma 3.4. If F is a C1 vector field, then, for any x̄ P M, there exists a neighborhood U of x̄ such that F
is Lipschitz continuous with respect to T in U .

Proof. The proof of this lemma is similar to that of [18, Lemma 5.2.1].

Going one degree higher, let us now discuss the Lipschitz-continuous Hessian of f . Recall that the
Hessian of f associates to each x a linear operator Hess fpxq from and to TxM.

Definition 3.5 ([19, Assumption 3]). A function f : M Ñ R is twice Lipschitz continuously differentiable
with respect to T in U Ď M if it is twice differentiable and if a number κ ą 0 exists such that, for all
x, y P U , }Hess fpyq ´ Tξ Hess fpxqT ´1

ξ } ď κdpx, yq, where ξ “ R´1
x y.

Lemma 3.6 ([19, Lemma 4]). If f : M Ñ R is C3, then, for any x̄ P M, there exists a neighborhood U of
x̄, such that f is twice Lipschitz continuously differentiable with respect to T in U .

Similarly, if Hessian is replaced by a general covariant derivative, we get the following result.

Definition 3.7. The covariant derivative ∇F is Lipschitz continuous with respect to T in U Ď M if there
exists a number κ ą 0 such that, for all x, y P U , }∇F pyq ´ Tξ∇F pxqT ´1

ξ } ď κdpx, yq, where ξ “ R´1
x y.

Lemma 3.8. If F is a C2 vector field, then, for any x̄ P M, there exists a neighborhood U of x such that
the covariant derivative ∇F is Lipschitz continuous with respect to T in U .

Proof. This lemma can be proven in a similar way as [19, Lemma 4].

Lemma 3.9. Let M be a Riemannian manifold endowed with a (smooth) retraction R and let x̄ P M. Then,
(i) there exist a0 ą 0, a1 ą 0, and δa0,a1

ą 0 such that for all x in a sufficiently small neighborhood of
x̄ and all ξ, η P TxM with }ξ} ď δa0,a1

and }η} ď δa0,a1
, a0}ξ ´ η} ď dpRxpηq, Rxpξqq ď a1}ξ ´ η}. In

particular, a0}ξ} ď dpx,Rxpξqq ď a1}ξ} when we take η “ 0.
(ii) there exist a0 ą 0, and a1 ą 0 such that for all x in a sufficiently small neighborhood of x̄,

a0}ξ} ď dpx, x̄q ď a1}ξ} where ξ “ R´1
x̄ pxq.
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Proof. (i) comes directly from [19, Lemma 2]. To prove (ii), we take x “ x̄ in (i) so that a0}ξ} ď

dpx̄, Rx̄pξqq ď a1}ξ} for all ξ P Tx̄M with }ξ} ď δa0,a1
. Since Rx̄ is a local diffeomorphism at 0x̄ P Tx̄M,

for all x in a sufficiently small neighborhood of x̄, we can take ξ “ R´1
x̄ pxq such that }ξ} ď δa0,a1

. We
complete the proof of (ii) by substituting Rx̄ pξq “ x.

Lemma 3.10 ([19, Lemma 8]). Let F be a C1 vector field and x̄ P M. Then a neighborhood U of x̄ and a
constant c1 exist such that, for all x, y P U , }P0Ð1

γ F pyq ´ F pxq ´
ş1

0
P0Ðt
γ ∇F pγptqqPtÐ0

γ ηdt} ď c1}η}2,
where η “ R´1

x pyq and Pγ is a parallel transport along the curve γptq “ Rx ptηq. Particularly, c1 “ 0 if
R “ exp. (e.g., see [13, equality (2.4)].)

Lemma 3.11. Let F be a C2 vector field and x̄ P M. Then a neighborhood U of x̄ and a constant c2 exist
such that, for all x P U , }P0Ð1

γ F pxq ´ F px̄q ´ ∇F px̄qη} ď c2d
2px̄, xq, where η “ R´1

x̄ x and Pγ is a
parallel transport along the curve γptq “ Rx̄ptηq.

Proof. Let LHS :“ }P0Ð1
γ F pxq ´ F px̄q ´ ∇F px̄qη}. It follows that

LHS ď

›

›

›

›

P0Ð1
γ F pxq ´ F px̄q ´

ż 1

0

P0Ðt
γ ∇F pγptqqPtÐ0

γ ηdt

›

›

›

›

`

›

›

›

›

ż 1

0

P0Ðt
γ ∇F pγptqqPtÐ0

γ ηdt ´ ∇F px̄qη

›

›

›

›

ď c1}η}2 `

›

›

›

ż 1

0

“

P0Ðt
γ ∇F pγptqqPtÐ0

γ ´ ∇F px̄q
‰

ηdt
›

›

›
. (by Lemma 3.10)

Let θ :“
ş1

0

“

P0Ðt
γ ∇F pγptqqPtÐ0

γ ´ ∇F px̄q
‰

ηdt. Note that

}θ} ď

ż 1

0

›

›P0Ðt
γ ∇F pγptqqPtÐ0

γ ´ ∇F px̄q
›

› }η} dt ď

ż 1

0

c0dpx̄, Rx̄ptηqq }η} dt (by Lemma 3.8)

ď

ż 1

0

c0a1t}η} }η} dt “
1

2
c0a1}η}2. (by (i) of Lemma 3.9)

Combining the above results yields LHS ď pc1 ` 1
2c0a1q}η}2 ď pc1 ` 1

2c0a1q{a20d
2px̄, xq, where the last

inequality comes from (ii) of Lemma 3.9. Letting c2 :“ pc1 ` 1
2c0a1q{a20 completes the proof.

We end this section with the following lemmas.

Lemma 3.12 ([11, Lemma 3.2]). If∇F is continuous at p˚ and∇F pp˚q is nonsingular, then a neighborhood
U of p˚ and a positive constant Ξ exist such that, for all p P U , ∇F ppq is nonsingular and

›

›∇F ppq´1
›

› ď Ξ.

Lemma 3.13 ([7, Lemma 3.5]). Let pp, vq P TM such that expppvq exists and w P TpM – TvpTpMq.
Then, xD expppvqrvs,D expppvqrwsy “ xv, wyp. In particular,

›

›D expppλvqrvs
›

› “ }v} holds for λ ě 0.

4 Local Convergence of RIPM
The local convergence of RIPM results from an application of the perturbed damped Newton method and
will be described later. Here, we consider again problem (3). The standard assumptions are as follows:

Assumption 2 (Riemannian Newton assumptions of problem (3) [4, Theorem 2]).

(B1) There exists p˚ P M such that F pp˚q “ 0p˚ .
(B2) The operator ∇F pp˚q is nonsingular.
(B3) The covariant derivative ∇F is Lipschitz continuous on a neighborhood of p˚.

Then, the perturbed damped Newton method for (3) is as follows: let 0 ă αk ď 1, µk ą 0.

Algorithm 3 (Perturbed Damped Newton Method).

(Step 1) Compute ξk P Tpk
M by solving the perturbed equation ∇F ppkqξk ` F ppkq “ µkê.

(Step 2) Compute pk`1 :“ Rpk
pαkξkq by using a step size αk. Return to Step 1.

Proposition 4.1. Consider the perturbed damped Newton method for problem (3). Let (B1)-(B3) hold at p˚.
Choose parameters µk, αk as below; then there exists a positive constant δ such that for all dpp0, p

˚q ă δ,
the sequence tpku is well defined. Furthermore,

(i) if µk “ op}F ppkq}q and αk Ñ 1, then tpku converges to p˚ superlinearly;
(ii) if µk “ Op}F ppkq}2q and 1 ´ αk “ Op}F ppkq}q, then tpku converges to p˚ quadratically.
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Proof. By Lemma 3.12, we can let pk be sufficiently close to p˚ such that ∇F ppkq is nonsingular, and
›

›∇F ppkq´1
›

› ď Ξ. Then, the next iterate, pk`1 :“ Rpk
rαk∇F ppkq´1p´F ppkq ` µkêqs, is well defined,

and it follows from p˚ “ Rpk
pηq with η :“ R´1

pk
p˚ and (i) of Lemma 3.9 that

dppk`1, p
˚q ď a1}η ` αk∇F ppkq´1pF ppkq ´ µkêq}.

