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Abstract A competitive market model is considered with M suppliers and N customers, where each

supplier provides a homogeneous service such as energy supply and has to offer a uniform price upon

delivery to all customers. Given a price upper bound U , the model is formulated as an M person game

with pure strategy. It is shown that the M person game has the unique Nash equilibrium if and only if each

customer can be serviced by at most one supplier. Furthermore, this unique Nash equilibrium is peculiar

in that all suppliers adopt the same upper bound price U . In general, the M person game does not have

any Nash equilibrium. For such a case it is demonstrated that the suppliers continue to exercise their price

strategies in a cyclic manner indefinitely.

Keywords: Energy, N person game, Non-existence of Nash equilibrium

1. Introduction

Competitive market models for homogeneous products and services such as the energy sup-

ply can be traced back to 1920’s. The pioneering paper by Hotelling [5] develops a duopoly

model where customers are distributed uniformly over a finite line and serviced by two su-

plliers who choose their locations and prices so as to maximize their profit. Non-existence

of Nash equilibrium, unless the two suppliers are located relatively for apart, is shown by

D’Aspremont et al [2]. Subsequently, the Hotteling model has been extended in several

directions. Economides [3] deals with the case where customers are distributed uniformly

on a bounded plane. Anderson [1] incorporate stackelberg leadership within the context

of the Hotelling model. Other variations include Thisse and Vives [9], Zhang and Teraoka

[10] and Rath [7]. Gabszewicz and Thisse [4] provide an excellent review of the literature.

More recently, for a spatially duopoly model with customers located at different nodes hav-

ing separate demand functions, Matsubayashi et al.[6] establish a necessary and sufficient

condition for the existence of Nash equilibrium and develop computational algorithms for

finding the equilibrium point. When mixed strategies are allowed, Takahashi and Sumita

[8] derive two type of Nash equilibriums explicitly for a two person model.

The purpose of this paper is to develope an M person game with pure strategy, describ-

ing a competitive market for homogeneous products and services such as the energy supply.

The market consists of M suppliers and N customers, where each supplier offers a uniform

price upon delivery to all customers. Such a uniform price practice in the energy supply
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industry is still in effect to some extent even after deregulation of the industry in Japan.

Locations of suppliers and customers are fixed and the competitive structures are charac-

terized in terms of costs and prices. Analysis of the price strategy in this realistic setting

has been increasing its importance in the energy supply industry because of deregulation.

The deregulation in principle is intended to derive a variety of ways to lower barriers for

new entry. Large-scale industrial customers are now quite sensitive to prices of the energy

they need, and the industry has been exposed to growing severe price competition. The

thrust of this paper is to show that, except under a rather peculiar necessary and safficient

condition, Nash equilibrium does not exist, demonstrating that the suppliers exercise their

price strategies in a cyclic manner indefinitely.

The structure of this paper is as follows. In seciton 2, a competitive market model is

formally introduced and the game-theoretic framework is established. A necessary and suffi-

cient condition is derived in Section 3 for existence of Nash equilibrium. It is shown that the

Nash equilibrium is unique, if any, and rather peculiar in that all suppliers adopt the price

upper bound U . Finally in Section 4, a duoply model is discussed explicitly demonstrating

the cyclic phenomenon of the suppliers in exercising their price strategies so as to maximize

their profits.

2. Model Description

We consider a market consisting of M suppliers and N customers as depicted in Figure 2.1,

where each supplier provides a homogeneous service such as propane gas or LNG trans-

portation by tank lorry. Each customer may represent one large industry or a group of

residents in the same district. Let M = {1, 2, · · · , M} and N = {1, 2, · · · , N} be a set of

suppliers and a set of customers repectively. The cost for supplier i ∈ M to provide a unit

of service to customer j ∈ N is denoted by cij .

Since the service under consideration is typically an energy supply service, it is natural������������������������������������ ��	
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Figure 2.1: M Supplier N Customer Model with M=3 and N=6

to assume that there exists a price upper bound U . In our model each supplier has to offer
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a uniform price upon delivery to all customers, denoted by πi, i ∈ M. Supplier i may offer

the service to customer j only when it results in a positive return to do so. In other words,

a supplier i may offer the service to customer j only if cij < πi . In order to avoid trivial

cases, we assume that each supplier can offer the service to at least one of the customers so

that

min
j∈N

cij
def
= ci < πi ≤ U for all i ∈ M . (2.1)

Let Dj be the total demand of customer j. We assume that the production capacity of

each supplier is large enough to cover the entire demand
∑

j∈N Dj . If there exists only one

supplier who offers the lowest price to customer j, the supplier monopolizes the demand

of customer j. Should k different suppliers offer the same lowest price to customer j, then

each of such suppliers would sell Dj/k to customer j .

