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Abstract. In the literature, the study of preventive maintenance policies has

been largely focused on ergodic analysis where the expected economic perfor-

mance measure per unit time would be optimized in a long run. When the plan-

ning horizon τ is not large, however, the optimal preventive maintenance policy

in [0, τ ] could be significantly different from that under ergodicity. In this paper,

the classical semi-Markov model of Makabe[4] is first examined thoroughly at er-

godicity, yielding many new results. Then, through the dynamic analysis of the

semi-Markov model, the asymptotic expansion of the expected reward in [0, τ ] is

obtained explicitly in an affine form. The optimal preventive maintenance policies

in [0, τ ] are then compared with the ergodic counterparts, thereby demonstrat-

ing danger of exclusive reliance on ergodic analysis when τ is not sufficiently large.

Key words: semi-Markov process, dynamic analysis, preventive maintenance (PM),

corrective maintenance (CM), ergodic optimal PM policy, non-ergodic optimal

PM policy

1. Introduction

The study of preventive maintenance policies in manufacturing dates back to
late 1950’s stemmed from the original work by Morse[7] and Barlow and Hunter[2].
In these papers, the preventive maintenance (PM) takes place for overhauling the
system as soon as the system lifetime exceeds the prespecified time T and the system
is renewed upon completion of PM. If the system fails before T , the corrective
maintenance (CM) takes place, bringing the system back to the fresh state upon
completion. The former focused on analysis of the optimal PM policy maximizing
the expected profit per unit time at ergodicity where two different variable costs
per unit time for PM and CM are involved, while the latter was concerned with the
optimal PM policy which maximizes the availability of the system at ergodicity.

Since then, the study has been expanded in several different directions. Makabe[4]
generalized the original model of Morse[7] by additionally incorporating the fixed
costs for both PM and CM. It was shown that if the optimal PM policy T ∗ exists and
the system lifetime has an increasing hazard function ηL(x) with lim

x→∞
ηL(x) = ∞,

then T ∗ is unique and can be computed numerically. Nakagawa[8] proposed a peri-
odic checking model where the system is inspected periodically, making the system
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anew with probability q and resulting in no effect with probability p upon comple-
tion. The inspection model was combined with the original PM model subsequently
by Nakagawa and Yasui[9] where a PM takes place after every K inspections. This
line of research has been further developed by Vaurio[12, 13] and Bad́ıa, Berrade
and Campos[1].

All of the above papers are restricted to ergodic analysis. A rare exception dealing
with finite horizon optimization is an age reduction approach proposed by Dedopou-
los and Smeers[3] which was subsequently generalized by Samrout, Châtelet, Kouta
and Chebbo[10]. The thrust of the age reduction model can be found in that PM
activities do not necessarily result in bringing the system back to the fresh state
but make the system younger to the extent determined by the level of PM quality.
The optimal PM policy problem is then to determine when to implement PM activ-
ities at what quality. While these papers addressed themselves to find the optimal
PM policy within a finite planning horizon, all system failures were assumed to be
minimal, enabling one to restart the system instantaneously with the same system
state at the time of failure. Because of this limitation, the ergodic analysis is totally
irrelevant to the age reduction model.

To the best knowledge of the authors, there has been no research available in
the literature concerning how to asses the danger of exclusive reliance on ergodic
analysis for a class of PM policies, where the results of ergodic analysis for one
model should be compared with the results of dynamic analysis for the same model.
The purpose of this paper is to fill this gap by analyzing the classical semi-Markov
model of Makabe[4] dynamically as well as at ergodicity. The underlying semi-
Markov model is first examined thoroughly at ergodicity, yielding many new results.
Then, through the dynamic analysis of the semi-Markov model, the asymptotic
expansion of the expected reward in [0, τ ] is obtained explicitly in an affine form.
The optimal preventive maintenance policies in [0, τ ] are then compared with the
ergodic counterparts, thereby demonstrating the danger of exclusive reliance on
ergodic analysis when τ is not sufficiently large.

The structure of this paper is as follows. The classical semi-Markov model of
Makabe[4] is introduced in Section 2. Dynamic analysis of the model is discussed
in Section 3 by examining the trivariate process [N(t), X(t), Z(t)] where, at time t,
N(t) is the state of the semi-Markov process, X(t) describes the time spent in the
current state since the last transition to it, and Z(t) gives the cumulative reward.
The asymptotic expansion of E[Z(t)] as t → ∞ is obtained explicitly in an affine
form. Section 4 is dedicated to ergodic analysis, yielding many new results. In
particular, sufficient conditions are given for the existence of the ergodic optimal
PM policy in terms of hazard rate properties of system lifetimes. In Section 5,
non-ergodic optimal PM policy is introduced based on the asymptotic expansion of
E[Z(t)] obtained in Section 3. Numerical results are presented for demonstrating
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the danger of exclusive reliance on ergodic analysis when the planning horizon is not
sufficiently large. Finally, some concluding remarks are given in Section 6. In order
to enhance the readability of the paper, proofs are given in Appendix.

2. Model Description

We consider a production system generating the profit of p per unit time while
it is working. The system lifetime XL, which is the time until failure since its
fresh start, is assumed to be an absolutely continuous positive random variable with
p.d.f. (probability density function) aL(x). The associated distribution function,
the survival function, and the hazard rate function are denoted by

AL(x) = P [XL ≤ x] =
∫ x
0 aL(y)dy ;

ĀL(x) = P [XL > x] =
∫ ∞
x aL(y)dy

= 1 − AL(x) ;

ηL(x) =
aL(x)
ĀL(x)

= − d

dx
log ĀL(x) .