Let rk :“ η ` αk∇F ppkq´1pF ppkq ´ µkêq. Algebraic manipulations show that rk “ p1 ´ αkqη `

αk∇F ppkq´1r∇F ppkqη ` F ppkq ´ P0Ð1
γ F pp˚q ´ µkês, where Pγ is a parallel transport along the curve

γptq “ Rpk
ptηq. Thus, using }η} ď 1

a0
dppk, p

˚q from (ii) of Lemma 3.9, and Lemma 3.11, we have

}rk} ď p1 ´ αkq}η} ` αk}∇F ppkq´1}}P0Ð1
γ F pp˚q ´ F ppkq ´ ∇F ppkqη} ` αk}∇F ppkq´1}}ê}µk

ď
1

a0
p1 ´ αkqdppk, p

˚q ` αk}∇F ppkq´1}c2d
2ppk, p

˚q ` αk}∇F ppkq´1}}ê}µk

ď
1

a0
p1 ´ αkqdppk, p

˚q ` Ξc2d
2ppk, p

˚q ` Ξ}ê}µk. (since 0 ă αk ď 1)

Combining the above, we conclude that

dppk`1, p
˚q ď κ1p1 ´ αkqdppk, p

˚q ` κ2d
2ppk, p

˚q ` κ3µk (17)

for some positive constants κ1, κ2, κ3. On the other hand, by [15, Lemma 14.5], we have

}F ppkq} “ Opdppk, p
˚qq. (18)

In what follows, we prove assertions (i) and (ii).
(i) Suppose that αk Ñ 1 and µk “ op}F ppkq}q, which together imply µk “ opdppk, p

˚qq. By (17), we
have

dppk`1, p
˚q

dppk, p˚q
ď κ1p1 ´ αkq ` κ2dppk, p

˚q ` κ3
µk

dppk, p˚q
, (19)

and we can take δ sufficiently small and k sufficiently large, if necessary, to conclude that dppk`1, p
˚q ă

1
2dppk, p

˚q ă δ. Thus, pk`1 P Bδ pp˚q. By mathematical induction, it is easy to show that the sequence tpku

is well defined and converges to p˚. Taking the limit of both sides of (19) proves superlinear convergence.
(ii) Again, we start from (17) and rewrite it as:

dppk`1, p
˚q “ p1 ´ αkqOpdppk, p

˚qq ` Opd2ppk, p
˚qq ` Opµkq. (20)

Suppose that 1´αk “ Op}F ppkq}q andµk “ Op}F ppkq}
2
q. Using (18), the above reduces to dppk`1, p

˚q “

Opd2ppk, p
˚qq. This implies that there exists a positive constant ν such that dppk`1, p

˚q ď νd2ppk, p
˚q, and

hence, dppk`1, p
˚q ď νd2ppk, p

˚q ď νδ2 ă δ, if δ is sufficiently small. Again, by mathematical induction,
the sequence tpku converges to p˚ quadratically.

The next lemma shows the relationship between the parameter γk and step size αk.

Lemma 4.2. Let (A1), (A4) hold. Suppose that the step size αk is as in Algorithm 2, i.e., (10). De-
fine a constant, Π :“ 2max

!

maxi

!

1
ps˚qi

| ps˚qi ą 0
)

,maxi

!

1
pz˚qi

| pz˚qi ą 0
))

. For γk P p0, 1q, if
Π }∆wk} ď γk, then 0 ď 1 ´ αk ď p1 ´ γkq ` Π }∆wk} .

Proof. Note that the fourth line of (13) yields S´1
k ∆sk ` Z´1

k ∆zk “ µkpSkZkq´1e ´ e, which is exactly
the same as in the usual interior point method in the Euclidean setting. Thus, the proof entails directly
applying [35, Lemma 3 and 4] for the Euclidean case to the Riemannian case.

Now, let us establish the local convergence of RIPM in a way that almost replicates the perturbed damped
Newton method except for taking care of γk. We consider next stronger assumption:

(A21) Smoothness of C3. The functions f, g, and h are C3 on M.

From Lemma 3.6, (A21) implies that the covariant derivative ∇F is locally Lipschitz continuous at w˚,
where F is the associated KKT vector field. Hence, from Proposition 2.3, (A1)-(A5) and (A21) together
show that F satisfies (B1)-(B3).
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Theorem 4.3 (Locally quadratic convergence of RIPM). Consider Algorithm 2 for solving problem (RCOP).
Let (A1)-(A5) and (A21) hold at w˚. Choose µk “ Op}F pwkq}

2
q and 1 ´ γk “ Op}F pwkq}q. Then, there

exists a positive constant δ such that, for all dpw0, w
˚q ă δ, w0 P M , the sequence twku is well defined

and converges quadratically to w˚.

Proof. Suppose that dpwk, w
˚q ă δ for sufficiently small δ. Since F satisfies assumptions (B1)-(B3), from

the proof of Proposition 4.1 and equation (20), we also have dpwk`1, w
˚q “ p1 ´ αkqOpdpwk, w

˚qq `

Opd2pwk, w
˚qq ` Opµkq. Since µk “ Op}F pwkq}2q, and }F pwkq} “ Opdpwk, w

˚qq by equation (18), we
obtain µk “ Opd2pwk, w

˚qq. Thus, we have

}∆wk} “
›

›∇F pwkq´1p´F pwkq ` µkêq
›

› ď Ξp}F pwkq} ` µk}ê}q (by Lemma 3.12)
ď Op}F pwkq}q ` Opµkq “ Opdpwk, w

˚qq ` Opd2pwk, w
˚qq “ Opdpwk, w

˚qq.

Since δ is sufficiently small, from the above inequalities, the conditions of Lemma 4.2 are satisfied. Notice
that γ̂ is bounded below by some constant γ̂ in Algorithm 2. Hence, we have 0 ď 1 ´ αk ď p1 ´

γkq ` Π }∆wk} “ p1 ´ γkq ` Opdpwk, w
˚qq. Finally, we have dpwk`1, w

˚q “ p1 ´ αkqOpdpwk, w
˚qq `

Opd2pwk, w
˚qq`Opµkq ď rp1´γkq`Opdpwk, w

˚qsOpdpwk, w
˚qq`Opd2pwk, w

˚qq`Opd2pwk, w
˚qq “

Opd2pwk, w
˚qq.

The next theorem can be proven similarly.

Theorem 4.4 (Locally superlinear convergence of RIPM). Let the assumptions of Theorem 4.3 hold. Choose
µk “ op}F pwkq}q and γk Ñ 1. Then, there exists a positive constant δ such that, for all dpw0, w

˚q ă

δ, w0 P M , the sequence twku is well defined and converges superlinearly to w˚.

5 Global-Line-Search RIPM Algorithm
In this section, we describe a globally convergent Riemannian interior point algorithm with the classical
line search [10] and merit function φpwq “ }F pwq}2 .

At the current point w “ px, y, z, sq and direction ∆w “ p∆x,∆y,∆z,∆sq, the subsequent iterate is
calculated along a curve on M , i.e., wpαq :“ R̄wpα∆wq, for some step length α ą 0. By introducing
wpαq “ pxpαq, ypαq, zpαq, spαqq, we have xpαq “ Rxpα∆xq, ypαq “ y ` α∆y, zpαq “ z ` α∆z, and
spαq “ s ` α∆s. For a given starting point w0 “ px0, y0, z0, s0q with x0 P M, pz0, s0q ą 0, let

τ1 :“ minpZ0S0eq{pzT0 s0{mq, τ2 :“ zT0 s0{ }F pw0q} .

Define f Ipαq :“ minpZpαqSpαqeq ´ γτ1zpαqT spαq{m, f IIpαq :“ zpαqT spαq ´ γτ2}F pwpαqq}, where
γ P p0, 1q is a constant. Notice that the functions f ipαq, i “ I, II , depend on the iteration count k, though
for simplicity we have omitted the subscript k. For i “ I, II , define

αi
k :“ maxαPp0,1s

␣

α : f iptq ě 0, for all t P p0, αs
(

; (21)

i.e., αi
k are either one or the smallest positive root for the functions f ipαq in p0, 1s.

Define a merit function φ : M Ñ R by φpwq :“ }F pwq}2w; then, gradφpwq “ 2∇F pwq˚F pwq.

Note that }F pwq}2w “ }gradx Lpwq}
2
x ` }hpxq}22 ` }gpxq ` s}22 ` }ZSe}22. Moreover, for any nonnegative

z, s P Rm, one has }ZSe}2 ď zT s “ }ZSe}1 ď
?
m }ZSe}2 . Hence,

}ZSe}2 {
?
m ď

zT s
?
m

ď }ZSe}2 ď }F pwq}w. (22)

Now, we describe the globally convergent Riemannian interior point method.

Algorithm 4 (Global RIPM Algorithm).

(Step 0) Set w0 “ px0, y0, z0, s0q with pz0, s0q ą 0; and θ P p0, 1q, β P p0, 1{2s, γk´1 P p1{2, 1q, k Ð 0.
(Step 1) Check whether wk satisfies a stopping test for (RCOP).
(Step 2) Choose σk P p0, 1q; for wk, compute the Newton direction ∆wk by solving

∇F pwkq∆wk “ ´F pwkq ` σkρkê, (23)

where zTk sk{m ď ρk ď }F pwkq} {
?
m.
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(Step 3) Step length selection.
(3a) Centrality conditions: Let 0.5 ă γk ă γk´1; compute ᾱk “ mintαI

k, α
II
k u from (21);

(3b) Sufficient decrease: Let αk “ θtᾱk, where t is the smallest nonnegative integer such that

φpR̄wk
pαk∆wkqq ´ φpwkq ď αkβ xgradφk,∆wky . (24)

(Step 4) Let wk`1 “ R̄wk
pαk∆wkq. k Ð k ` 1. Return to Step 1.

