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Abstract — We consider semimodular programs which are problems of
minimizing submodular functions (or maximizing supermodular functions)
with or without constraints. We define a convex (or concave) conjugate
fgﬁction of a submodular (or supermodular) function and show Fenchel's
duality theorem for semimodular functions. We also define a subgradient
of a submodular function and derive a necessary and sufficient condition
for a feasible solution of a semimodular program to be optimal, which

is a counterpart of the Karush-Kuhn-Tucker condition for convex programs.

Moreover, solution algorithms for semimodular programs are proposed.



1, Introduction

Let D Dbe a distributive lattice formed by subsets of a
finite set E relative to set inclusion and let f be a set
function from ¥ to the set R of reals such that

f(A) + £(B) > f(AYB) + f(AqB)
for any A, B e D. Then f is called a submodular {or lower

semimodular) function on ?. If - g 1is a submodular function, then

g 1s called a supermodular {or upper semimodular) function. We call

h a semimodular function if h dis a submodular or supermodular

function. If f is a submodular and, at the same time, supermodular

function, then we call f a modular function.

We shall develop the theory of semimodular programs from the
point of view of the duality in mathematical programs. Submodular
{or supermodular) functions on distributive lattices share similar
structures with convex (or concave) functions on convex sets. We
shéll define a convex (or concave) conjugate function of a submodular
(or supermodular) function and show Fenchel's duality theorem for
semimodular functions. We also define a subgradient of a submodular
function and consider the problem of minimizing a submodular function
with or without constraints. We derive a necessary and sufficient
condition for a feasible solution to be optimal, which is a counterpart

of the Karush-Kuhn-Tucker condition for convex programs.




2. Preliminaries

In this section we give propositions which are well known, or
are immediate consequences of those well known, in polymatroid theory
(see [2], [3]}, [7] and [107).

Let E be a finite set, ZE be the set of all the subsets of
E and R be the set of reals. Throughout the present paper we assume,
for the sake of simplicity, that for every distributive lattice D c 2E
and every set function f defined on 0 we have § ¢ D and £(f) = 0.

For a distributive lattice U < 2E let f:U -+ R be a submodular

function. Then we call the pair (D,f) a submodular system. Similarly,

we define a supermodular system (D,g) for a supermodular function
g:0 - R.
For distributive lattices Dl’ Dz = ZE, a submodular function

-f:DI + R and a supermodular function g:D2 + R, let us define polytopes

P(f)

P(g)

and, if E ¢ Dl and E ¢ Dz,

{x | xR, Vv AcD x(A) <EW], (2.1)

(x| xeR%, ¥ AeD,:x(A) 2g(A)} (2.2)

B(f) = {x [ x eP(£),x(B)=£(E)}, (2.3)

B(f)

{x [xeP(g),x(B)=g(E)}, (2.4)
where RE is the set of 3ll |E|—vectors x = (x(e):eeE) with x{e)

€¢ R (e ¢ R) and for any A c E

x(8) = ) x(e), (2.5)
eech

Each vector X ¢ RE will also be regarded as a modular function x:2E + R

by {2.5). We call P(f) the submodular polytope associated with the




submodular system (Dl,f] and B(f) the base polytope associated

with (Dl,f). Similarly, we call P(g) the supermodular polytope

associated with the supermodular system (Dz,g) and B(g) the base
polytope associated with (Dz,g). A vector x e B(f) {or B{(g)} is

called a base of (Dl,f) (ot (Dz,g)).

Proposition 2.1: For any submodular system (D,f) and y ¢ P(f),

if E ¢ D, then there exists a base x e B(f) such that y < x, i.e.,

VeeE: y(e) £ x(e).

Proposition 2.2: For any submodular system (D,f) and A e 0 there

exists a vector Xx ¢ P(f) such that =x(A) =f(A).

For a distributive lattice 0 ¢ 2E with E ¢ D let us denote
by D the dual distributive lattice of T given by
D={E-A|AecD}. (2.6}
Fo¥ a ;ubmodular function f£:U <+ R with E ¢ 0 define a supermodular
function g:P + R by -
g(E -A) = £(E) - £(A) (AeD). (2.7)

We call g the dual supermodular function of f and denote it by f#.