(2.1)

If the system fails before T , CM takes place where the CM time XR is assumed to
be an absolutely continuous positive random variable with p.d.f. aR(x). We define
AR(x), ĀR(x) and ηR(x) similarly to (2.1). CM requires the fixed cost cR for each
CM and the variable cost vR per unit time under CM.

For PM, throughout this paper, we define PM to mean that the system is over-
hauled when the system lifetime exceeds a prespecified level T . The PM time XM ,
which is the time under overhaul, is also assumed to be an absolutely continuous
positive random variable with aM (x), AM (x), ĀM (x) and ηM (x) defined similarly
to (2.1). The cost structure of PM is in parallel with that of CM, having the fixed
cost cM for each PM and the variable cost vM per unit time under PM. Throughout
the paper, we assume that all random variables involved are mutually independent.

It is natural to assume that CM upon failure is “more costly” than PM, where
the term “more costly” is interpreted in the following manner. Let the moments of
the random variables XL, XR and XM for k=1,2 be denoted by

µL:k
def=

∫ ∞

0
xkaL(x)dx ;(2.2)

µR:k
def=

∫ ∞

0
xkaR(x)dx ;(2.3)

µM :k
def=

∫ ∞

0
xkaM (x)dx .(2.4)

The expected total cost ĈR for each CM and the expected total cost ĈM for each
PM are then given by

ĈR
def= cR + vRµR:1 ; ĈM

def= cM + vMµM :1 .(2.5)
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We assume that the expected CM time is larger than the expected PM time and CM
upon failure is “more costly” than PM in that the expected total cost per unit time
under CM is larger than that under PM. More specifically, throughout the paper, it
is assumed that

µR:1 > µM :1 and udiff =
ĈR

µR:1
− ĈM

µM :1
> 0 .(2.6)

As we will see, it is also useful to introduce lR and lM representing the expected
actual total cost plus the expected opportunity cost for each CM and each PM
respectively, and their difference. Formally, we define

ldiff
def= lR − lM ;

lR
def= ĈR + pµR:1 ; lM

def= ĈM + pµM :1 .(2.7)

Concerning ldiff , the following proposition holds, where proof is provided in Appen-
dix.

Proposition 2.1.

Under the assumption (2.6), one has ldiff > 0 .

Let {N(t) : t ≥ 0} be a stochastic process describing the state of the system at
time t, where

N(t) =


0 if the system is under CM at time t ;
1 if the system is working at time t ;
2 if the system is under PM at time t .

(2.8)

The dwell time of the system in state 1, denoted by XW , is then given by

XW = min{XL, T}.(2.9)

For the time being, we assume that T is also an absolutely continuous positive
random variable, having aT (x), AT (x), ĀT (x) and ηT (x) defined similarly to (2.1).
The case of T being constant can be treated by choosing an appropriate sequence
of absolutely continuous distributions which would converge in distribution to the
desired constant as we will see. For XW , we define aW (x), AW (x), ĀW (x) and
ηW (x) similarly to (2.1). From (2.9), it can be readily seen that,

ĀW (x) = ĀL(x)ĀT (x) ;
ηW (x) = ηL(x) + ηT (x) ;
aW (x) = ĀW (x) {ηL(x) + ηT (x)} .

(2.10)
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It then follows that {N(t) : t ≥ 0} is a semi-Markov process on {0, 1, 2} governed
by the matrix p.d.f. a(x) given by

a(x) =

 0 aR(x) 0
ĀW (x)ηL(x) 0 ĀW (x)ηT (x)

0 aM (x) 0


=

 0 aR(x) 0
ĀT (x)aL(x) 0 ĀL(x)aT (x)

0 aM (x) 0

 .(2.11)

The state transition diagram of {N(t) : t ≥ 0} is depicted in Figure 1, where X(t)
is the age process of the semi-Markov process describing the elapsed time at time t

since the last transition into the current state.

2

1

0

N(t)

X(t)

ηM (x)

T
ηT (x)

ηR(x)

ηL(x)

XR

XL

XM

Figure 1. The state transition diagram of N(t)

It should be noted that N(t) itself is not Markov, but the bivariate process [N(t), X(t)]
is Markov. Throughout the paper, we assume that the system is fresh and working
at time t = 0 with X(0) = 0.

Let Mij(t) be the number of transitions from state i to state j in the time interval
[0, t). Then the reward process Z(t) is defined by

Z(t) def=
∫ t

0
ρ(N(τ))dτ +

∑
i∈N

∑
j∈N

Mij(t)∑
m=1

Dij:m(2.12)

where ρ : {0, 1, 2} → R is the reward rate function and, for m = 1, 2, · · · , Dij:m is
the cost of the m-th transition from state i to state j. In our model, the reward
process Z(t) grows continuously with rate ρ(i) when N(t) = i, where

ρ(i) =


−vR if i = 0 ;

p if i = 1 ;

−vM if i = 2 .

(2.13)
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The transition cost Dij:m is specified by

Dij:m =


−cR if i = 1, j = 2 ;

−cM if i = 1, j = 0 ;

0 else .

(2.14)

A sample path of Z(t) is depicted in Figure 2.