In what follows, we describe an M person game defined on the strategy set S where

S = ΠM
i=1Si ; Si = [ci, U ] i ∈ M .

Given πT def
= [π1, π2, · · · , πM ] ∈ S, let Pi(π) be the payoff function of supplier i . In order to

define the function specifically, the following index sets are introduced. Given πT ∈ S, we

define for j ∈ N the set of suppliers not available to provide service to customer j by

NAj(π) = {m ∈ M| πm ≤ cmj} . (2.2)

We also define for i ∈ M,

LEi(π) = {m ∈ M| πi > πm} ; (2.3)

LAi(π) = {m ∈ M| πi < πm} ;

EQi(π) = {m ∈ M| πi = πm} . (2.4)

It should be noted that NAj(π) consists of those suppliers who cannot offer the service to

customer j because a positive return does not result from doing so, and LEi(π) is the set of

those suppliers who would eliminate supplier i if they happen to offer the service to the same

customer. Similarly LAi(π) consists of those suppliers who would be eliminated by supplier

i. With those suppliers in EQi(π), supplier i would split the demand equally, should they

offer the lowest price to the same customer simultaneously.

Let Wij(π) be the set of suppliers who would offer the service to customer j together

with supplier i . Using the above notation, Wij(π) can be written as

Wij(π) =







{m ∈ M| m ∈ EQi(π) ∩ NAj(π)} if NAj(π) ∩ LEi(π) = ø
and i ∈ NAj(π)

ø if NAj(π) ∩ LEi(π) 6= ø

(2.5)

or i ∈ NAj(π)

where NAj(π)
def
= M\NAj(π). It should be noted that Wij(π) = ø if either supplier i cannot

gain positive profit by offering service to customer j so that i ∈ NAj(π), or supplier i does

not offer the lowest price to customer j. In the latter case, there exists m′ ∈ M satisfying

3



m′ ∈ LEi(π) and m′ ∈ NAj(π), and hence NAj(π) ∩ LEi(π) 6= ø. When supplier i offer

the lowest price to customer j, one sees that NAj(π) ∩ LEi(π) = ø and i ∈ NAj(π) so that

i ∈ Wij(π).

Based on these index sets, the following index functions are now introduced.

Iij(π) =

{

1 if |Wij(π)| = 1
0 else

(2.6)

Jij(π) =

{

1 if |Wij(π)| > 1
0 else

(2.7)

where |A| denotes the cardinality of a set A. It should be noted from (2.5) that if Wij(π) 6= ø

then i ∈ NAj(π) so that i ∈ Wij(π). Hence if Iij(π) = 1, then Wij(π) = {i}, i.e. Iij(π) = 1

if and only if supplier i exclusively provides the service to customer j. Similarly, one has

Jij(π) = 1 if and only if supplier i jointly provides the service to customer j with another

suppliers. When a price vector π = [π1, · · · , πM ]T is given, the payoff function Pi(π) of

supplier i is then given by

Pi(π) =
∑

j∈N

Dj(πi − cij)

{

Iij(π) +
Jij(π)

|Wij(π)|

}

, i ∈ M (2.8)

where Jij(π)/|Wij(π)|
def
= 0 if Jij(π) = 0 and Wij(π) = ø .

The following conventional notion in game theory is employed. Given π = [π1, · · · , πM ]T ,

we write π\i = [π1, · · · , πi−1, πi+1, · · · , πM ]T and (ai, π\i) = [π1, · · · , πi−1, ai, πi+1, · · · , πM ]T .

Definition 2.1

a) For i ∈ M, π∗
i is a best reply against π\i if Pi(π

∗
i , π\i) = maxπi∈Si

[Pi(πi, π\i)] .

b) For i ∈ M, Bi(π\i) = {π∗
i | π∗

i is a best reply against π\i} is called the set of best

replies of supplier i against π\i .

c)The best reply correspondence B : S → S is defined as B(π) =
∏M

i=1 Bi(π\i) .

d)π∗ is a Nash equilibrium, denoted by π∗ ∈ NE, if and only if π∗ ∈ B(π∗) .