With a slight abuse of notation, at the current point w and direction ∆w, we define a real-to-real
function α ÞÑ φpαq by φpαq :“ φpR̄wpα∆wqq; then, it follows from the definition of a retraction on a
manifold and the chain rule that the derivative of φpαq at α “ 0 is φ1p0q “ DφpR̄wp0qq

“

DR̄wp0qr∆ws
‰

“

Dφpwqr∆ws “ xgradφpwq,∆wy. Hence, at the k-th point wk, we have φ1
kp0q “ xgradφpwkq,∆wky, and

condition (24) is to say φkpαkq ´ φkp0q ď αkβφ
1
kp0q. When φ1

kp0q ă 0, this implies that the backtracking
loop of Step (3b) is well defined [26, Lemma 3.1]. The next lemma shows the condition under which the
Newton step ∆w generated by (23) ensures the descent of the merit function.

Lemma 5.1. If the direction ∆w is the solution of equation (23), then

xgradφpwq,∆wy “ 2p´}F pwq}2 ` σρzT sq. (25)

In this case, ∆w is a descent direction for φ at w if and only if ρ ă }F pwq}2{σzT s.

Proof. Let∆w be the solution of (23) and note that xF pwq, êy “ xZSe, ey “ zT s.Then, xgradφpwq,∆wy “

x2∇F pwq˚F pwq,∆wy “ 2xF pwq,∇F pwq∆wy “ 2xF pwq,´F pwq ` σρêy “ 2p´xF pwq, F pwqy `

σρxF pwq, êyq “ 2p´}F pwq}2 ` σρzT sq.

Proposition 5.2. If }F pwkq} ‰ 0, then the direction ∆wk generated by Algorithm 4 is a descent direction
for the merit function φ at wk. Moreover, if the Armijo condition (24) is satisfied, then

φkpαkq ď r1 ´ 2αkβp1 ´ σkqsφkp0q. (26)

Thus, the sequence tφku is monotonically decreasing.

Proof. Note that the iteration index k is omitted in what follows. Suppose that ρ ď }F pwq} {
?
m and ∆w

is given by (23), we have (23), we have

φ1p0q “ xgradφpwq,∆wy “ 2p´φpwq ` σρzT sq (by Lemma (5.1))

ď 2p´φpwq ` σ }F pwkq} zT s{
?
mq ď 2p´φpwq ` σ }F pwkq}

2
q “ ´2p1 ´ σqφpwq ă 0. (27)

Alternatively, by Lemma 5.1 it is sufficient to show that }F pwq}{
?
m ă }F pwq}2{σzT s. Note that σzT s ă

zT s ď
?
m}F pwq}; then, 1{

?
m ă }F pwq}{σzT s. Multiplying both sides by }F pwq} leads to the desired

result. Therefore, ∆wk is a descent direction for the merit function φ at wk.
Moreover, if condition (24) is satisfied, then by (27), we have φpαq ď φp0q ` αβxgradφpwq,∆wy ď

φp0q ` αβp´2p1 ´ σqφp0qq “ r1 ´ 2αβp1 ´ σqsφp0q.

Lemma 5.3. Let twku be generated by Algorithm 4. Then,χφpwkq ď pzTk skq2 ď mφpwkq,withχ :“ τ22 {4.

Proof. From the definition of f II , we have zT s ě γτ2}F pwq} ě τ2{2}F pwq}; then, pzT sq2 ě pτ2{2q2φpwq.
The second inequality follows from (22).

6 Global Convergence of RIPM
We will show global convergence by following the proof procedure of the Euclidean interior point method
(EIPM) in [10]. In what follows, we will omit similar content because of space limitations and focus on
the difficulties encountered when adapting the proof of EIPM to RIPM. In particular, we will make these
difficulties as tractable as in EIPM by proving a series of propositions. Given ϵ ě 0, let us define the set,

Ωpϵq :“
␣

w P M : ϵ ď φpwq ď φ0,minpZSeq{pzT s{mq ě τ1{2, zT s{}F pwq} ě τ2{2
(

.

Note that Ωpϵq is a closed subset of M ; Ωpϵq Ď Ωp0q for any ϵ ą 0. We will establish the global convergence
of Algorithm 4 under the following assumptions.
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Assumption 3.

(C1) In the set Ωp0q, the functions f, h, and g are smooth; the gradients of the equality constraints are
linearly independent vector fields, i.e., tgradhipxqu

l
i“1 is linearly independent in TxM for all x; and

w ÞÑ ∇F pwq is Lipschitz continuous;
(C2) The sequences txku and tzku are bounded [9, 3];
(C3) In any compact subset of Ωp0q where s is bounded away from zero, ∇F pwq is nonsingular.

6.1 Continuity of Some Special Scalar Fields
To show the boundedness of the sequences generated by Algorithm 4, we need to prove the continuity of
some special functions. The claims of section 6.1 are trivial if M ” Rd, but they need to be treated carefully
for general M.

If we assign a linear operator Ax : TxM Ñ TxM to each point x P M, then the function x ÞÑ }Ax}

is a scalar field on M, and we should be aware that the operator norm }¨} depends on x. Lemma 6.1 shows
that x ÞÑ }Âx}2 and x ÞÑ }Âx}F are also well-defined scalar fields, where Âx denotes the representing
matrix of Ax with respect to an arbitrary orthonormal basis of TxM.

Lemma 6.1. Let M be an n-dimensional Riemannian manifold. Let x P M and Ax be a linear operator
on TxM. Choose a basis of TxM that is orthonormal with respect to the inner product x¨, ¨yx, and let Âx

denote the representing matrix of Ax under the basis. Then, the values } pAx}2 and }Âx}F are invariant
under a change of orthonormal basis; moreover, }Ax} “ }Âx}2 ď }Âx}F .

Proof. Suppose that there are two orthonormal bases tEiu
n
i“1, tE1

iu
n
i“1 on TxM. With respect to them, let

P P Rnˆn denote the change-of-basis matrix, i.e., rP skj :“ xE1
j , Ekyx, for 1 ď k, j ď n, and hence, P is

orthogonal. Let Âx, Â
1
x P Rnˆn denote the representing matrices of Ax under the two bases, respectively.

We have Â1
x “ P´1ÂxP. Then, }Â1

x} “ }P´1ÂxP } “ }Âx} holds for the Frobenius norm or the spectral
norm. Therefore, the values } pAx}2 and }Âx}F are invariant under a change of orthonormal basis.

Now, consider an orthonormal basis tEiu
n
i“1 on TxM. For y P TxM, its representing vector ŷ P Rn is

defined by y “
řn

i“1 ŷiEi. Accordingly, we have yAxy “ Âxŷ, i.e., Axy “
řn

i“1pÂxŷqiEi, and from the
orthonormal property of the basis, we have }Axy}

2
x “ }

řn
i“1pÂxŷqiEi}

2
x “

řn
i“1pÂxŷq2i “ }Âxŷ}22.Thus,

}Axy}x “ }Âxŷ}2 for any y. Finally, }Ax} “ supyPTxM,}y}x“1 }Axy}x “ supŷPRn,}ŷ}2“1 }Âxŷ}2 “

}Âx}2.

Yet, we have not reached clarity on the continuity of the scalar fieldx ÞÑ }Ax}. The following proposition
proves the continuity of an important case of Ax that appears in our problem (RCOP).

Proposition 6.2. Consider (RCOP). Let pHfpxq P Sympdq denote the representing matrix of Hess fpxq with
respect to an arbitrary orthonormal basis of TxM. Then, x ÞÑ }pHfpxq} is a continuous scalar field on M,
for the Frobenius norm or the spectral norm. Moreover, x ÞÑ }Hess fpxq} is a continuous scalar field on
M.

Proof. Lemma 6.1 shows that the scalar field x ÞÑ }pHfpxq} is well defined, so it suffices to prove its
continuity. From [22, Corollary 13.8], for each x̄ P M there is a smooth, orthonormal local frame tEiu

d
i“1

on a open neighborhood U of x̄; namely, tE1pxq, . . . , Edpxqu forms an orthonormal basis on TxM for all
x P U . Choose such a local frame tEiu

d
i“1 around x̄; then, the representing matrix of Hess fpxq is given by,

rpHfpxqskj :“ xHess fpxqrEjpxqs, Ekpxqyx “
@

p∇Ej
grad fqpxq, Ekpxq

D

x
for 1 ď k, j ď d.

The last equality comes from the definition of Hess fpxq. Now, from the smoothness of Riemannian metric,
see (16), it follows that x ÞÑ pHfpxq is a continuous function from U Ď M to Sympdq. Since any matrix
norm is continuous, }pHfpxq} is continuous on U containing x̄. This argument holds for any x̄ P M.

The above result can be applied verbatim to the Hessian of thiu
l
i“1 , tgiu

m
i“1 in (RCOP).