Z(t)

t

+p

+p

+p

−vM

−vR

−cM
−cR

N(t)

t

0

1

2

Figure 2. A sample path of Z(t)

3. Dynamic Analysis of [N(t), X(t), Z(t)]

The purpose of this section is to analyze the trivariate process [N(t), X(t), Z(t)]
defined on N×R+×R, yielding the matrix trivariate Laplace transform with respect
to t, x and z explicitly. Here, N = {0, 1, 2}, R+ is the set of nonnegative real numbers
and R is the set of real numbers. For i, j ∈ N , we first define

Fij(x, z, t) def= P[N(t) = j,X(t) ≤ x,Z(t) ≤ z|N(0) = i,X(0) = 0] .(3.1)

Let δ(t) be the delta function defined as the unit operator for convolution, i.e.
g(t) =

∫ ∞
0 δ(t − x)g(x)dx for an arbitrary function g(t) integrable on [0,∞). Ex-

ploiting the delta function whenever necessary, the generalized joint p.d.f. can be
written as

fij(x, z, t) def=
∂2

∂x∂z
Fij(x, z, t) .(3.2)

In matrix form, the corresponding trivariate Laplace transform with respect to t, x

and z is denoted by

ˆ̂̂
φ(v, w, s) def=

∫ ∞

0
dt e−st

∫ ∞

−∞

∫ ∞

0
e−vx−wzF (dx, dz, t) ,(3.3)



8 U. SUMITA AND A. NAMIKAWA

where Re(s) > 0, Re(v) > 0 and w = eiθ (θ ∈ R).
For a(x) given in (2.11), we define

α(s) =
∫ ∞

0
e−sxa(x)dx =

 0 αR(s) 0
α10(s) 0 α12(s)

0 αM (s) 0

 ,(3.4)

where

αR(s) def=
∫ ∞

0
e−staR(t)dt ;(3.5)

αM (s) def=
∫ ∞

0
e−staM (t)dt ;(3.6)

α10(s)
def=

∫ ∞

0
e−staL(t)ĀT (t)dt ;(3.7)

α12(s)
def=

∫ ∞

0
e−staT (t)ĀL(t)dt .(3.8)

Let g(z) be the generalized matrix function describing the fixed costs cR and cM

associated with transitions of N(t) from 1 to 0 and those from 1 to 2 respectively.
Namely, g(z) can be written as

g(z) =

 δ(z) δ(z) δ(z)
δ(z + cR) δ(z) δ(z + cM )

δ(z) δ(z) δ(z)

(3.9)

with the matrix Laplace transform γ(w) =
∫ ∞
−∞ e−wzg(z)dz given by

γ(w) =

 1 1 1
ecRw 1 ecMw

1 1 1

 .(3.10)

A continuous reward process defined on a semi-Markov process has been stud-
ied extensively in the literature, yielding the trivariate matrix Laplace transform
ˆ̂̂
φ(v, w, s) of (3.3) , see e.g. Theorem 2.1 of Sumita and Masuda[11]. This result
is extended to incorporate a reward process with jumps by Masuda[5, 6]. More
specifically, the next theorem holds true where the following notation is employed.

α∗∗(w, s) = [αij(ρjw + s)γij(w)] ;(3.11)

ˆ̂
β

D
(w, s) =

[
δ{i=j}

1 − αj(ρjw + s)
ρjw + s

]
;(3.12)

ˆ̂χ
α∗∗

(w, s) =
[
I − α∗∗(w, s)

]−1
.(3.13)

Theorem 3.1. (Theorem 2.8.1 of Masuda[5])
For the trivariate stochastic process [N(t), X(t), Z(t)] with X(0) = 0 and Z(0) = 0,
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let ˆ̂̂
φ(v, w, s) be defined as in (3.3). One then has

ˆ̂̂
φ(v, w, s) = ˆ̂χ

α∗∗
(w, s) ˆ̂

β
D

(w, v + s) .

Of particular interest is the bivariate stochastic process [N(t), Z(t)] characterized
by

ˆ̂φ
Z
(w, s) def= ˆ̂̂

φ(0, w, s) = ˆ̂χ
α∗∗

(w, s) ˆ̂
β

D
(w, s) .(3.14)

In what follows, we exploit the specific structure of α(s) given in (3.4) so as to
evaluate ˆ̂φ

Z
(w, s) explicitly. This in turn enables one to obtain

ζZ(s) def=
∫ ∞

0
e−stE[Z(t)]dt = −pT (0)

∂

∂w
ˆ̂φ

Z
(w, s)

∣∣∣∣
w=0

1 .(3.15)

A preliminary lemma is needed. It is easy to confirm this lemma and proof is
omitted.

Lemma 3.2. Let A be defined as

A
def
=

 0 b 0
a 0 d

0 c 0

 .

If |ab + cd| < 1, then
[
I − A

]−1 exists and is given by

[
I − A

]−1 =
1

1 − (ab + cd)

 1 − cd b bd

a 1 d

ac c 1 − ab

 .

From (3.4), (3.10) and (3.11), one sees that

α∗∗(w, s) =

 0 αR(s − vRw) 0
ecRwα10(s + pw) 0 ecMwα12(s + pw)

0 αM (s − vMw) 0

 .(3.16)

For Re(s) > 0 and w = eiθ with θ ∈ R, it can be readily seen that

|ecRwα10(s + pw)αR(s − vRw) + αM (s − vMw)ecMwα12(s + pw)| < 1 .

Hence from (3.14) and Lemma 3.2, the next theorem holds true.

Theorem 3.3.