Of interest is to see whether one or more than one Nash equilibrium points exist, i.e. NE 6=

ø . In the next section, a necessary and sufficient condition is given under which NE 6= ø .

An example is provided for illustrating this case. This condition is rather restrictive however

and normally one has NE = ø . Section 4 is devoted to exhibit typical strategies of suppliers,

when NE = ø , through a numerical example.

3. A Necessary and Sufficient Condition for Existence of Nash Equilibrium

In this section we prove a necessary and sufficient condition under which Nash Equilibrium

points exist for the model defined in the previous section. A few preliminary lemmas are

needed. The first lemma states that, if supplier i is the only supplier to service customer

j when all suppliers offer the maximum price U , then supplier i remains to be the unique

supplier to customer j for any price vector π as long as supplier i could generate a positive

return from πi.

Lemma 3.1 Let U = [U, · · · , U ]. If NAj(U) = {i} for some j ∈ N , then, for any price

vector π satisfying i ∈ NAj(π), one has

Wij(π) = {i} .
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Proof: From (2.2), it can be readily seen that NAj(π) ⊂ NAj(U) for any π ∈ S. Since

NAj(U) = {i} and i ∈ NAj(π), this then implies that NAj(π) = {i}. Hence, one has

NAj(π) ∩ LEi(π) = ø so that Wij(π) = {i} from (2.5). 2

The next lemma states that if π 6= U , then at least one supplier could serve at least one

customer with price less than the upper limit U .

Lemma 3.2 If π satisfies (2.1) and π 6= U , then there exists at least one pair of supplier i

and customer j such that |Wij(π)| ≥ 1 and πi < U .

Proof: Since π 6= U , there exists at least one i satisfying πi < U . Let j be such that

cij = minn∈N cin . Then one has cij < πi from (2.1) so that i ∈ NAj(π). We consider the

following two cases.

Case1: NAj(π) ∩ LEi(π) = ø

Since i ∈ NAj(π), one has i ∈ Wij(π) from (2.5) and hence |Wij(π)| ≥ 1.

Case2: NAj(π) ∩ LEi(π) 6= ø

Let i′ be such that πi′ = minm∈NAj (π)∩LEi(π) πm . Then NAj(π) ∩ LEi′(π) = ø . One also

sees that i′ ∈ NAj(π)∩LEi(π) implies i′ ∈ NAj(π). These observations together with (2.5)

imply that i′ ∈ Wi′j(π) and |Wi′j(π)| ≥ 1 . 2

The third and last lemma implies that if supplier i is the unique supplier for customer j,

then supplier i could increase its price, while remaining to be the single service provider to

customer j, as long as the increased price is less than the nearest price of the competitors.

Lemma 3.3 For π∗ = [π∗
1, π

∗
2, · · · , π∗

M ] with π∗
i < U for some i ∈ M, let ∆ > 0 be

sufficiently small so that

π♯
i

def
= π∗

i + ∆ < min
m∈LAi(π∗)

{π∗
m} . (3.1)

Then the following statements hold true for all j ∈ N .

1) |Wij(π
♯
i , π

∗
\i)| ≤ 1

2) If |Wij(π
∗)| = 1 , then |Wij(π

♯
i , π

∗
\i)| = 1

Proof: We first prove part 1) by contraposition. Suppose |Wij(π
♯
i , π

∗
\i)| ≥ 2 for some j.

Then from the definition of Wij(π) in (2.5), one has |EQi(π
♯
i , π

∗
\i)| ≥ 2. From (3.1) it is

clear that

LAi(π
♯
i , π

∗
\i) = LAi(π

∗) . (3.2)

Since ∆ > 0, it follows from (2.3) and (2.4) that LEi(π
♯
i , π

∗
\i) =LEi(π

∗) ∪ (EQi(π
∗) \ {i}).

From this and (3.2), it is readily seen that

EQi(π
♯
i , π

∗
\i) = M\ [LEi(π

♯
i , π

∗
\i) ∪ LAi(π

♯
i , π

∗
\i)]

= M\ [LEi(π
∗) ∪ (EQi(π

∗) \ {i}) ∪ LAi(π
∗)]

= M\ [(LEi(π
∗) ∪ EQi(π

∗) ∪ LAi(π
∗)) \ (LEi(π

∗) ∩ {i} ∩ LAi(π
∗))]

= M\ (M\ {i}) = {i} ,

which contradicts to |EQi(π
♯
i , π

∗
\i)| ≥ 2 .