Proposition 6.3. For a given w “ px, y, z, sq P M , consider the operator ∇F pwq in (5). Let tEiu
d
i“1

be an orthonormal basis of TxM and teiu
l
i“1, t 9eiu

m
i“1 be the natural bases of Rl,Rm, respectively. If we

choose an orthonormal basis of TwM of the form,

tpEi, 0, 0, 0qu
d
i“1 Y tp0x, ei, 0, 0qu

l
i“1 Y tp0x, 0, 9ei, 0qu

m
i“1 Y tp0x, 0, 0, 9eiqu

m
i“1 , (28)
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then, the representing matrix of ∇F pwq is of order pd ` l ` 2mq as below:

p∇F pwq “

¨

˚

˚

˝

Q B C 0

BT 0 0 0

CT 0 0 I

0 0 S Z

˛

‹

‹

‚

,

where Q :“ Qpwq P Sympdq is given by, rQskj :“ xHessx LpwqEj , Ekyx , for 1 ď k, j ď d, and
B :“ Bpxq “ rzgradh1pxq, ¨ ¨ ¨ ,zgradhlpxqs P Rdˆl, C :“ Cpxq “ rzgradg1pxq, ¨ ¨ ¨ ,zgradgmpxqs P Rdˆm,
and the “hat” symbol means the corresponding representing vector under the basis tEiu

d
i“1.

Moreover, there is a continuous scalar field T pwq on M such that for any w, }Qpwq}F ď T pwq.
x ÞÑ }Bpxq}F and x ÞÑ }Cpxq}F are continuous scalar fields.

Proof. The matrix p∇F pwq under the basis (28) is obtained by a trivial process, so we will omit its description.
By (4), we have Hessx Lpwq “ Hess fpxq `

řl
i“1 yi Hesshipxq `

řm
i“1 zi Hess gipxq. By the linearity of

the representing matrix, Qpwq :“ pHxLpwq “ pHfpxq `
řl

i“1 yi
pHhipxq `

řm
i“1 zi

pHgipxq, under the basis
tEiu

d
i“1. Thus,

}Qpwq}F ď }pHfpxq}F `
řl

i“1 |yi|}pHhipxq}F `
řm

i“1 |zi|}pHgipxq}F “: T pwq.

From Proposition 6.2, }pHfpxq}F , }pHhipxq}F , and }pHgipxq}F are all continuous functions ofx. It follows
from the definition of T pwq that T is continuous. As for Bpxq, since the basis tEiu

d
i“1 is orthonormal,

}Bpxq}2F “
řl

i“1 }zgradhipxq}22 “
řl

i“1 }gradhipxq}
2
x , which implies continuity.

Proposition 6.4. Consider (RCOP) and the linear operators Hx and Gx defined in (11). Then, x ÞÑ }Hx}

and x ÞÑ }Gx} are continuous scalar fields on M.

Proof. We will only prove the result for }Hx}. First, we claim that }Hx} “ }Ĥx}2 for each x P M, where
Ĥx denotes the representing matrix of Hx with respect to an arbitrary orthonormal basis of TxM and natural
basis teiu

l
i“1 of Rl. The proof of this claim is very similar to the context of Lemma 6.1, so we will omit it.

Next, by [22, Corollary 13.8], for each x̄ P M there is a smooth, local orthonormal frame tEiu
d
i“1 on a

neighborhood U of x̄. Choose such a local frame tEiu
d
i“1 around x̄. The representing matrix of Hx with

respect to tEipxqudi“1 and teiu
l
i“1 is Ĥx P Rdˆl given by, for 1 ď k ď d, 1 ď j ď l,

rĤxskj “ xHxej , Ekpxqyx “ xgradhjpxq, Ekpxqyx . (29)

Again, by the smoothness of the Riemannian metric, it follows that x ÞÑ Ĥx is a continuous function from
U Ď M to Rdˆl. The remaining argument is essentially the same as that of Proposition 6.2.

6.2 Convergence Theorem
Owing to the good theoretical properties of the exponential map, in this section we will assume that R ” exp
in Algorithm 4 and denote R̄ by ¯exp.

Proposition 6.5 (Boundedness of the sequences). Let twku be a sequence generated by Algorithm 4 and
suppose that Assumptions (C1)„(C3) hold. If ϵ ą 0 and wk P Ωpϵq for all k, then

(a) tzTk sku and tpzkqipskqiu , i “ 1, . . . ,m, are all bounded above and below away from zero.
(b) tzku and tsku are bounded above and component-wise bounded away from zero;
(c) twku is bounded; (d) t}∇F pwkq´1}u is bounded; (e) t∆wku is bounded.

Proof. The proofs in [10, Lemma 6.1] and/or [3, Theorem 2 (a)] can be applied verbatim to (a) and (b).
(c) On the basis of the previous result (b), it suffices to prove that tyku is bounded. The index k is

omitted in what follows. By using the notation Hx and Gx as defined in (11), we have

Hxy “ gradx Lpwq ´ grad fpxq ´ Gxz “: b. (30)

By (C1), rankHx “ l, i.e., Hx is an injection. There exists the unique solution to (30). We have

y “ rpH˚
xHxq

´1 H˚
xs pgradx Lpwq ´ grad fpxq ´ Gxzq . (31)
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Define Cx : TxM Ñ Rl as Cx :“ pH˚
xHxq

´1 H˚
x . Under the basis of TxM and natural basis teiu

l
i“1 of

Rl, if Ĥx is the matrix corresponding to Hx, then Ĉx “ pĤT
x Ĥxq´1ĤT

x . It is easy to show that }Cx} “ }Ĉx}2

for any x. Recall that in the proof of Proposition 6.4, (29) shows that for each x̄ P M there is a neighborhood
U of x̄ such that x ÞÑ Ĥx is continuous over U . Then, by function composition, x ÞÑ Ĉx is also continuous
over U . This shows that }Cx} “ }Ĉx}2 is continuous at each x̄, and hence, on M. Finally, again by
Proposition 6.4, }Cx} , }grad fpxq} , and }Gx} are all continuous on M. Because txku is bounded, by (31)
we have

}yk} ď }Cxk
} p}gradx Lpwkq} ` }grad fpxkq} ` }Gxk

} }zk}q ď c1 p
?
φ0 ` c2 ` c3 }zk}q ,

for some positive constants c1, c2, c3. Then, tyku is bounded because tzku is bounded.
(d) For each wk, choose an arbitrary orthonormal basis of Twk

M . If the matrix p∇F pwkq corresponds
to ∇F pwkq, then p∇F pwkq´1 corresponds to ∇F pwkq´1. By Lemma 6.1, we have

›

›∇F pwkq´1
›

› ď

}p∇F pwkq´1}F ; thus, it is sufficient to show that t}p∇F pwkq´1}F u is bounded. For convenience, we

will choose the basis of Twk
M given in (28). Then, we have p∇F pwkq “

¨

˚

˚

˝

Qk Bk Ck 0

BT
k 0 0 0

CT
k 0 0 I

0 0 Sk Zk

˛

‹

‹

‚

.

By Proposition 6.3, there is a continuous scalar field T pwq on M such that }Qpwq}F ď T pwq; and
}Bpxq}F , }Cpxq}F are continuous on M. It follows from the boundedness of txku, twku that for all k,
}Qk}F “ }Qpwkq}F ď T pwkq ď c4, }Bk}F “ }Bpxkq}F ď c5, and }Ck}F “ }Cpxkq}F ď c6, for some
positive constants c4, c5, and c6.

On the other hand, whichever basis is used in the form of (28), the structure of p∇F pwkq and the properties
of its block submatrices remain unchanged, e.g., symmetry of Qk; full rank of Bk; identity matrix I in the
third row; all zero matrices; diagonal matrices Sk, Zk; etc. This ensures that we can obtain the desired
result by performing an appropriate decomposition of p∇F pwkq. Up to this point, we have created all the
conditions needed in the proof of the Euclidean version. We can make the claim that t}p∇F pwkq´1}F u is
bounded by applying the proofs in [10, Lemma 6.2] and/or [3, Theorem 2 (c)] directly.

(e) By (23), we have }∆wk} ď }∇F pwkq´1} p}F pwkq} ` }σkρkê}q .

Lemma 6.6. Let twku be a sequence generated by Algorithm 4 and let (C1)„(C3) hold. If ϵ ą 0 and
wk P Ωpϵq for all k, tσku is bounded away from zero, and ρk is as in (23). Then, tᾱku is bounded away
from zero.

Proof. Since ᾱk “ minpαI
k, α

II
k q, it is sufficient to show that tαI

ku and tαII
k u are bounded away from

zero. Let us suppress the subscript k. For αI
k, see [10, Lemma 6.3] and/or [8, Theorem 3.1]. The

proofs in those references apply verbatim to the Riemannian case. On the other hand, for αII
k , we need

to adapt the proofs in references [10, 8], since Lipschitz continuity on a Riemannian manifold is more
complicated. Recall that wpαq “ ¯expwpα∆wq. Fix α∆w and let Pγ be the parallel transport along the
geodesic cptq “ ¯expw ptα∆wq. By the fundamental theorem of calculus in the Riemannian case (Lemma
3.10), we obtain

P0Ð1
c F pwpαqq “ F pwq ` α∇F pwq∆w ´ α∇F pwq∆w `

ż 1

0

P0Ðt
c ∇F pcptqqPtÐ0

c α∆wdt

“ F pwq ` α pσρê ´ F pwqq ` α

ż 1

0

“

P0Ðt
c ∇F pcptqqPtÐ0

c ´ ∇F pwq
‰

∆wdt (by (23))

“ p1 ´ αqF pwq ` ασρê ` α

ż 1

0

“

P0Ðt
c ∇F pcptqqPtÐ0

c ´ ∇F pwq
‰

∆wdt.