ˆ̂φ
Z
(w, s) =

1
1 − q(w, s)

ˆ̂ε(w, s) ˆ̂
β

D
(w, s) ,

where ˆ̂
β

D
(w, s) is as in (3.12) and

q(w, s) = b0(w, s)b10(w, s) + b12(w, s)b2(w, s)
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with

b0(w, s) = αR(s − vRw) ;

b10(w, s) = ecRwα10(s + pw) ;

b12(w, s) = ecMwα12(s + pw) ;

b2(w, s) = αM (s − vMw) ;

and

ˆ̂ε(w, s) =

 1 − b12(w, s)b2(w, s) b0(w, s) b0(w, s)b2(w, s)
b10(w, s) q(w, s) b12(w, s)

b10(w, s)b12(w, s) b2(w, s) 1 − b10(w, s)b0(w, s)

 .

In order to determine the optimal PM triggering time as a constant, we consider
a sequence of distribution functions (AT :j(t))

∞
j=1 satisfying AT :j(t) → U(t − T ) as

j → ∞ where U(x) = 1 if x ≥ 0 and U(x) = 0 else. It is clear that Theorem 3.3 still
holds true at the limit. In this case, one has aT (t) = δ(t−T ) and ĀT (t) = 1−U(t−T )
so that, from (3.7) and (3.8),

α10(s) =
∫ T

0
e−staL(t)dt ; α12(s) = e−sT ĀL(T ) .(3.17)

Employing (3.17) in Theorem 3.3, differentiating ˆ̂φ
Z
(w, s) with respect to w at

w = 0, and then exploiting the Taylor expansion of the resulting equation at s = 0,
the following asymptotic expansion of E[Z(t)] can be obtained, where proof is given
in Appendix.

Theorem 3.4.

E[Z(t)] = C1(T )t + C2(T ) + o(t) as t → ∞ ,
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where

G(T ) =
∫ T

0
ĀL(x)dx + µR:1AL(T ) + µM :1ĀL(T ) ;(3.18)

C1(T ) =
p

∫ T
0 ĀL(x)dx −

{
ĈRAL(T ) + ĈM ĀL(T )

}
G(T )

;(3.19)

C2(T ) =
C1(T )C21(T ) + C22(T )

G(T )
;(3.20)

C21(T ) = −1
2

{
µL:2 + µR:2AL(T ) + µM :2ĀL(T )

}
+

∫ ∞

T
xaL(x)dx

−µR:1

∫ T

0
xaL(x)dx − µM :1TĀL(T ) ;(3.21)

C22(T ) = 3p

{
1
2
µL:2 +

∫ T

0
xaL(x)dx − µL:1

}
+ĈR

∫ T

0
xaL(x)dx

+
1
2

{
vRµR:2 − vMµM :2 − (ĈR − ĈM )T

}
ĀL(T ) .(3.22)

It should be noted that C1(T ) characterizes the ergodic behavior of the reward
rate per unit time, while C2(T ) dictates the speed of its convergence to ergodicity.
In the subsequent two sections, we study C1(T ) theoretically and C1(T )+{C2(T )/τ}
numerically so as to explore the ergodic optimal PM policy T ∗ which maximizes the
former and the non-ergodic optimal PM policy T ∗∗(τ) which achieves the maximum
of the latter, where τ denotes the planning horizon. It will be shown that T ∗ could
be significantly different from T ∗∗(τ), thereby demonstrating danger of exclusive
reliance on ergodic analysis and providing some useful managerial implications.

4. Ergodic Optimal PM Policy T ∗

From Theorem 3.4, it can be readily seen that

C1(T ) = lim
t→∞

E[Z(t)]
t

.(4.1)

In other words, given a PM policy T > 0, C1(T ) is the reward rate per unit time
at ergodicity. In this section, we first establish the probabilistic interpretation of
C1(T ). The conditions for the existence of the ergodic optimal PM policy T ∗ are
then investigated in terms of distributional properties of the system lifetime XL,
where

T ∗ = argmax
T≥0

{C1(T )} .(4.2)
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As can be seen from Figure 1, the point (1,0) is a regenerative point of the bivariate
process [N(t), X(t)]. The regenerative cycle time Xcycle(T ) is given by

Xcycle(T ) def=

{
T + XM if XL ≥ T

XL + XR if XL < T
.(4.3)

The following proposition then holds, where proof is given in Appendix.

Proposition 4.1.

(a) Let H̄cycle(x, T ) = P[Xcycle(T ) > x]. Then

H̄cycle(x, T ) =
∫ T

0
ĀR(x − y)aL(y)dy +

∫ ∞

T
ĀM (x − T )aL(y)dy .

(b) Let G(T ) be as in (3.18). Then

E[Xcycle(T )] = G(T ) .

Let Xcycle:up(T ) be the system running time within a regenerative cycle. Then,
as in (4.3), one sees that

Xcycle:up(T ) def=

{
T if XL ≥ T

XL if XL < T
.(4.4)

It then follows that

E[Xcycle:up(T )] =
∫ T

0
xaL(x)dx + TĀL(T ) .

Using integration by parts, this then leads to

E[Xcycle:up(T )] =
∫ T

0
ĀL(x)dx .(4.5)

The probabilistic interpretation of C1(T ) in (3.19) is now clear. The numerator
consists of the expected profit p × E[Xcycle:up], the expected cost ĈR per CM with
probability AL(T ), and the expected cost ĈM per PM with probability ĀL(T ),
representing the expected reward within a regenerative cycle. Since the denominator
is E[Xcycle] from Proposition 4.1 (b), C1(T ) is the expected reward rate per unit time
within a regenerative cycle, which coincides with the ergodic reward rate from (4.1)
as it should be.