For part 2), suppose |Wij(π
∗)| = 1 and |Wij(π

♯
i , π

∗
\i)| 6= 1 for some j ∈ N . Then from

5



part 1), one has |Wij(π
♯
i , π

∗
\i)| = 0, and hence Wij(π

♯
i , π

∗
\i) = ø . Accordingly from (2.5), one

has either

NAj(π
♯
i , π

∗
\i) ∩ LEi(π

♯
i , π

∗
\i) 6= ø or i ∈ NAj(π

♯
i , π

∗
\i) . (3.3)

Similarly from (2.5), since Wij(π
∗) 6= ø from the assumption, one has

NAj(π
∗) ∩ LEi(π

∗) = ø ; and (3.4)

i ∈ NAj(π
∗) . (3.5)

From (2.2) and (3.5), it is clear that

NAj(π
∗) ⊂ NAj(π

♯
i , π

∗
\i) . (3.6)

Hence one has i ∈ NAj(π
♯
i , π

∗
\i) from (3.5) and (3.6). This, in turn, implies from (3.3) that

NAj(π
♯
i , π

∗
\i) ∩ LEi(π

♯
i , π

∗
\i) 6= ø. (3.7)

It then follows from (3.4), (3.6) and (3.7) that

SE
def
= NAj(π

∗) ∩ [LEi(π
♯
i , π

∗
\i) \ LEi(π

∗)]

= {NAj(π
♯
i , π

∗
\i) ∩ LEi(π

♯
i , π

∗
\i)} \ {NAj(π

∗) ∩ LEi(π
∗)} 6= ø . (3.8)

Suppose i′ ∈ SE. It is clear from (3.8), that i′ ∈ LEi(π
♯
i , π

∗
\i) and hence i′ /∈ LAi(π

♯
i , π

∗
\i) =

LA(π∗) from (3.2). Since i′ ∈ SE, one sees that i′ /∈ LEi(π
∗) . Consequently, one has

i′ ∈ EQi(π
∗). Thus i′ ∈ (EQi(π

∗) ∩ NAj(π
∗)) so that i′ ∈ Wij(π

∗). Since i′ ∈ LEi(π
♯
i , π

∗
\i),

one has i′ 6= i, so that Wij(π
∗) ⊃ {i, i′} and hence |Wij(π

∗)| ≥ 2, which contradicts to

|Wij(π
∗)| = 1, completing the proof. 2

We are now in a position to prove the main theorem of this section.

Theorem 3.4 For the game defined in Section 2, the following two statements hold true.

1) NE 6= ø if and only if |NAj(U)| ≤ 1 for all j ∈ N

2) If NE 6= ø, then NE = {U}

Proof: We first prove part 2) by contraposition. Suppose π∗ ∈ NE and U 6= π∗. From

Lemma 3.2, there exists î ∈ M and ĵ ∈ N such that |Wîĵ(π
∗)| ≥ 1 and π∗

î
< U . We consider

the following two cases.

Case1: Jîj(π
∗) = 0 for all j ∈ M

From the definition of Pi(π) in (2.8), one sees that

Pî(π
∗) =

∑

j∈N

Dj(π
∗
î
− cîj)Iîj(π

∗) . (3.9)

Let π♯

ĵ
be as in (3.1). Then from 1) of Lemma 3.3, one has Jîj(π

♯

î
, π\̂i) = 0 for all j ∈ M. It

then follows from this and (2.8) that

Pî(π
♯

î
, π\̂i) =

∑

j∈N

Dj(π
∗
î

+ ∆ − cîj)Iîj(π
♯

î
, π\̂i) . (3.10)
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From 2) of lemma 3.3, Iîj(π
∗) = 1 implies Iîj(π

♯

î
, π\̂i) = 1 so that Iîj(π

♯

î
, π\̂i) − Iîj(π

∗) ≥ 0

for all j ∈ N . Since |Wîĵ(π
∗)| ≥ 1 and Jîĵ(π

∗) = 0, it is clear that Iîĵ(π
∗) = 1. These

observations together with (3.9) and (3.10) then yield that

Pî(π
♯

î
, π\̂i) − Pî(π

∗)