Taking the norm on both sides above gives

}F pwpαqq} “
›

›P0Ð1
c F pwpαqq

›

› (since parallel transport is isometric)

ď p1 ´ αq }F pwq} ` ασρ }ê} ` α

ż 1

0

›

›P0Ðt
c ∇F pcptqqPtÐ0

c ´ ∇F pwq
›

› }∆w} dt

ď p1 ´ αq }F pwq} ` ασρ
?
m ` α

ż 1

0

L}tα∆w} }∆w} dt (by the Lipschitz continuity of ∇F )

“ p1 ´ αq }F pwq} ` ασρ
?
m `

L

2
αII
k }∆w}2.

The rest of the proof is the same as [10, Lemma 6.3] and/or [8, Theorem 3.1], so we will omit it.
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Theorem 6.7 (Global Convergence of RIPM). Let twku be generated by Algorithm 4 and tσku Ď p0, 1q

be bounded away from zero and one. Let gradφ be Lipschitz continuous with constant κ. If (C1)„(C3)
hold, then t}F pwkq}u converges to zero, and for any limit point w˚ “ px˚, y˚, z˚, s˚q of twku , x˚ is a
Riemannian KKT point of problem (RCOP).

Proof. Note that t}F pwkq}u is monotonically decreasing, hence convergent. Suppose that t}F pwkq}u does
not converge to zero. Then, there exists ϵ ą 0 such that twku Ď Ωpϵq for infinitely many k.

Case 1. For infinitely many k, if Step (3b) is executed with αk “ ᾱk, it follows from Proposition 5.2
that φpwk`1q{φpwkq ď r1 ´ 2ᾱkβ p1 ´ σkqs . Since tᾱku is bounded away from zero (see Lemma 6.6) and
tσku is bounded away from one, then φpwkq Ñ 0; this is a contradiction.

Case 2. On the other hand, for infinitely many k, if αk ă ᾱk, we have that αk ď θᾱk. Then,
condition (24) at Step (3b) fails for an α̃k with αk ă α̃k ď αk{θ “ θt´1ᾱk. Notice that αk{θ is the value
corresponding to the last failure. Recall that the derivative of the real function φpαq “ φ

`

R̄wpα∆wq
˘

at
some value α is

φ1pαq “ Dφ
`

¯expwk
pα∆wkq

˘ “

D ¯expwk
pα∆wkq r∆wks

‰

.

Applying the mean value theorem to φpαq on the interval r0, α̃ks yields Dξ P p0, 1q : α̃kφ
1pξα̃kq “

φpα̃kq ´ φp0q. Hence,

α̃kβ xgradφk,∆wky ă φpα̃kq ´ φp0q “ α̃kφ
1pξα̃kq (since condition (24) fails for α̃k)

“α̃kDφp ¯expwk
pξα̃k∆wkqq

“

D ¯expwk
pξα̃k∆wkq r∆wks

‰

“α̃k

@

gradφp ¯expwk
pξα̃k∆wkqq,D ¯expwk

pξα̃k∆wkq r∆wks
D

. (by the definition of the gradient) (32)

Note that

xgradφk,∆wky “ xgradφk, ξα̃k∆wky {ξα̃k

“
@

D ¯expwk
pξα̃k∆wkq rgradφks ,D ¯expwk

pξα̃k∆wkq rξα̃k∆wks
D

{ξα̃k (by Lemma 3.13)
“
@

D ¯expwk
pξα̃k∆wkq rgradφks ,D ¯expwk

pξα̃k∆wkq r∆wks
D

. (33)

Subtracting α̃k xgradφk,∆wky from both sides of (32) and using equalities (33) gives

α̃kpβ ´ 1q xgradφk,∆wky

ă α̃k

“@

gradφp ¯expwk
pξα̃k∆wkqq,D ¯expwk

pξα̃k∆wkq r∆wks
D

´ xgradφk,∆wky
‰

“ α̃k

@

gradφp ¯expwk
pξα̃k∆wkqq ´ D ¯expwk

pξα̃k∆wkq rgradφks ,D ¯expwk
pξα̃k∆wkq r∆wks

D

ď α̃k

›

›gradφp ¯expwk
pξα̃k∆wkqq ´ D ¯expwk

pξα̃k∆wkq rgradφks
›

›

›

›D ¯expwk
pξα̃k∆wkq r∆wks

›

›

ď α̃kκ }ξα̃k∆wk} }∆wk} (by Lipschitz continuity of gradφ and Lemma 3.13)

“ κξα̃2
k }∆wk}

2
.

Regarding the above use of the Lipschitz continuity of a vector field gradφ, we must note the fact that the dif-
ferentiated retraction T R defined by T R

η pξq :“ DRxpηqrζs, x P M,η, ζ P TxM, is a valid vector transport.
In our case, R “ ¯exp. Finally, we obtain α̃kpβ ´ 1q xgradφk,∆wky ă κξα̃2

k }∆wk}
2
. Consequently,

pβ ´ 1q xgradφk,∆wky {pκξ }∆wk}
2
q ă α̃k. (34)

Because αk satisfies (24) and xgradφk,∆wky ă 0, we have

φkp0q ´ φkpαkq ě ´αkβ xgradφk,∆wky ě ´θβα̃k xgradφk,∆wky

ě ´θβ xgradφk,∆wky pβ ´ 1q xgradφk,∆wky {pκξ }∆wk}
2
q (by (34))

ě rθβp1 ´ βq{κξs pxgradφk,∆wky { }∆wk}q
2

“ ω pxgradφk,∆wky { }∆wk}q ,

where ωp¨q is an F -function (see [28, Definition 14.2.1 & 14.2.2 in P479]). Since tφku is bounded below
and φk ě φk`1, it follows that limkÑ8pφk ´ φk`1q “ 0. By the definition of F -functions, we obtain
xgradφk,∆wky { }∆wk} Ñ 0.Since t}∆wk}u is bounded (Proposition 6.5), we have xgradφk,∆wky Ñ 0.
Choosingρk with zTk sk{m ď ρk ď }F pwkq} {

?
m implies that xgradφk,∆wky {p´2q “ φk´σkρkz

T
k sk ě

φk´σk }F pwkq} zTk sk{
?
m ě φk´σk }F pwkq}

2
ě p1´σkqφk Ñ 0.This shows thatφpwkq Ñ 0, because

tσku is bounded away from one; this is a contradiction.
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(a) (b) (c) (d)

Figure 1: Contour plots of logarithmic barrier function Bpx;µq of (SP) for (a) µ “ 10 (b) µ “ 1 (c) µ “ 0.5
(d) µ “ 0.1. The blue area indicates low values.

7 Numerical experiments
In the Euclidean setting, the interior point methods can be regarded as barrier methods. It would thus
be beneficial to explore barrier methods in the Riemannian setting, although many nice results from the
Euclidean setting may currently lack a corresponding proof in the Riemannian setting. Here, we will refer
to the classic barrier method summarized in the review article [14].

7.1 An Intuitive Barrier Method on Manifolds
For simplicity, consider the all-inequality version of (RCOP) and let cpxq ” ´gpxq,

min
xPM

fpxq s.t. cpxq ě 0. (RCOP Ineq)

Its logarithmic barrier function is given by

Bpx;µq :“ fpxq ´ µ
řm

i“1 log cipxq,

where µ ą 0 is the so-called barrier parameter. Note that the function x ÞÑ Bpx;µq is differentiable on the
open subset of M, strictF :“ tx P M : cpxq ą 0u . Its Riemannian gradient is

gradBpx;µq “ grad fpxq ´
řm

i“1
µ

cipxq
grad cipxq.

Intuition suggests that minimizing Bpx;µq for a sequence of µ ą 0 converging to zero will cause the
unconstrained minimizers of Bpx;µq to converge to a minimizer of the original problem (RCOP Ineq).

Algorithm 5 (Barrier Method on Manifolds).

(Step 0) Set x0 P M to a strictly feasible point, i.e., cpx0q ą 0, and set µ0 ą 0 and k Ð 0.
(Step 1) Check whether xk satisfies a stopping test for (RCOP Ineq).
(Step 2) Compute an unconstrained minimizer xpµkq of Bpx;µkq with a warm starting point xk.
(Step 3) xk`1 Ð xpµkq; choose µk`1 ă µk; k Ð k ` 1. Return to Step 1.

Example 7.1. Consider the following simple problem on a sphere manifold, S2 :“ tx P R3 : }x}2 “ 1u,

min
xPS2

aTx s.t. x ě 0, (SP)

wherea “ r´1, 2, 1sT . Its solution isx˚ “ r1, 0, 0sT .Now, check the KKT conditions atx (asterisks omitted
below): grad fpxq “ pIn ´ xxT qa “ r0, 2, 1sT . The constraint x ě 0 implies cipxq “ eTi x for i “ 1, 2, 3;
the active set Apxq “ t2, 3u. grad c1pxq “ pIn ´ xxT qe1 “ r0, 0, 0sT ; grad c2pxq “ pIn ´ xxT qe2 “

r0, 1, 0sT ; grad c3pxq “ pIn ´ xxT qe3 “ r0, 0, 1sT . Clearly, the multipliers z˚ “ r0, 2, 1sT , and LICQ and
strict complementarity hold. Actually, (SP) satisfies the standard Riemannian assumptions 1.