We next turn our attention to investigate the conditions under which the ergodic
optimal PM policy T ∗ as defined in (4.2) exists. For this purpose, we first note from
(3.19) that

d

dT
C1(T ) =

ĀL(T )
{G(T )}2

ξ(T ) ,(4.6)

where

ξ(T ) = lR − ldiff · ηL(T )E[Xcycle:up(T )] − ldiff ĀL(T ) − S · ηL(T )(4.7)
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and

S
def= µR:1µM :1udiff ,(4.8)

with udiff as defined in (2.6). It can be seen from (2.5), (2.7) and (4.7) that ξ(T ) = 0
at T = T ∗ if and only if

lR
lM

− 1 = K(T ∗) ;(4.9)

K(T ) =
ηL(T )(µR:1 − µM :1) + 1

ηL(T ) {E[Xcycle:up(T )] + µM :1} − AL(T )
.(4.10)

In this regard, Makabe[4] has shown the following theorem. The class of random
variables with increasing failure rate function (decreasing failure rate function) is de-
noted by IFR (DFR). By increasing (decreasing), we actually mean non-decreasing
(non-increasing). In addition, the class of exponential random variables with con-
stant failure rate function is denoted by EXP. The set difference between two sets
A and B is denoted by A \ B = {x : x ∈ A and x ̸∈ B}.

Theorem 4.2. (Makabe[4])

1) If XL ∈ IFR\EXP (DFR\EXP), then K(T ) in (4.10) is decreasing (in-
creasing).

2) If the optimal PM policy T ∗ exists, and XL ∈ IFR\EXP and ηL(T ) → ∞
as T → ∞, then T ∗ is unique and is decreasing in lR

lM
.

In this paper, we elaborate further concerning the ergodic optimal PM policy T ∗.
In particular, sufficient conditions are given explicitly for the existence of T ∗. Proofs
of the following theorems are given in Appendix. Our first theorem characterizes
the monotonicity properties of ξ(T ) in (4.7) in terms of the IFR\EXP, DFR\EXP
and EXP properties of the system lifetime XL.

Theorem 4.3. Let ξ(T ) be as in (4.7).

a) ξ(T ) is decreasing in T if and only if XL ∈ IFR\EXP.
b) ξ(T ) is increasing in T if and only if XL ∈ DFR\EXP.
c) ξ(T ) is constant if and only if XL ∈ EXP.

Theorem 4.3 enables one to capture the functional behavior of d
dT C1(T ) through

(4.6), which in turn leads to sufficient conditions for the existence of T ∗, as we see
next. For this purpose, the following identities play a key role.{

ξ(0+) = lM − ηL(0+)S ;
ξ(+∞) = lR − ηL(+∞)(ldiffµL:1 + S) .

(4.11)

In what follows, T ∗ = +∞ means that the preventive maintenance should not be
implemented. We also note from (3.18) and (3.19) that C1(0) = − ĈM

µM :1
< 0. Ac-

cordingly, T ∗ = 0 if and only if C1(T ) < 0 for all T ≥ 0 and therefore the system
should not be run at all for this case.
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Theorem 4.4. Let T ∗ be defined as in (4.2) and suppose XL ∈ IFR\EXP.

A) If ηL(+∞) < lR
ldiff µL:1+S , then C1(T ) is increasing in T and T ∗ = +∞.

B) If ηL(0) < lM
S and ηL(+∞) > lR

ldiff µL:1+S , then T ∗ exists uniquely satisfy-

ing d
dT C1(T )

∣∣
T=T ∗ = 0.

C) If ηL(0) > lM
S , then C1(T ) is decreasing in T and T ∗ = 0.

When XL ∈ DFR\EXP, as summarized in the next theorem, either the preventive
maintenance should not be implemented or the system should not be run at all. This
theorem can be proven similarly to Theorem 4.4 and proof is omitted.

Theorem 4.5. Let T ∗ be defined as in (4.2) and suppose XL ∈ DFR\EXP.

A) If ηL(0) < lM
S , then C1(T ) is increasing in T and T ∗ = +∞.

B) If ηL(0) > lM
S and ηL(+∞) < lR

ldiff µL:1+S , then T̃ exists uniquely satisfying
d

dT C1(T )
∣∣
T=T̃

= 0. In this case, C1(T̃ ) is the global minimum of C1(T ). For

the global maximum point, T ∗ = +∞ if pµL:1−ĈR
µL:1+µR:1

≥ − ĈM
µM :1

, and T ∗ = 0 else.
C) If ηL(+∞) > lR

ldiff µL:1+S , then C1(T ) is decreasing in T and T ∗ = 0.

For the case of XL ∈ EXP, one also sees that either the preventive maintenance
should not be implemented or the system should not be run at all. Since the under-
lying p.d.f. is exponential, however, the conditions can be simplified. This theorem
can be also proven similarly to Theorem 4.4 and proof is omitted.

Theorem 4.6. Let T ∗ be defined as in (4.2) and suppose XL ∈ EXP with p.d.f.
aL(x) = θe−θx.

A) If θ ≤ lM
S , then C1(T ) is increasing in T and T ∗ = +∞.

B) If θ > lM
S , then C1(T ) is decreasing in T and T ∗ = 0.