=
∑

j∈N

[

Dj(π
∗
î

+ ∆ − cîj)Iîj(π
♯

î
, π\̂i) − Dj(π

∗
î
− cîj)Iîj(π

∗)
]

=
∑

j∈N

[

Dj(π
∗
î

+ ∆ − cîj)Iîj(π
∗) − Dj(π

∗
î
− cîj)Iîj(π

∗)

+Dj(π
∗
î

+ ∆ − cîj){Iîj(π
♯

î
, π\̂i) − Iîj(π

∗)}
]

≥
∑

j∈N

Dj∆Iîj(π
∗) ≥ Dĵ∆Iîĵ(π

∗) > 0 ,

which contradicts to π∗ ∈ NE .

Case2: Jîj(π
∗) = 1 for some j ∈ N

Since π∗
î

> cîn for any customer n supplied by supplier î, and π∗
î

> π∗
m for any m ∈ LEî(π

∗),

one can choose ∆ > 0 sufficiently small so that π†

î
= π∗

î
− ∆ satisfies

max

[

max
n∈{n :(I

în
(π∗)=1)∨(J

în
(π∗)=1)}

{cîn} , max
m∈LE

î
(π∗)

{π∗
m}

]

< π†

î
, (3.11)

where the second maximum in (3.11) is ignored if LEî(π
∗) = ø . One then sees that

LEî(π
†

î
, π∗

\̂i
) = LEî(π

∗), EQî(π
†

î
, π∗

\̂i
) = {̂i} and LAî(π

†

î
, π∗

\̂i
) = LAî(π

∗) ∪
(

EQî(π
∗) \ {̂i}

)

.

From (2.6) and (2.7), these observations imply that the following statements hold true for

all j ∈ N .

a) If Iîj(π
∗) = 1 then Iîj(π

†

î
, π∗

\̂i
) = 1 (3.12)

b) If Jîj(π
∗) = 1 then Iîj(π

†

î
, π∗

\̂i
) = 1 and Jîj(π

†

î
, π∗

\̂i
) = 0 (3.13)

c) If
[

Iîj(π
∗) = 0 ∧ Jîj(π

∗) = 0
]

, then
[

Iîj(π
†

î
, π∗

\̂i
) = 0 ∧ Jîj(π

†

î
, π∗

\̂i
) = 0

]

(3.14)

From the definition of Pî(π) in (2.8) together with (3.12), (3.13) and (3.14), one then sees

that

Pî(π
†

î
, π∗

\̂i
) − Pî(π

∗) =
∑

j∈N

Dj(π
†

î
− cîj)Iîj(π

†

î
, π∗

\̂i
) −

∑

j∈N

Dj(π
†

î
− cîj)

[

Iîj(π
∗) +

Jîj(π
∗)

|Wîj(π
∗)|

]

+
∑

j∈N

Dj(π
†

î
− cîj)

[

Iîj(π
∗) +

Jîj(π
∗)

|Wîj(π
∗)|

]

−
∑

j∈N

Dj(π
∗
î
− cîj)

[

Iîj(π
∗) +

Jîj(π
∗)

|Wîj(π
∗)|

]

=
∑

j∈N

Dj(π
†

î
− cîj)

[

1 −
1

|Wîj(π
∗)|

]

Jîj(π
∗) − ∆

∑

j∈N

Dj

[

Iîj(π
∗) +

Jîj(π
∗)

|Wîj(π
∗)|

]

=
∑

j∈N

Dj(π
∗
î
− cîj)

[

1 −
1

|Wîj(π
∗)|

]

Jîj(π
∗) − ∆

∑

j∈N

Dj{Iîj(π
∗) + Jîj(π

∗)}

≥ Dĵ(π
∗
î
− cîĵ)

[

1 −
1

|Wîĵ(π
∗)|

]

− ∆
∑

j∈N

Dj{Iîj(π
∗) + Jîj(π

∗)} .
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Since the first component in the last term is positive, one can choose ∆ sufficiently small so

that Pî(π
†

î
, π∗

\̂i
) > Pî(π

∗), which contradicts to π∗ ∈ NE , completing the proof for part 2).