Similarly, for a supermodular function g:D =+ R with E ¢ 0 we define

the dual submodular function g# of g. Note that (f#)# = f and

(g#)# =




- - . E . . } . . .
Proposition 2.3: Suppose that 0 ¢ 2° is a distributive lattice with

#, Ec D and £:0 > R is a submodular function. Then wec have

B(£) = B(£).

Furthermore, for a submodular system (P,f) let us define a

function :RE -+ R by

T
f
rf(x) = max{y(E) [yéx,y eP(£)} ‘ (2.8)

for each x ¢ RE. We call =

£ the vector rank function of (U,f).

Proposition 2.4: For a vector rank function Te of a submodular

. system (D,f) we have

re(x) = min{f(A) +x(E -A) | A D} (2.9)

for each x ¢ RE.

The following proposition generalizes Proposition 2.4.

Proposition 2.5: Let fl:D1 + R and fz:D2 + R be submodular

functions and suppose that there exists a set A ¢ Dl such that
E-Ace ﬂz. Then we have
mud%ﬁm +f2@—A)|AeDrE—AeD£

= max{x(E) ]x:eP(fl) nP(fz)}. (2.10)

Corollary 2.6: For any submodular function f£:0 + R,

min{£(A) A €D} = max{x(E) | x<0,xeP(£)}. (2.11)



Every submodular (or supermodular) function yields a distributive

lattice as follows.

Proposition 2.7: For any submodular (or supermodular) function f:

D+ R (or g:U~+ R} the set of all the minimizers of f (or the

maximizers of g) forms a distributive sublattice of D.

3. Conjugate Functions of Semimodular Functions and Fenchel's

Duality Theorem for Semimodular Functions

Let £:0 >R and g:D + R, respectively, be a submodular
function and a supermodular function. Let us define a function £*:
RE + R by

£*(x)

max{x(A) - f(A) |A e D} (3.1)

and, similarly, a function g*:RE + R by

n

g*(x) = min{x(A) - g(A) |A ¢ D}. (3.2)
It follows from (3.1) and (3.2) that f£* (or g*) is a convex (or concave)

function on RE. We call f* a convex conjugate function of f and

g* a concave conjugate function of g.

Theorem 3.1: For a submodular function £:0 + R and a supermodular
function g:P » R we have

f(A) = max{x(A) - £*(x) |x ¢ RE}, (3.3)




g(A) = min{x(A) - g*(x) | x ¢ RE} (3.4)
for any A e D.
(Proof) TFrom {(3.1) we have

£(A) > x{A) - £*(x) (3.5)
for any Ae¢ D and x ¢ RE. Therefore, we shall show that for any
A e D there exists a vector x ¢ RE such that (3.5) holds with
equality, which completes the proof of (3.3).

It follows from Proposition 2.2 that for any A e D there

exists a vector R ¢ RE such that

f(B) > &(B) (3.6)
_for any B e U, where {3.6) holds with equality when B = A. Therefore,
by the definition of f* we have

f*(x) = R(A) - £(A) (= 0), (3.7)
which implies (3.3).

The relation (3.4} can be shown in a similar way. Q.E.D.

We see from Theorem 3.1 that the correspondence between a
submodular (or supermodular) function £ (or g) and its convex (or
concave) conjugate function £* (or g*) is one to one. Let us
define

(£¥)* = £, (g*)* = g. (5.8}

For submodular functions fi:D.1 =+ R (i=1,2), define a

convolution fl* ofz* of £ *

1
* o f * = mi #
(fl £, ) () mln{fl*(xlj + £,%(x,) |xl +X

and fz* by
2 =x}. (3.9

Note that the minimum in (3.9) exists for each x ¢ RE.



Theorem 3.2: For submodular functions fi:'Di ~ R ({i=1,2) we have

(£,* ofz*)* = £+ f (3.10}

2.’

where the domain of fl + £. is Dl 002.

2

(Proof) By the definition (3.9) of convolution we have for any A
€ Dlr192

(% o £,4)%(A)

il

max{x(A} - (£%o£,%)(x) |x ¢ R}

max{x{A) - min{fl*(xl) + fz(xz) |x1-+x2 =x} | x € RE}

¢ RE}

max{xlfA) - £170x) + x,(8) - £%(x,) |x1,x2

£(A) + £,(A),

where the last equality follows from Theorem 3.1. Q.E.D.

It should be noted that Theorem 3.1 is closely related to

Proposition 2.4.