We now illustrate Theorems 4.3 and 4.4 of primary concern numerically. Let the
exponential variate of mean 1/λ be denoted by E(λ). Throughout the rest of the
paper, we assume that XR = E(λR1)+E(λR2) and XM = E(λM1)+E(λM2) where
the underlying random variables are independent. The corresponding p.d.f’s are
given by

aR(x) =
λR1λR2

λR2 − λR1

(
e−λR1x − e−λR2x

)
;(4.12)

aM (x) =
λM1λM2

λM2 − λM1

(
e−λM1x − e−λM2x

)
.(4.13)

We also adopt the following parameter values.
p = 25.0 ;

vR = 20.0 ; vM = 0.5 ;

cR = 10.0 ; cM = 5.0 .

(4.14)
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Case 1 : IFR-1 for Theorem 4.4 A)

We suppose that the lifetime XL is the sum of two independent exponential variates,
i.e, XL = E(λL1) + E(λL2). The corresponding p.d.f. is then given by

aL(x) =
λL1λL2

λL2 − λL1

(
e−λL1x − e−λL2x

)
.(4.15)

For the parameters to specify XL, XR and XM , we set
λL1 = 0.15 ; λL2 = 0.1 ;

λR1 = 0.8 ; λR2 = 0.5 ;

λM1 = 0.95 ; λM2 = 0.55 .

Accordingly, one has

ηL(∞) = 0.1 < 0.104 =
lR

ldiffµL:1 + S

so that the conditions of Theorem 4.4 A) are satisfied. In this case, ξ(T ) is decreasing
while C1(T ) is increasing with T ∗ = +∞ as depicted in Figures 3 and 4.
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Case 2 : IFR-2 for Theorem 4.4 B)

Let XL be as in Case 1. However, the parameters for XL, XR and XM are set
differently as specified below.

λL1 = 0.15 ; λL2 = 0.1 ;

λR1 = 0.6 ; λR2 = 0.1 ;

λM1 = 0.9 ; λM2 = 0.5 .

It then follows that

ηL(0) = 0 < 0.124 =
lM
S

,

and

ηL(∞) = 0.1 > 0.065 =
lR

ldiffµL:1 + S
,

and the conditions for Theorem 4.4 B) are met. In this case, ξ(T ) is decreasing
while C1(T ) is unimodal with T ∗ = 5.7 and C1(T ∗) = 9.3 as depicted in Figures 5
and 6.
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Case 3 : IFR-3 for Theorem 4.4 C)
In order to illustrate Theorem 4.4 C), we define the p.d.f. of XL as

aL(x) =
1

λL1 − λL2

{
λL1(λL2 + c)e−(λL2+c)x − λL2(λL1 + c)e−(λL1+c)x

}
.

It should be noted that, under the conditions λL1 > λL2 > 0 and c > 0, one has

aL(x) =
λL1λL2e−cx

λL1 − λL2

{ (
1 +

c

λL2

)
e−λL2x −

(
1 +

c

λL1

)
e−λL1x

}
>

λL1λL2e−cx

λL1 − λL2

{ (
1 +

c

λL1

)
e−λL1x −

(
1 +

c

λL1

)
e−λL1x

}
= 0 ,

so that aL(x) is well defined. Let the parameters for XL, XR and XM be given by
λL1 = 0.02 ; λL2 = 0.01 ; c = 0.275 ;

λR1 = 0.4 ; λR2 = 0.3 ;

λM1 = 0.9 ; λM2 = 0.5 .

It can be seen that
ηL(0) = 0.275 > 0.274 =

lM
S

,

and the conditions for Theorem 4.4 C) are satisfied. In this case, both C1(T ) and
ξ(T ) are decreasing with T ∗ = 0 so that the system should not be run at all. Figures
7 and 8 illustrate these observations.
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5. Non-ergodic Optimal PM Policy T ∗∗(τ) and Danger of Exclusive

Reliance on Ergodic Analysis

In this section, we discuss the non-ergodic optimal PM policy T ∗∗(τ) defined by

T ∗∗(τ) = argmax
T≥0

{
C1(T ) +

C2(T )
τ

}
,(5.1)

where τ denotes the planning horizon. Given τ > 0, we are interested in explor-
ing differences between the optimal ergodic PM policy T ∗ defined in (4.2) and the
optimal non-ergodic PM policy T ∗∗(τ) in (5.1). For this purpose, the expected cu-
mulative reward over the planning horizon τ for each optimal policy is introduced
as

Eerg[τ, T ∗] def= C1(T ∗)τ ;(5.2)

Enon-erg[τ, T ∗∗(τ)] def= C1(T ∗∗(τ))τ + C2(T ∗∗(τ)) .(5.3)

We now demonstrate the danger of exclusive reliance on ergodic analysis using
Case 2 of Section 4. For this case, we recall that T ∗ = 5.7 and C1(T ∗) = 9.3 so that
Eerg[τ, T ∗] is linear in τ with slope of 9.3. Figure 9 depicts T ∗∗(τ) as a function of
τ , and both Eerg[τ, T ∗] and Enon-erg[τ, T ∗∗(τ)] are exhibited in Figure 10.