Figure 1 shows the contour plots of Bpx;µq of (SP) as µ Ñ 0. We can see that for sufficiently
small µ, there is a unconstrained minimizer of the barrier function Bpx;µq in strictF Ď M. Moreover,
as shown in Figure 2, we successfully implemented Algorithm 5 for (SP). In particular, we set x0 “

r1{
?
3, 1{

?
3, 1{

?
3sT , µ0 “ 10, µk`1 “ µk{1.5. In Step 2, for each subproblem, we use the trust regions
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Figure 2: Iterates xk of barrier method for (SP). Figure 3: Existence of a central path for (SP).

solver in the Manopt toolbox [6] and set options.tolgradnorm=1e-3; options.maxiter=10. The
outer iterations stop if µk ă 10´10. Finally, we find that limkÑ8 xk “ x˚ and that

lim
kÑ8

µk{c1 pxkq “ 0 “ z˚
p1q

, lim
kÑ8

µk{c2 pxkq “ 2 “ z˚
p2q

, lim
kÑ8

µk{c3 pxkq “ 1 “ z˚
p3q

,

which are the notable features of the classical barrier method; see [14, Theorem 3.10 & 3.12]. Furthermore,
if we denote the minimizer of Bpx;µq by either xµ or xpµq, it must be that gradBpxµ;µq “ 0. A similar
discussion to the one in Lemma 2.4 shows that there is a unique, smooth curve xpµq on M for positive µ in
a neighborhood of µ “ 0, and limµÑ0`

xpµq “ x˚. In particular, for (SP) we have that
$

’

&

’

%

0 “ ´µ{xp1q ´ xp1qp´xp1q ` 2xp2q ` xp3q ´ 3µq ´ 1,

0 “ ´µ{xp2q ´ xp2qp´xp1q ` 2xp2q ` xp3q ´ 3µq ` 2,

0 “ ´µ{xp3q ´ xp3qp´xp1q ` 2xp2q ` xp3q ´ 3µq ` 1.

Figure 3 plots the positive solutions of above rxp1qpµq, xp2qpµq, xp3qpµqsT for different µ ą 0 . Numerically,
all solutions belong to the sphere and approach x˚ as µ gets closer to zero. Not surprisingly, the iterative
trajectory of xk in Figure 2 is almost identical to the central path in Figure 3.

Here, we should emphasize that although we have not formally discussed barrier methods on manifold,
these initial observations provide a motivation for expanding the scope of the interior point method to
Riemannian manifolds.

7.2 Problems
Here, we model two problems within the framework of (RCOP) and use them to evaluate the performance
of ours and various other algorithms. The problems involve three manifolds:

oblique manifold Obpn, kq
def
“

␣

X P Rnˆk : each column of X has unit l2 norm
(

,

Stiefel manifold Stpn, kq
def
“

␣

X P Rnˆk : XTX “ Ik
(

,

fixed-rank manifold Mr
def
“

␣

X P Rmˆn : rankpXq “ r
(

.

We consider their embedded geometry of matrix spaces. Notice that although Mr is not complete, RIPM
is still valid in practice.

Nonnegative low-rank matrix (NLRM) approximation. Recently, [32] proposed the NLRM approxi-
mation method, which is different from the classical nonnegative matrix factorization (NMF) method, i.e.,
minB,Cě0 }A ´ BC}2F for B P Rmˆr, C P Rrˆn. Mathematically, NLRM aims to solve

min
XPMr

}A ´ X}2F s.t. X ě 0. (NLRM)

Clearly, NLRM can obtain a better nonnegative low-rank matrix approximation than that of NMF.
Input. We will consider three cases m “ 20, 30, 40 and let n “ 0.8m, r “ 0.1m. For each pm,n, rq,

we randomly generated nonnegative matrices L P Rmˆr and R P Rrˆn whose entries follow a uniform
distribution in [0,1]. The original nonnegative matrix A :“ LR is then obtained, and rankpAq “ r with a
very high probability. In the same way, we can generate a random feasible initial point X0. Moreover, just
like in [32], we add Gaussian noise with zero mean and different standard deviation pσ “ 0, .001, .01q to
the original A. When there is no noise (i.e., σ “ 0), the input data matrix A itself is exactly a solution.
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Projection onto nonnegative Stiefel manifold. Given C P Rnˆk, we compute its projection onto the
nonnegative part of the Stiefel manifold. If the distance between C and X is measured in terms of the
Frobenius norm, it can be equivalently formulated as

min
XPStpn,kq

´2 tracepXTCq s.t. X ě 0. (Model St)

In [20], it is shown that (Model St) can be reformulated into

min
XPObpn,kq

´2 tracepXTCq s.t. X ě 0, and }XV }F “ 1, (Model Ob)

where the positive integer p and matrix V P Rkˆp can be arbitrary as long as }V }F “ 1 and V V T is
entrywise positive. In particular, the feasible region of (Model St) and (Model Ob) are identical, and this
reformulation has no effect on the objective function. We will examine both models on different manifolds.

Input. We will consider the cases of n “ 40, 50, 60, 70 and let k “ 0.2n. For a general ma-
trix C, it is always difficult to seek nonnegative projections globally. Fortunately, [20, Proposition
1] showed a way to construct matrix C such that (Model St) has a unique and known solution X˚.
First, we generate a random feasible point B of (Model St); then, we obtained C by using the follow-
ing Matlab code: X1=(B>0).*(1+rand(n,k)); Xstar =X1./sqrt(sum(X1.*X1)); L=rand(k,k);
L=L+k*eye(k); C=Xstar*L’. The initial point is computed by projecting C onto the Stiefel manifold.
The projection is computed with [U,˜,V]=svd(C,’econ’); X0=U*V’. The same settings are applied to
(Model Ob), except for p=1; V=ones(k,p); V=V/norm(V,"fro").

7.3 Implementation Details
The numerical experiments were performed in Matlab R2022a on a computer equipped with an Intel Core
i7-10700 at 2.90GHz with 16GB of RAM. Our algorithms are built in the framework of Manopt 7.0 [6], a
Riemannian optimization toolbox on Matlab. The code is freely available.1

Solve the Newton equation. The challenge of the interior point method is how to solve the condensed
Newton equation (14) in an efficient manner. For simplicity, we consider the case of only inequality
constraints, where ∆y vanishes and only a linear operator equation Aw∆x “ c needs to be solved. The
Riemannian situation leaves us with no explicit matrix form available. A general approach is to first find
the representing matrix of Â (subscript w omitted), which involves three steps: obtain d :“ dimM random
independent vectors on TxM (it often needs d orthogonal projections operations onto TxM when M is
submanifold); obtain an orthonormal basis tu1, . . . , udu of TxM by the modified Gram-Schmidt algorithm;
compute components rÂsij :“ xAuj , uiyx for 1 ď i ď j ď d due to symmetry. Then, Â∆x̂ “ ĉ for
∆x̂ P Rd is solved using direct methods (e.g. LU decomposition). Clearly, this approach is expensive. For
example, for (Model St), at each iteration, computing the representing matrix Â costs „ 6n3k3 flops, and
we haven’t even started solving the equations yet.

An ideal approach is to use an iterative method, such as a Krylov subspace method (e.g., the conjugate
gradients method [5, Chapter 6.3]), on TxM directly. Such a method does not explicitly require a coefficient
matrix, and instead needs only a matrix-vector product. In general, it only needs to call an abstract linear
operator v ÞÑ Av. A significant feature is that the iterates vk, conjugate directions pk, and residual vectors
rk :“ Avk ´ c are all contained in TxM. Since the operator A in (14) is a self-adjoint but indefinite
operator (so is T ), we use the conjugate residual (CR) method to solve it. Usually, the initial point v0 is the
zero element of TxM; the iteration terminates when the relative residual }rk}{}c} ď ϵ for some threshold
ϵ ą 0, or some maximum number of iterates is reached. The discussion of the above two approaches can be
naturally extended to the case containing equality constraints, where we consider T with the product space
TxM ˆ Rl instead of A with TxM.

Parameters. Our RIPM implementation (Algorithm 4) chooses the initial z0 and s0 from a uniform
distribution in [0,1] and sets y0 to zero if y exists. In Step 2, ρk “ zTk sk{m and σk “ mint0.5, }F pwkq}1{2u.
If the method is not specified in advance, we use the CR method to solve equation (14) and terminate it if
the relative residual is smaller than 10´9 or the maximum number (1000) of iterates is reached. In Step 3,
instead of finding the exact values of αi

k, i “ I, II, we use a backtracking line search simultaneously for the
central conditions and the sufficient decreasing condition. As a slight simplification (see [10]), we do not
enforce the second central condition. Here, we set γ0 “ 0.9, γk`1 “ pγk ` 0.5q{2; and β “ 10´4, θ “ 0.5.