We next prove “if part” of part 1). If |NAj(U)| ≤ 1 for all j ∈ N , then from Lemma

3.1, one has |Wij(π)| ≤ 1 for all π ∈ S and i ∈ M. Hence, for all π ∈ S and i ∈ M, one

has Pi(π) =
∑

j∈N Dj(π − cij)Iij(π). It then follows that

Pi(U) − Pi(π) =
∑

j∈N

Dj(U − cij){Iij(U) − Iij(π)} +
∑

j∈N

Dj(U − πi)Iij(π) . (3.15)

If U ≤ cij for some i ∈ M, then Wij(π) = ø, and hence Iij(π) = 0 for all π ∈ S. This

then implies that the payoff difference in (3.15) is non-negative for all π ∈ S. If U > cij

(and hence NAj(U) = {i}) for some i ∈ M, then for any price vector π with πi > cij so

that i ∈ NAj(π), one has NAj(π) = {i} from Lemma 3.1. In this case, Iij(U) = 1 and

Iij(π) = 1 and again the payoff difference in (3.15) is positive for all π ∈ S. It then follows

that U ∈ Bi(U \i) for all i ∈ M, hence one has U ∈ NE , proving “if part”.

For “only if part”, suppose NE 6= ø and |NAĵ(U)| ≥ 2 for some ĵ ∈ N . From part 2) of

this theorem one has NE = {U}. To emphasize this, we write π∗ = U . Let î, î′ ∈ NAĵ(π
∗).

Since LEi(π
∗) = ø from (2.3), the definition of Wij(π) in (2.5) implies î ∈ Wîĵ(π

∗). Since

πî = πî′ = U , it is clear that î′ ∈ EQî(π
∗) thus î′ ∈ Wîĵ(π

∗), so that Jîĵ(π
∗) = 1. Let

π†
i = π∗

i − ∆ for sufficiently small ∆ as in (3.11). Similarly as in the proof of Case2 of part

2), statements (3.12), (3.13) and (3.14) hold true. These together with the definition of

Pi(π) in (2.8) imply that

Pî(π
†

î
, π∗

\i) − Pî(π
∗)

≥ Dĵ(π
∗
î
− cîĵ)

[

1 −
1

|Wîĵ(π
∗)|

]

Jîĵ(π
∗) − ∆

∑

j∈N

Dj

[

Iîj(π
∗) + Jîj(π

∗)
]

. (3.16)

Since the first component in the last term in (3.16) is positive, one can choose ∆ sufficiently

small so that Pî(π
†

î
, π∗

\i) > Pî(π
∗), which contradicts π∗ ∈ NE , proving “only if part” of

part 2) . 2

From Theorem 3.4, one sees that U is the only candidate to be the Nash equilibrium point.

If U is not Nash equilibrium, then this game has no equilibriums. The algorithm to deter-

mine whether this game has Nash equilibrium or not is quite simple, as presented below.

Algorithm

step1: Let j = 1

step2: Determine whether |NAj(π)| ≥ 1. If |NAj(π)| > 1, then one concludes NE = ø.

Else go to step 3

step3: j = j + 1. If j > N , Then NE 6= ø. Else go to step 2

In the remainder of this section, an example of Nash equilibrium is provided. We con-

sider a case that there are three suppliers providing LNG by lorry tankers to six customers,

who are middle-sized industrial users as depicted in Figure 2.1. It should be noted that,

unlike usual city gas through pipeline networks, the transportation costs are considered

to be marginal costs. Although the price and cost vary depending on the condition and

demand pattern, for the sake of convenience, we suppose here U = 60(Yen/m3), and the

values of cij are supposed to be as shown in Table 3.1. When the equilibrium is realized, the

8
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Figure 3.1: Nash equilibrium with 3 Supplier 6 Customer Model

resulting supplier-customer combinations are shown in Figure 3.1. In this case, the market

is completely separated by the suppliers, where there is only one supplier for each customer.

The rest of the suppliers cannot offer the customer since the cost is above the upperbound

price. However, these situation is rather unnatural. In the next section we show the case

of NE = ø and illustrate how players may continue to behave forever in a cyclic manner in

pursuit of maximizing their profit.