Theorem:S.S: Let f:D +~ R be a submodular function, Then for any
X e RE‘ £*{x) 1s given by

f*(x) = x(E) - rf(x), (3.11)
where Tg is the vector rank function associated with (D,f).
(Proof) The theorem immediately follows from Proposition 2.4 and the

definition (3.1) of f=*. Q.E.D.

Now, we show Fenchel's duality theorem for semimodular functions.
(For Fenchel's duality theorem for convex and concave functions, see

[8] and [9].)




Theorem 3.4: Tor a submodular function f£:D +~ R and a supermodular
function g:? + R we have

min{f(A) - g(A) |AeD} =:max{g*(x) - £*(x) | x ¢ RE}. (3.12)
(Proof) Without loss of generality we can suppose E ¢ D. Then the
min = max relation (3.12) is equivalent to

min{ f{A} + g#(E -A) |A e D}

= max{g’ (x) + g(B) - £*(x) | x e RE}, (3.13)
where g# is the dual submodular function of g. Moreover, from
Theorem 3.3 and Proposition 2.4 we have

£4(x) = x(E) - r:(x), {3.14)

g*(x) + g(E)

min{x(A) + g#(E -A) |A e D}

rg#EX)- (3.15)
ft follows from (3.14) and (3.15) that (3.13) can be rewritten as
min{f(A) + g#(E -A) jA e D}
= max{rf(x) + rg#(x) - x(B) |x ¢ RE}. (3.16)

For any x ¢ RE let y and z be vectors in RE satisfying

y e P(£), y2x, y(E) =rc(x), (3.17)

2 e Pg), z<x, 2(E) = r #(). (3.18)
Define

X =ynaz = (min(y(e),z(e)):e ¢E). (3.19)
Then we have

T e P(E) aP(g). (3.20)

Because of (3.19) and (3.20),
re(x) + () - x(B)

= y(E) + z(E} - x(E)



It

x{(E) + x(BE) - x(L)

n

re(x) F T () - X(B) (= X(E)). (3.21)
Therefore, we see from (3.20) and (3.21) that (3.16) is equivalent to
min{£(A) + g' (E-A) | A ¢ D}
= max{x(E) |x e P(£) nP(g)}, (3.22)

which is valid due to Proposition 2.5. Q.E.D.

The proof of Theorem 3.4 reveals that Theorem 3.4 is equivalent
to Proposition 2.5. However, the min = max relation in the form of
Theorem 3.4 motivates further investigation of semimodular functions

from the point of view of the duality theory of convex programs [8], [9].

4, Subgradients of Submodular Functions

Let f£:P + R be a submodular function. For a vector X ¢ RE
and a set A e D, if

f(B) - f(A) > x(B) - x(A) : (4.1)

holds for any B ¢ D, then we call x a subgradient of f at A.
We denote by 9f(A) the set of all subgradients of f at A e D

and call 9f(A) the subdifferential of f at A. It should be noted

that RC is divided into |D| parts 3f(A) (A e D).

Lemma 4.1: For a submodular function £:D -+ R, a vector X ¢ RE and




a set A e D, the following (i}, (ii) and (iii) are equivalent to

one another:

(i) x ¢ 3f(A); (4.2)
(ii) min{f(B) + x(E-B) [B e D} = £(A) + x(E -A); (4.3)
(iii) £(A) + £5(x) = x(A). (4.4)

(Proof) The lemma immediately follows from the definition of af (A).

Q.E.D.
Lemma 4.2: TFor a submodular function £:D =+ R we have
(a) of(p) = P(£); (4.5}
(b) if Ec D, 3£(E) = P(£); (4.6)

(¢} if Ee¢ D, for each Ae D 3f(A) nB(f) # 0, 4.7)
where f# is the dual supermodular function of Ff.
(Proof) The lemma follows from Proposition 2.2 and the definitions

of f# and of(A) (A e D). Q.E.D.

For a convex conjugate function f£* of a submodular function
f:D + R and a vector x ¢ RE let us define a set 9f*(x) of subsets
of . E as follows:
A e of*(x) (4.8)
if and only if Ac E and
) - £5(x) 2 y(A) - x(&) (4.9)

for any vy ¢ RE. We call 09f*(x) the binary subdifferential of f£*.
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Theorem 4.3: For a submodular function f£:D > R we have
f*(x) ¥ (4.10)

for each x ¢ RE. Moreover, for a vector x ¢ RE and a set A e D
the following (i)} and (ii) are equivalent to each other:

(1) x e 9f(A); (4.11)

(i1) A e af*(x). (4.12)
(Proof) The relation (4.10) easily follows from the definition of
of*(x). Furthermore, from Theorem 3.1 and (4.9) we see that (4.12)
is equivalent to

x(A) - £%(x) = max{y(A) - £5(y) |y ¢ R"}

I

£(A) . (4.13)

It follows from Lemma 4.1 that (4.13) is equivalent to (4.11). Q.E.D.