As far as the non-ergodic analysis is concerned, we observe that T ∗∗(τ) = τ for
0 ≤ τ ≤ 59.4. This means that no preventive maintenance is required when the
planning horizon is within 59.4. For τ > 59.4, the non-ergodic optimal PM policy
T ∗∗(τ) emerges with T ∗∗(τ) < τ , which monotonically decreases to the limit T ∗ = 5.7
as τ → ∞. One has, for example, T ∗∗(59.5) = 9.0 while T ∗∗(100) = 7.2. Because of
this difference, the expected cumulative reward over the planning horizon τ under
the ergodic optimal policy T ∗ differs from that under the non-ergodic optimal policy
T ∗∗(τ) when τ is not sufficiently large, as shown in Figure 10, demonstrating the
danger of exclusive reliance on ergodic analysis.
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Figure 9. Optimal PM policies
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6. Conclusion

In this paper, the danger of exclusive reliance on ergodic analysis in devising op-
timal PM policies is addressed. The classical semi-Markov model of Makabe[4] is
first examined thoroughly at ergodicity, yielding many new results. In particular,
sufficient conditions are given for the existence of the ergodic optimal PM policy
in terms of hazard rate properties of system lifetimes. Then, dynamic analysis of
the model is discussed by examining the trivariate process [N(t), X(t), Z(t)], where
N(t) is the underlying semi-Markov process describing the state of the production
system, X(t) is the associated age process, i.e. the elapsed time at time t since the
last transition into the current state, and Z(t) is the reward process with jumps
defined on [N(t), X(t)]. The asymptotic expansion of E[Z(t)] as t → ∞ is obtained
explicitly in an affine form, and non-ergodic optimal PM policy is introduced based
on the asymptotic expansion. Numerical results are presented for demonstrating
the danger of exclusive reliance on ergodic analysis when the planning horizon is not
sufficiently large.
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Appendix

Proof of Proposition 2.1

We note that
ldiff

µR:1µM :1
=

ĈR

µR:1µM :1
+

p

µM :1
− ĈM

µR:1µM :1
− p

µR:1
.

Since µR:1 > µM :1 > 0, by replacing µR:1 in the denominators of ĈM and p by µM :1,
one then sees that

ldiff

µR:1µM :1
>

ĈR

µR:1µM :1
− ĈM

µ2
M :1

=
1

µM :1
udiff ,

and the proposition follows since udiff > 0. 2

Proof of Theorem 3.4

Let

∂

∂w
ˆ̂φ

Z
(w, s)

∣∣∣∣
w=0

def=

 µ̂1:00(s) µ̂1:01(s) µ̂1:02(s)
µ̂1:10(s) µ̂1:11(s) µ̂1:12(s)
µ̂1:20(s) µ̂1:21(s) µ̂1:22(s)

 .

Since we assume that the system starts from state 1, the initial vector is pT (0) =
[0, 1, 0]. From (3.15), one then has∫ ∞

0
e−stE[Z(t)]dt = µ̂1:10(s) + µ̂1:11(s) + µ̂1:12(s) .

In order to find µ̂1:1j(s) for j = 0, 1, 2, we differentiate ˆ̂φ
Z
(w, s) in Theorem 3.3 with

respect to w and setting w = 0, yielding
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µ̂1:10(s) = − 1
{G(s)}2

{H(s)G(s) + H0(s)B(s)} ;

µ̂1:11(s) = − 1
{G(s)}2

{
k̃

′
(s)G(s) + k̃(s)B(s)

}
;

µ̂1:12(s) = − 1
{G(s)}2

{L(s)G(s) + L0(s)B(s)} ,

where, with f
′
(x) = d

dxf(x),

G(s) = 1 −
{

ã(s)b̃(s) + c̃(s)d̃(s)
}

;

B(s) = ã
′
(s)b̃(s) + ã(s)b̃

′
(s) + c̃

′
(s)d̃(s) + c̃(s)d̃

′
(s) ;

H(s) = ã
′
(s)h̃(s) + ã(s)h̃

′
(s) ;

H0(s) = ã(s)h̃(s);

L(s) = d̃
′
(s)l̃(s) + d̃(s)l̃

′
(s) ;

L0(s) = d̃(s)l̃(s) ;

ã(s) = α10(s) ; b̃(s) = αR(s) ;

c̃(s) = αM (s) ; d̃(s) = α12(s) ;

ã
′
(s) = cRα10(s) + p

d

ds
α10(s) ;

b̃
′
(s) = −vR

d

ds
αR(s) ;

c̃
′
(s) = −vM

d

ds
αM (s) ;

d̃
′
(s) = cMα12(s) + p

d

ds
α12(s);

h̃(s) = ᾱR(s) ; k̃(s) = ᾱW (s) ; l̃(s) = ᾱM (s) ;

h̃
′
(s) =

vR

s

{(
d

ds
αR(s) + ᾱR(s)

)}
;

k̃
′
(s) = −p

s

{(
d

ds
α1(s)

)
+ ᾱ1(s)

}
;

l̃
′
(s) =

vM

s

{(
d

ds
αM (s) + ᾱM (s)

)}
.



22 U. SUMITA AND A. NAMIKAWA

By exploiting the Taylor expansions of these functions at s = 0, one has

ã(s) = µ10:0 − µ10:1s + 1
2µ10:2s

2 + o(s2) ;
b̃(s) = 1 − µR:1s + 1

2µR:2s
2 + o(s2) ;

c̃(s) = 1 − µM :1s + 1
2µM :2s

2 + o(s2) ;
d̃(s) = µ12:0 − µ12:1s + 1

2µ12:2s
2 + o(s2) ;