We compared our method with the following Riemannian methods [23, 27]:

• RALM [23]: Riemannian augmented Lagrangian method.

1https://github.com/GALVINLAI/RIPM
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• REPM(LQH) [23]: Riemannian exact penalty method with smoothing functions (linear- quadratic and
pseudo-Huber).

• REPM(LSE) [23]: Riemannian exact penalty method with smoothing functions (log-sum exp).
• RSQP [27]: Riemannian sequential quadratic programming.
• RIPM (Our method): Riemannian interior point method (Algorithm 4).

Experimental setting. Our experimental settings followed those of Obara et al. [27], where they used
residuals based on the KKT conditions (1) to measure the deviation of an iterate from the set of KKT points.
The KKT residual is defined by
b

}gradx Lpwq}
2

`
řm

i“1tmin p0, ziq
2

` max p0, gipxqq
2

` |zigipxq|
2
u `

řl
i“1 |hipxq|

2
` Manviopxq,

where Manvio measures the violation of the manifold constraints. If M def
“ tx : fMan

j pxq “ 0, j “

1, . . . , pu, thenManviopxq :“
řp

j“1 |fMan
j pxq|.Only for a fixed-rank manifoldMr, we defineManviopXq :“

0 if rankpXq “ r and `8, otherwise. For the parameters of RALM, REPMs and RSQP, we utilize the
experimental setting and Matlab codes provided by [27].

To measure the stability and speed of the algorithms, we conducted 20 random trials of each problem
and model. In each trial, all the algorithms ran with the same initial point. The stopping criteria were
based on the KKT residual, maximum iteration, maximum time, and changes in parameters. Concretely,
each experiment terminated successfully if a solution with a KKT residual ϵkkt was found. For RALM
and REPMs, if the spent time exceeded tmax seconds, or the outer iteration number was over 1,000, or the
algorithm did not update any parameters, we considered that the algorithm had terminated unsuccessfully.
For RSQP and RIPM, if the spent time exceeded tmax seconds, or the iteration number was over 10,000, we
considered that the algorithm had terminated unsuccessfully. The values of tmax and ϵkkt depended on the
problem to be solved.

Table 1: Performance of various Riemannian methods on problem (NLRM).

pm,n, rq (20,16,2) (30,24,3) (40,32,4)
no noise Rate Time [s] Iter. Rate Time [s] Iter. Rate Time [s] Iter.
RALM 0.4 1.115 31 0.65 1.813 31 0.75 2.800 31
REPM(LQH) 1 5.165ˆ10´1 31 1 1.009 31 1 1.747 31
REPM(LSE) 1 2.242 31 1 4.041 31 0.95 6.952 31
RSQP 0.9 6.429 7 0.9 3.944ˆ10 8 0.9 1.254ˆ102 8
RIPM 1 4.920ˆ10´1 19 1 2.247 27 1 5.277 32
pm,n, rq (20,16,2) (30,24,3) (40,32,4)
σ “ 0.001 Rate Time [s] Iter. Rate Time [s] Iter. Rate Time [s] Iter.
RALM 0.2 1.001 31 0.15 2.050 31 0.05 2.758 31
REPM(LQH) 0.1 4.983ˆ10´1 32 0.25 1.035 31 0.15 1.787 31
REPM(LSE) 0.15 2.444 31 0.1 4.867 31 0.05 8.371 31
RSQP 0.95 6.619 7 0.95 3.848ˆ10 8 0.9 1.299ˆ102 8
RIPM 1 5.376ˆ10´1 20 1 2.342 27 1 4.631 29
pm,n, rq (20,16,2) (30,24,3) (40,32,4)
σ “ 0.01 Rate Time [s] Iter. Rate Time [s] Iter. Rate Time [s] Iter.
RALM 0 - - 0 - - 0 - -
REPM(LQH) 0 - - 0 - - 0 - -
REPM(LSE) 0 - - 0 - - 0 - -
RSQP 1 7.295 8 0.95 4.114ˆ10 8 0.95 1.430ˆ102 9
RIPM 1 5.980ˆ10´1 21 0.95 1.883 25 0.95 4.602 29

7.4 Results and Analysis
The tables of this subsection report the success rate (Rate) divided by the total number of trials, the average
time in seconds (Time [s]), and the average iteration number (Iter.) among the successful trials. Boldface
highlights the best results under the combined considerations of stability and speed; that is, for each setting,
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the Rate column shows in bold the success rates that are ě 0.95 and the Time column shows in bold the two
(if any) fastest results among the algorithms with success rates ě 0.95.

7.4.1 Nonnegative low-rank matrix approximation

Here, we set tmax “ 180 and ϵkkt “ 10´8. The numerical results are shown in Table 1. RIPM performed
the best, while the first-order algorithms (including RALM and the REPMs) were as fast but less stable.
The time spent by RALM and the REPMs grew slowly with the problem size, but their success rate of
convergence decreased rapidly as the noise level became severe, until they did not converge at all.

In contrast, the convergence of the second-order algorithms (including RSQP, RIPM) was more stable,
with RIPM being much faster than RSQP. The cost of a single iteration of RSQP drastically increased with
the problem size. This is because RSQP requires solving a quadratic programming problem on the tangent
space of xk in each iteration. As with RIPM, there is no explicit matrix form available. RSQP transforms it
into a representing matrix form before using a quadratic programming solver. Instead, our RIPM avoids the
expensive computation of the representing matrix by using the Krylov subspace methods. As can be seen
from the table, RIPM takes the same amount (order of magnitude) of time as RALM and the REPMs.

7.4.2 Projection onto nonnegative Stiefel manifold

We set tmax “ 600 and ϵkkt “ 10´6 for both models (Model St) and (Model Ob). Since the true solution
is known, we added an Error column showing the average error }Xfinal ´ X˚}F . Here, Xfinal denotes
the final iterate point of a successful trial. As a full demonstration, in the second model (Model Ob), we
also tested RIPM by using the representing matrix method to solve the Newton equation; this is denoted as
RIPM RepMat.

The numerical results are listed in Table 2 and 3. The Error columns show that if the KKT residual is
sufficiently small, thenXfinal does approximate the true solution. In particular, the second-order algorithms
(including RSQP, RIPM) yield a more accurate solution (the error is less than 10´7). From Table 2, we
can see that RALM is stable and fast for (Model St). However, from Table 3, RALM’s success rate of
convergence for (Model Ob) decreases as the problem size becomes larger. The REPMs do not work at all
on either model. RSQP also does not perform well on both models. RIPM RepMat and RIPM successfully
solved all instances of both models, though the time taken by RIPM RepMat grew explosively. Overall,
RIPM using the iterative method was fast and the most stable.

Table 2: Performance of various Riemannian methods on (Model St).

pn, kq (40,8) (50,10)
Rate Time [s] Iter. Error Rate Time [s] Iter. Error

RALM 1 2.347 45 5.41ˆ10´7 1 4.344 54 5.21ˆ10´7

REPM(LQH) 0 - - - 0 - - -
REPM(LSE) 0 - - - 0 - - -
RSQP 0.9 1.352ˆ10 7 2.05ˆ10´9 0.7 3.097ˆ10 6 2.47ˆ10´9

RIPM 1 2.225 31 3.72ˆ10´8 1 3.785 32 3.38ˆ10´8

pn, kq (60,12) (70,14)
Rate Time [s] Iter. Error Rate Time [s] Iter. Error

RALM 1 4.097 34 4.93ˆ10´7 1 6.234 37 5.34ˆ10´7

REPM(LQH) 0 - - - 0 - - -
REPM(LSE) 0 - - - 0 - - -
RSQP 0.65 7.802ˆ10 7 6.48ˆ10´9 0.85 1.661ˆ102 7 2.64ˆ10´9

RIPM 1 5.555 32 2.81ˆ10´8 1 7.574 33 2.45ˆ10´8

8 Concluding remarks
We proposed a Riemannian version of the classical interior point method (IPM) and established its local
and global convergence. To our knowledge, this is the first study to apply the primal-dual interior point
method to the constrained optimization problem on a Riemannian manifold. Numerical experiments show
the stability and efficiency of our method. In closing, let us make a comparison with Euclidean IPM to
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Table 3: Performance of various Riemannian methods on (Model Ob).

pn, kq (40,8) (50,10)
Rate Time [s] Iter. Error Rate Time [s] Iter. Error

RALM 1 2.510 51 5.04ˆ10´7 0.95 4.727 64 4.94ˆ10´7

REPM(LQH) 0 - - - 0 - - -
REPM(LSE) 0 - - - 0 - - -
RSQP 0.65 8.618 5 2.30ˆ10´10 0.7 2.782ˆ10 6 1.12ˆ10´10

RIPM 1 3.791 22 5.62ˆ10´9 1 5.880 23 7.93ˆ10´9

RIPM RepMat 1 1.954ˆ10 31 4.34ˆ10´8 1 4.718ˆ10 32 3.56ˆ10´8

pn, kq (60,12) (70,14)
Rate Time [s] Iter. Error Rate Time [s] Iter. Error

RALM 0.6 5.725 49 3.82ˆ10´7 0.6 8.223 52 3.85ˆ10´7

REPM(LQH) 0 - - - 0 - - -
REPM(LSE) 0 - - - 0 - - -
RSQP 0.7 4.446ˆ10 5 1.17ˆ10´9 0.5 9.138ˆ10 5 1.82ˆ10´9

RIPM 1 7.134 23 9.69ˆ10´9 1 9.268 24 1.06ˆ10´8

RIPM RepMat 1 1.018ˆ102 32 3.20ˆ10´8 1 1.861ˆ102 33 2.75ˆ10´8

illustrate the theoretical advantages of our RIPM and discuss two future directions of research on more
advanced RIPM methods.