Lemma 4.4: For a submodular function £:U + R the binary subdifferential
o0f*(x} forms a distributive sublattice of ¥ for each x ¢ RE.
{(Proof) The lemma follows from Proposition 2.7 and the fact that

A e 9f*(x) " is equivalent to " A is a maximizer of a supermodular

function x - f: D + R." Q.E.D.

Let us denote by 0of*(x) the subdifferential of the convex
conjugate function £* at x ¢ RE in an ordinary sense (cf. [8]).

Let us call §f*(x) the real subdifferential of f* at x.

Theorem 4.5: For a submodular function f:D + R, the real subdifferential




gf*(x) of f* at x ¢ RE is a convex polytope and the set of all
the extreme points of gf*(x) i5 given by {XA | A ¢ 3f*(x)}, where
Xy € RE is the characteristic vector of a set A.

(Proof) Since f* is the point-wise maximum of the linear functions
X(A) - f(A) of x (A e D), f* is a polyhedral convex function and

the theorem easily follows. We omit the detail. Q.E.D.

Theorem 4.6: Suppose that fi:Di + R is a submodular function on a

m
distributive lattice Di for each 1 =1, 2, ..., m. Let f£:0= n Di
=]

i
+ R Dbe a submodular function defined by

f(A) = fl(A) + fZ(A) RTINS fm(A) (4.14)
for A e D. Then for any A ¢ D we have

af(A) = Bfl(A) + BfZ(A) +oeen 4 Bfm(A). (4.15)
{Proof) We see from Lemma 4.1 that

x € 3f(A) (4.16)
if and only if

£A) + £%(x) = x(A). (4.17)
From (4.17) and Theorem 3.2 we have

f{A) + min{fl*(xl) +E(x) + eee w fm*(xm) |x1+x2

= x(A). (4.18)
Let Ri (i=1,2,...,m) be vectors by which the minimum in (4.18) is
attained. Then (4.18) is rewritten as

fl(A) + fl*(ﬁl) + fZ(A) + fz*(ﬁz) + vee 4 fm(A] + fm*(im)

= % (A) + Ry(A) + +or + R (A, (4.19)

Since for each i =1,2, ..., m we have

+"'+J =
X x}

12



*(R.) > R.(A), 4.
‘ fi(A) + fi (}\i)__= kl( ) (4.20)
(4.19) implies that (4.20) holds with equality for each i =1, 2, ..., m.

Consequently, (4.16) is equivalent to the following (4.21) and (4.22):

?i € Bfi(A] i=1,2, ..., m, {4.21)
X = Ry o+ Ry 4 ven R {4.22)
Q.E.D.

5. Submosular Programs

In this section we consider the problem of minimizing submodular

functions with or without constraints.

5.1 Unconstrained Minimization of Submodular Functions

The definition of a subdifferential of a submodular function

directiy vields the following fundamental lemma.

Lemma 5.1: Let £:0 + R be a submodular function. The minimum value
of f is attained by A ¢ D if and only if
0 e 3f(A}, (5.1)

where 0 1s the zero vector in RE.

Consequently, the problem of minimizing a submodular function

£:0 + R 1is equivalent to that of finding a set A e U such that
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(5.1) holds.

In this section we assume that @, E ¢ D and that for each
e ¢ E there exist A, B¢ P such that A ¢ B and B - A = {e}.
This assumption is only for the sake of simplisity. Then there exists
a partially ordered set P = (E,<) and the distributive lattice 7
can be expressed as

D= {D I(D_,D+) is a monotone dissection of P}, (5.2)

where (D—,D+) is a monotone dissection of P = (E, ) 1if and only
if DTuUD =E, D AD = p and for any e, e, e B "e fe, and

2 1 2

9 € D™ " implies e € D" ". The one-to-one correspondence

between the set of distributive lattices 7D < ZE and the set of

e

partially ordered sets P = (E,<) on E is pointed out in [1].