ã
′
(s) = ǎ(0) − ǎ(1)s + 1

2 ǎ(2)s2 + o(s2) ;
b̃
′
(s) = vR

{
µR:1 − µR:2s + 1

2µR:3s
2
}

+ o(s2) ;
c̃
′
(s) = vM

{
µM :1 − µM :2s + 1

2µM :3s
2
}

+ o(s2) ;
d̃
′
(s) = ď(0) − ď(1)s + 1

2 ď(2)s2 + o(s2) ;
h̃(s) = µR:1 − 1

2µR:2s + 1
6µR:3s

2 + o(s2) ;
k̃(s) = µ1:1 − 1

2µ1:2s + 1
6µ1:3s

2 + o(s2) ;
l̃(s) = µM :1 − 1

2µM :2s + 1
6µM :3s

2 + o(s2) ;
h̃

′
(s) = −vR

{
1
2µR:2 − 1

3µR:3s + 1
12µR:4s

2
}

+o(s2) ;
k̃

′
(s) = −p

{
1
2µ1:2 − 1

3µ1:3s + 1
12µ1:4s

2
}

+o(s2) ;
l̃
′
(s) = −vM

{
1
2µM :2 − 1

3µM :3s + 1
12µM :4s

2
}

+o(s2) ,

(6.1)

where 
ǎ(0) = cRµ10:0 − pµ10:1 ;
ǎ(1) = cRµ10:1 + pµ10:2 ;
ǎ(2) = cRµ10:2 − pµ10:3 ,
ď(0) = cMµ12:0 − pµ12:1 ;
ď(1) = cMµ12:1 + pµ12:2 ;
ď(2) = cMµ12:2 − pµ12:3 .

Since {
aT (x) = δ(x − T );
ĀT (x) = 1 − U(x − T ),

U(x − T ) =

{
1 if x ≥ T ;
0 if x < T,

one can sees that

µ10:0 = AL(T ) ; µ12:0 = ĀL(T ) ;

µ10:1 =
∫ ∞

0
dx

∫ ∞

x
ĀL(y)dy − TĀL(T ) ;

µ12:1 = TĀL(T ) ; µ1:1 = m10(1) + m12(1) .

From (6.1), it then leads to∫ ∞

0
e−stE[Z(t)]dt =

1
s2

C1(T ) +
1
s
C2(T ) + o

(
1
s2

)
.

The theorem now follows by inverting the above equation into the real domain. 2
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Proof of Proposition 4.1

Using the law of total probability and then employing Bayes’ rule, the survival
function of the cycle time can be evaluated as

P[Xcycle > x] = P[Xcycle > x,XL ≤ T ] + P[Xcycle > x,XL > T ]

=
∫ ∞

0
P[XL + XR > x,XL ≤ T |XL = y]aL(y)dy

+
∫ ∞

0
P[T + XM > x,XL > T |XL = y]aL(y)dy

=
∫ T

0
ĀR(x − y)aL(y)dy +

∫ ∞

T
ĀM (x − T )aL(y)dy .

This then leads to

E[Xcycle] =
∫ ∞

0
P[Xcycle > x]dx

=
∫ T

0
dy aL(y)

∫ ∞

0
ĀR(x − y)dx +

∫ ∞

T
dy aL(y)

∫ ∞

0
ĀM (x − T )dx

=
∫ T

0
dy aL(y)

{∫ 0

−y
ĀR(z)dz + µR:1

}
+ ĀL(T )

{∫ 0

−T
ĀM (z)dz + µM :1

}
.

Since ĀR(z) = ĀM (z) = 1 for z ≤ 0, one has

E[Xcycle] =
∫ T

0
y aL(y)dy + µR:1AL(T ) + TĀL(T ) + µM :1ĀL(T )

=
∫ T

0
ĀL(y)dy + µR:1AL(T ) + µM :1ĀL(T ) ,

completing the proof. 2

Proof of Theorem 4.3

By differentiating ξ(T ) in (4.7) with respect to T , one finds that

d

dT
ξ(T ) = −

{
d

dT
ηL(T )

}
(ldiffE[Xcycle:up(T )] + S) .

Since ldiff > 0 from Propsition 2.1 and S > 0 from (4.8), it then follows that

XL ∈ IFR \ EXP ⇔ d

dT
ηL(T ) > 0 ⇔ d

dT
ξ(T ) < 0 ;

XL ∈ DFR \ EXP ⇔ d

dT
ηL(T ) < 0 ⇔ d

dT
ξ(T ) > 0 ;

XL ∈ EXP ⇔ d

dT
ηL(T ) = 0 ⇔ d

dT
ξ(T ) = 0 ,

completing the proof. 2
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Proof of Theorem 4.4

Theorem 4.3 states that XL ∈ IFR\EXP implies ξ(T ) is increasing in T . The
following three cases are then considered.

Case A) ξ(T ) > 0 for T ≥ 0
Because of the monotonicity of ξ(T ), the above condition equivalent to

ηL(∞) <
lR

ldiffµL:1 + S

Since the sign of d
dT C1(T ) coincides with that of ξ(T ) from (4.6), one has

C1(T ) is increasing in T with T ∗ = +∞.
Case B) ξ(0) > 0 and ξ(+∞) < 0

The above conditions are satisfied if and only if

ηL(0) <
lM
S

and ηL(∞) >
lR

ldiffµL:1 + S
.

In this case, ξ(T ) crosses zero exactly once at T = T ∗. From (4.6), this then
implies that C1(T ) achieves the unique global maximum at T ∗.

Case C) ξ(T ) < 0 for T ≥ 0
Since ξ(T ) is decreasing, the above condition can be rewritten as

ηL(0) >
lM
S

.

Clearly, one has ξ(T ) < 0 for T ≥ 0 so that C1(T ) is strictly decreasing in
T from (4.6). Accordingly, C1(T ) achieves the unique global maximum at
T ∗ = 0, completing the proof. 2
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