Riemannian IPM (RIPM) vs. Euclidean IPM (EIPM) (1) EIPM is a special case of RIPM when
M ” Rn or Rnˆk. (2) If the equality constraints are considered to be a manifold M, RIPM can solve a
condensed equation (14) of smaller order. For example, in (Model St), the Stiefel manifold can be used as
the equality constraints; i.e., we set h : M ” Rnˆk Ñ Sympkq, where hpXq “ XJX ´ Ik. Here, EIPM
requires us to solve (14) of order nk ` kpk ` 1q{2, but RIPM only requires us to solve a problem of order
nk ´ kpk ` 1q{2, i.e., the dimension of Stpn, kq. (3) Not all manifolds are equivalent to smooth constraints.
For example, suppose a fixed rank manifold to be the equality constraints. Since rankp¨q is not continuous,
we can not apply EIPM.

Preconditioner for linear operator equation. Due to the complementary condition, as k Ñ 8,
the values of S´1

k Zk display a huge difference in magnitude: some of them tend to zero while others
go to infinity. Hence, the presence of the operator Θ :“ GxS

´1ZG˚
x in the system (14) makes it very

ill-conditioned, so the iterative method will likely fail unless it is carefully preconditioned. Unfortunately,
operator equation has no explicit matrix form available, which makes the most common preconditioner
methods based on matrix decomposition techniques useless. A possible way around this is to find another
nonsingular operator P such that the condition number of the new operator P´1T becomes smaller.

Sophisticated global strategies. In the Euclidean setting, it has been shown that interior point methods
employing a simple line search along Newton steps may manifest a weakness of convergence. The more
sophisticated and robust global strategies are often based on the trust region or filter line-search method.
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A Proof of Lemma 2.2
For simplicity, we will consider the case in which (RCOP) contains only inequality constraints. Then,
Lpx, zq “ fpxq ` zT gpxq and the KKT conditions without defining slack variables are

gradx Lpx, zq “ grad fpxq `
řm

i“1 zi grad gipxq “ 0x; gipxqzi “ 0, i “ 1, ¨ ¨ ¨ ,m,

and ´gpxq ě 0, z ě 0. Let Gpxq be a diagonal matrix of vectors gpxq; the KKT vector field F : MˆRm Ñ

TMˆTRm is defined byF px, zq :“ pgradx Lpx, zq, Gpxqzq . The next lemma establishes a way of defining
a connection on product manifolds. It can easily be extended to a product of more than two manifolds.
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Lemma A.1 (product connection [5, Exercise 5.4 & 5.13]). Let M1 and M2 be two Riemannian manifolds,
respectively equipped with Riemannian connections ∇1 and ∇2. Consider the product manifold M “

M1 ˆM2. Let pu1, u2q be tangent to M at px1, x2q. Then, the map ∇ : TMˆXpMq Ñ TM defined by

∇pu1,u2q pF1, F2q “

´

∇1
u1
F1p¨, x2q ` DF1px1, ¨qpx2qru2s,∇2

u2
F2px1, ¨q ` DF2p¨, x2qpx1qru1s

¯

is a Riemannian connection on M; we call it the product connection. The notation F1p¨, x2q represents the
map obtained from F1 : M1 ˆ M2 Ñ TM1 by fixing the second input to x2. In particular, F1p¨, x2q is a
vector field on M1, while F1px1, ¨q is a map from M2 to Tx1

M1.

Proof of Lemma 2.2. We apply Lemma A.1 directly. Rm is equipped with the canonical Euclidean con-
nection, and we will not distinguish those connections with superscripts, as they should be clear from
context. Let F px, zq “ pF1px, zq, F2px, zqq , where F1 : M ˆ Rm Ñ TM, F1px, zq “ gradx Lpx, zq, and
F2 : MˆRm Ñ TRm, F2px, zq “ Gpxqz.We will compute the covariant derivative ofF at px, zq P MˆRm

step by step in accordance with Lemma A.1. Let pux, uzq P TxM ˆ Rm be the tangent vector at px, zq.

1. F1p¨, zq : M Ñ TM (a vector field on M ). From the linearity of the connection ∇ on M, we have
∇uxF1 p¨, zq “ ∇ux

pgrad fpxq `
řm

i“1 zi grad gipxqq “ ∇ux grad fpxq `
řm

i“1 zi∇ux grad gipxq “

Hess fpxq ruxs `
řm

i“1 zi Hess gipxq ruxs “ Hessx Lpx, zq ruxs .
2. F1px, ¨q : Rm Ñ TxM (a map between two vector spaces).

DF1px, ¨qpzq ruzs “ limtÓ0 tF1 px, z ` tuzq ´ F1px, zqu {t “
řm

i“1puzqi grad gipxq.
3. F2px, ¨q : Rm Ñ TRm – Rm (a trivial function).

∇uz
F2 px, ¨q “ DF2 px, ¨q pzq ruzs “ Gpxquz “ rg1pxqpuzq1, ¨ ¨ ¨ , gmpxqpuzqms

T
.

4. F2p¨, zq : M Ñ TzRm – Rm (a map from M to Rm). Let F i
2p¨, zq “ gipxqzi be the component function

for i “ 1, . . . ,m. Since DF i
2p¨, zqpxq ruxs “

@

gradx F
i
2p¨, zq, ux

D

x
“ xzi grad gipxq, uxyx , we have

DF2p¨, zqpxq ruxs “
“

DF 1
2 p¨, zqpxqruxs, ¨ ¨ ¨ ,DFm

2 p¨, zqpxqruxs
‰T

“ rz1 xgrad g1pxq, uxyx , ¨ ¨ ¨ , zm xgrad gmpxq, uxyxs
T
.

Finally, by combining 1-4, we obtain

∇F px, zq rpux, uzqs “

˜

Hessx Lpx, zq ruxs`

m
ÿ

i“1

puzqi grad gipxq,

»

—

–

z1 xgrad g1pxq, uxyx ` g1pxq puzq1
...

zm xgrad gmpxq, uxyx ` gmpxq puzqm

fi

ffi

fl

¸

.

B Proof of Proposition 2.3
Proof of Proposition 2.3. This proof omits all the asterisks of the variables. Let E “ t1, . . . , lu, I “

t1, . . . ,mu and A “ Apxq Ď I . Take a triple px, y, zq satisfying (A1)-(A5). Set si :“ ´gipxq for
i P I , and define w “ px, y, z, sq. Suppose that ∇F pwq∆w “ 0 for some ∆w P TxM . To prove its
nonsingularity, we will show that ∆w “ p∆x,∆y,∆s,∆zq “ 0. Expanding ∇F pwq∆w “ 0 gives

$

’

’

’

&

’

’

’

%

0x “ Hessx Lpwq∆x `
ř

iPE ∆yi gradhipxq `
ř

iPI ∆zi grad gipxq,

0 “ xgradhipxq,∆xy , for all i P E ,

0 “ xgrad gipxq,∆xy ` ∆si, for all i P I ,

0 “ zi∆si ` si∆zi, for all i P I .

(35)

Strict complementarity (A4) and the last equalities above imply that ∆si “ 0 for i P A and ∆zi “ 0 for
i P I zA. Substituting those values into the system (35) reduces it to

$

’

&

’

%

0x “ Hessx Lpwq∆x `
ř

iPE ∆yi gradhipxq `
ř

iPA ∆zi grad gipxq,

0 “ xgradhipxq,∆xy , for all i P E ,

0 “ xgrad gipxq,∆xy , for all i P A,

(36)

and ∆si “ ´ xgrad gipxq,∆xy for all i P I zA. It follows from system (36) that

0 “ xHessx Lpwq∆x `
ř

iPE ∆yi gradhipxq `
ř

iPA ∆zi grad gipxq,∆xy
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“ xHessx Lpwq∆x,∆xy `
ř

iPE ∆yi xgradhipxq,∆xy `
ř

iPA ∆zi xgrad gipxq,∆xy

“ xHessx Lpwq∆x,∆xy ,

which is a contradiction by second-order sufficiency (A5). Thus, ∆x must be zero, and then ∆si “

0 for all i P I zA.Next, substituting∆x “ 0 into the first equation in (36) yields 0x “
ř

iPE ∆yi gradhipxq`
ř

iPA ∆zi grad gipxq. The linear independence of the gradients in TxM of (A3) implies that ∆y and ∆zi
for i P A must be zero. This completes the proof.
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