Let us define C(e) ¢ P (e ¢ E) by

Cle) = U{A|e ¢ A e D} (5.3)
and a vector f e RE by
| £(e) = £(C(e) V{eh) - £(C(e)). . (5.4)
| Heré, it should be noted that C(e)VU{e} e P (e e E). When D = 2E,

C(e) = E - {e} and the vector £ is called the greater lower bound

of B(f) in [10].

Lemma 5.2: Under the above assumptions the function £ - F:D R

is monotone nondecreasing.

(Proof) It is sufficient to show that, for A, B ¢ P such that {e} =
B-A and B = AU{e}l, we have

£(B) - £(B) > £(A) - F(A). (5.5)
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It follows from (5.4) and the submodularity of f - % that
£(B) - F(B) - (£(A) - £(A))

f(B) + £(C(e)) - £({Cle) v{e}} - £(A)

1

>0, (5.6)

where note that C(e) YU{el = BUC(e) and A = BnC(e). Q.E.D.

Because of Lemma 5.2 we consider the problem formulated as
follows:
""Given a monotone nondecreasing submodular function f£:D + R
and a positive vector W ¢ RE, find a set A € U such that
w e 9f(A)." (5.7)
The original problem can be transformed into the problem (5.7) by
putting
w4 - F s u, (5.8)
f+«f+w, (5.9)

where u e RE is any nonnegative vector such that w given by (5.8)

is a positive vector.

Theorem 5.3: For f and w in (5.7) there exists-a unique base
% ¢ B(f) such that, for each o > 0, a vector X ¢ RE given by
X = % AOw (5.10)
is a maximal vector with the property that x ¢ P(f) and x < aw, or
min{f(A) + aw(E-A) |A ¢ D} = (Raaw)(B). (5.11)
Moreovér, let the distinct values of X(e)/w(e) (e ¢ E) be

given by
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€ < c2 < ewe cp (5.12)

and define

T, = {e |ecE,%(e)/w(e) éci} (i=1,2,...,p). (5.13)
Also let io be an integer such that 1 < iO < p and
CiO <1< ci0+l’ (5.14)
where we put Cp+l = +e, Then we have
we 3f(T. ). {5.15)
10

The base & in Theorem 5.3 for the case when 0 = ZE is called

a lexicographically optimal base of a polymatroid (E,f) with respect

to a weight vector w [4]. Theorem 5.3 can be shown by direct adaptation
of the argument in [4] and the proof is omitted.

For a set A e D and a vector X ¢ R® we call A a hyperplane
separating P(£f} (= 3f(f)) and x if £(A) < x(A).

The value ¢, in (5.12) is characterized by the following (a)

1
and (b):
(a) there exists no hyperplane separating P(f) and W,
i.e., C W € P{f); (5.16)
(b) for any o > cq there exists a hyperplane separating
P(f) and aw, i.e., aw ¢ P(f). (5.17)

Meoreover, Tl in (5.13) is given by

T, = {e|eecE, Ve>0: C1¥W +EX( ) ¢ P(f)}, (5.18)
where X{e} © RE is the characteristic vector of {e}.
If f 1is integer-valued, then cy and T1 can be obtained by

a binary search based on (5.16) - (5.18) using an oracle for discerning
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the existence of a separating hyperplane. Here, it should be noted

that, for a distributive lattice Dl given by

D, = 1A |A¢sD,f(A)=c1w(A)}, (5.19)

T1 is the maximum element of Dl and
VA« Dl: ¢, = f(A)/w(A). (5.20)
Therefore, for a sufficiently small € > 0 every hyperplane A ¢ D

separating P(f) and (cl +g)w belongs to T, and gives us the

1
value <y by (5.20). It may also be noted that
¢, < max{f(D(e))/w(D(e)) | e ¢ E}, (5.21)
where
D(e) = n{A]eec AecD} (ecE). (5.22)

Once 4 and Tl are obtained, contract Tl’ i,e, consider
. f‘/TI: ?7/T1 + R defined by

0/7 = {A[ACE-T,AVT D}, (5.23)

1°
(f/Tp(A)=:ﬂAUT1)- fﬂ&) (A € D/Tﬂ, (5.24)

instead of f and repeat the above process until we find i0
satisfying (5.14).

We have proposed an algorithm for minimizing a submodular function
f:¥ + R using a separating-hyperplane oracle. Another algorithm
using a separating-hyperplane oracle was proposed by M. Grdtschel,
L. Lovasz and A. Schrijver [6], where a binary search is adopted in

the range of f. Our algorithm is & polynomial-time one in the sense

of [6] as well.
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5.2 Constrained Minimization of Submodular Functions

Let DO c 2E be a distributive lattice. We say that a vector
X ¢ RE is normal to DO at A€ DO if for each B ¢ DO we have
x(B) - x(A) £ 0. (5.25)

Theorem 5.4: Let D and DO be distributive lattices with DO =
D < 2E. Also let f£:D > R be a submodular function. Then we have

f(A) = min{f(B) |B ¢ Dy} (5.26)
for A« DO if and only if there exists a subgradient x ¢ 3f(A)
such that - x 1is normal to DO at A.

(Proof) The "if'" part: From the assumption we have
P P

£(B) - £(A) > x(B) - x(A) > 0 (5.27)

for any B ¢ DO'

The "only if" part: Define a (sub)modular function f :DO + R

0
by
£,(8) =0 (B¢ D). (5.28)

Then A 1is a minimizer of fl = f + fO: 00 =+ R, It follows from

Theorem 4.6 and Lemma 5.1 that

0 € Bfl(A) = 0f(A) + afo(A). (5.29)
Therefore, there exists a vector x ¢ 3f(A)} such that

- X € BfO(A). : (5.30)

By the definition of £ (5.30) implies that - x is normal to 7D

0,
at A. Q.E.D.

0
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Suppose that for each i =10, 1, ..., m fi:D + R is a
submodular function and the minimum value of fi is equal to o, -
Let us consider a constrained minimization problem as follows.

(P): Minimize fO(A)

subject to fi(A) =0 (i=1,2,...,m). {5.31)
where fi(A) = fi(A) - o (i=1,2,...,m). Note that 90 € 2E given by
Dy = {a | vi=l,2,...,m £1(A)=0} (5.32)

is a distributive lattice.
Define a function L: RT><D - R by
— 1 cesn !
L(A,A) = fO(A) + AlfI(A) + + Amfm(A), (5.33)

where R_ is the set of nonnegative reals, X = (& ..,Am) € RT

17

and A e D. We call L a Lagrangian function associated with the

above problem (P). We call X e RT an optimal Lagrange multiplier if
min{L(},A) | A ¢ D} (5.34)

is equal to the optimal value of the objective function of problem (P).

Theorem 5.5: For problem (P) given by (3.31),

-~

(a-1) = (Xl,...,xm) is an optimal Lagrange multiplier'
and
(a-2) A is an optimal solutioﬁ of (P)
if and only if
m

l,...,lm) € R+,

(b-1) % = (x
(b-2) A is a feasible solution of (P)
and

(b-3) 0 ¢ BfO(A) + Alafl(A] B oees 4 Amafm(A).
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(Proof) The "if" part: From (b-1), (b-2) and (b-3) we have

nin{L(A,A) [A e D} = L(R,A) = £,R), (5.35)
while, generally, we have

min{L(A,A) | A < D} < £, (B) (5.36)
for any feasible solution B. (a-1)} and (a-2) thus follows.

The "only if" part: From (a-1) and (a-2) we have A ¢ DO and

min{L(A,A) |A € D} = focﬁ) = L(Y,A). (5.37)
Therefore, we have (b-3)., (b-1) and (b-2) trivially follows From

(a-1) and (a-2). Q.E.D.

Let us define a function p:RT + R Y {+=} Dby
p(u) = min{f (A) [ V i=1,2,...,m: £/(A) < u.}, (5.38)
where u = (u.,u.,...,u ) € R'. 1If for u e R" there exists no A
1772 | + +
¢ T such that fi(A) é’ui for all i =1, 2, ..., m, then we define

p(u) = +o. We call p a perturbation function associated with problem (P).

' Theorem 5.6: Suppose that problem (P) has a feasible solution. For
the perturbation function p associated with problem (P} we have
for each X ¢ RT

min{p(u) + Aug + eeew A |u e RT}

= min{L(A,A) |A ¢ D}. (5.39)
{Proof) Suppose that Ac?D is a minimizer of L{(A,A) in A e D.
It follows from the definition of p(u) that

L(A,AY = p(u) + h1u1+ e 3 Amum’ (5.40)
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where G& = fi(ﬁ) (i=1l,...,m). Consequently,
. . m
min{p{u) + Auy + A |u e R,}
< min{L(A,A) | A € D}, (5.41)
On the other hand, suppose that {4 ¢ RT is a minimizer of p(u) +

AU + *e+ + A u  in u e R™. There exists an A. ¢ D such that
11 m m + 0

p() = £,(A), (5.42)
r e A —
fi(AO) < 0, (i=1,...,m). (5.43)
Since A ¢ RT, we have from (5.42) and (5.43)

p(l) + Alul ¥ oeee 4 lmu > L(A,AO}. (5.44)

m

Therefore, we have

: m
min{p(u) + Apuy-+ eee o+ A u |ue R}

1
min{L(X,A) | A e D}. (5.45)

v

The theorem follows from (5.41) and (5.45). Q.E.D.
In the proof of Theorem 5.6 we have already shown the following.

Theorem 5.7: For A e RT and the perturbation function p associated
with problem (P}, we have

(a) if A e D is a minimizer of L{A,A) in A ¢ D, then

A

4= (ul,...,um) given by

8, = ficﬁ) (i=1,...,m) (5.46)

. . . m
is a minimizer of p{u) + Aju, + *++ + A u  in ue R ;

171 m m +
-~

= (ul,...,um) is a minimizer of p(u) + Alul +

[

(b} if

. m ~ . .
rer 4 Amum in ue R, and A ¢ D satisfies
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p)y = fO(R), (5.47)

[P o~ s _
fi(A) ;_ui (i=1,...,m}, (5.48)
then A is a minimizer of L(A,A} in A e D and for

cach 1 =1, ..., m (5.48) holds with equality if

A. > 0.
1

al

Theorem 5.8: A vector A e RT is an optimal Lagrange multuplier of

problem (P) if and only if
. ' % & m
min{p(u) + Alul + + Amum [u € R+} = p(0). {(5.49)
(Proof) (5.49) means that the zero vector O ¢ RT is a minimizer of
~ o “ m 3
plu) + llul + oeee 4 Amum in u e R_. Therefore, the theorem easily

follows from Theorems 5.5 and 5.7. Q.E.D.

We see from Theorem 5.8 that, if e RT is an optimal
Lagrange multiplier, then any X ¢ RT with A £ A 1is also an optimal
" one.
An algorithm for solving problem (P) is given as Ffollows.
Recall that we have assumed that for each i =0, 1, ..., m the minimum

value of fi is equal to Q.
We consider the case when m = 1.

An Algorithm for Solving Problem (P} (with m = 1)




Step 0°: Llet a, be an upper bound of f0 such that a4 # f(A)
for all A e D. Also let a; be an upper bound of fl.
Put A + (aO - oao)/(a1 - al).

Step 1°: Put A <+ a minimizer of L({A,A) = fO(A)-+Afi(A) in Ae D,

Step 2°: If fi(ﬁ) = 0, then stop (ﬁ is an optimal soclution),
Otherwise, put A < (a, - fo(ﬁj)/fl' (R)

and go back to Step 1°.

The validity of the above algorithm follows from Theorem 5.5,

5.7 and 5.8. The case when m > 1 can also be treated by the algorithm

by setting fl + f. + f2 +oeer ¢ fm' If mln{fl(A) + fZ(A) + e

1
+ £ () |A e D} # Gy * 0oy + cer 4+ oo, then there exists no feasible
solution,
Upper bounds of submodular functions required in Step 0° are

obtained based on the following lemma.
Lemma'5:9: For a submodular function £:0 + R let £ « RE be a
vector given by

£(e) = £(D(e)) - £(D(e) -{e}) (e ¢ E), (5.50)
where D(e) 1is defined by (5.22). Then for any A e D we have

£(A) < F(A). (5.51)
(Proof) The lemma is in a form dual to Lemma 5.2 and we omit the

proof (see [5]). Q.E.D.

An upper bound a of f:0 + R dis given by




a = Y{f(e) |e.E,E(c) >0, (5.52)

6. Concluding Remarks

We have developed the theory of semimodular programs and
revealed the similarity or analogy between submodular functions on
distributive lattices and convex functions on convex sets. The theory
in the present paper can further be developed and elaborated as the
theory of convex programs has been done so far. It may also be
interesting to examine the existing algorithms for convex programs
and investigate the possibility of adapting them to semimodular

programs.
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