4. Cyclic Phenomenon for Case of Two Person Game

In this section, we illustrate typical strategies of suppliers, when NE = ø. We assume that

there are two suppliers and three customers who are middle-sized industrial users recieving

LNG by lorry tankers, where U = 50 (Yen/m3), D1 = 100 (Mcm/y), D2 = 200 (Mcm/y) and

D3 = 150 (Mcm/y) (Mcm/y=thousand cubic meter per year). The cost variables are given

in Table 4.1. Theorem 3.4 shows that, if U /∈ NE , this game has no Nash equilibriums. In

Table 4.1: The values of cij when NE = ø( ) *( *+ ,- ,,) *. ,+ ,-/ 0
this example, each supplier tries to obtain the furthest customer demand by setting lower

price than its competitor. This supplier acquires the new distant customer at the expense of

losing profits of the existing near customers since each supplier must set the same delivery

price to all customers. We show this situation through a numerical example as depicted in

Figure 4.1. Since |NAj(U)| = 2 > 1 for all j = 1, 2, 3, one has NE = ø from Theorem 3.4.
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Figure 4.1: Non-Existence of Nash Equilibrium with 2 Supplier 3 Customer Model

Let π = U be an initial price vector. For the sake of convenience, we discretize the strategy

set so that each supplier can only take integer prices, and suppose each supplier changes its

strategy in turn so as to maximize its profit. Table 4.2 and Figure 4.2 show the results of

this simulation. In Figure 4.2, the cyclic behaviour of each supplier under the conditions of

Table 4.2: Each Supplier’s behaviour when NE = ø� � � � � �������� �� �� ����� ����� ����� ������ � !" �� ����� #$�% ��&�� ���' !" !� #$�% ����� � ��&���(' !& !� ����� #$�% ����� �!�) !& !* � ��� ��!�� �������) �� !* � ��� ����� �����*�) �� !" #$�% ����� � �����&�) !� !" ����� #$�% ����� ���) !� !& � ��� ��*�� �����"�) !* !& ����� #$�% ��!�� ����) !* !� � ��� ����� ��&�����) �� !� � ��� ����� ��&�����) �� !" #$�% ����� � �����

+,,%(��- .(�/% 0/12�(%' 32 �$4%( .�5$,, 6��2%78)$2 ��' 9:#;<=>? <@??AB>C

Table 4.1 is depicted. Here the initial price vector is U = [50 , 50], and the first action is

taken by Supplier 1. At the first step, Supplier 1 tries to maximize its profit by setting lower

price of 49 (Yen/m3) than its competitor and eliminate Supplier 2. In return, Supplier 2 also

takes a similar action by setting the price of 48 (Yen/m3). This process continues several

times. At the 4th step, Supplier 2 has no choice but to set the lower price of 46 (Yen/m3) to

secure Customers 1 and 3 at the expense of giving up Customer 2. Since it does not result

in a positive return to provide service to Customer 2 at the price of 46 (Yen/m3), Supplier

2 cannot offer the service to Customer 2. However it is better off to acquire the other

customers even with low average earning per unit instead of losing all customers or splitting

demands of all customers. At this point, Supplier 1 already monopolizes Customer 2, and it

is in a position to enjoy the highest per-unit earning without losing the customer by setting

the upper-bound price of 50 (Yen/m3). And this cyclic process is repeated indefinitely.
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Figure 4.2: Cyclic Phenomenon with 2 Supplier and 3 Customer Model when NE = ø

References

[1] S. Anderson: Spatial competition and price leadership. International Journal of Indus-

trial Organization, 5 (1987) 369–398.

[2] C. D’Aspremont, J. J. Gabszewicz and J. F. Thisse: On Hotelling’s stability in compe-

tition. Econometrica, 47-5 (1979) 1145–1150.

[3] N. Economides: Nash equilibrium in duopoly with products defined by two character-

istics. Rand Journal of Economics, 17-3 (1986) 431–439.

[4] J. J. Gabszewicz and J. F. Thisse: Location. In: R. J. Aumann and S. Hart(Eds):

Handbook of Game Theory with Economic Applications Vol.1(North Holland, 1992)

281–304.

[5] H. Hotelling: Stability in competition. Economic Journal, 39 (1929) 41–57.

[6] N. Matsubayashi, M. Umezawa, Y. Masuda and H. Nishino: Evaluating all Bertrand-

Nash equilibria in a discrete spatial duopoly model. Journal of the Operations Research

Society of Japan, 47-1 (2004) 25–37.

[7] K. P. Rath: Stationary and nonstationary strategies in Hotelling’s model of spatial

competition with repeated pricing decisions. International Journal of Game Theory,

27 (1998) 525–537.

[8] K. Takahashi and U. Sumita: Structural analysis of two person game with mixed

strategy for energy supply. Discussion Paper, 1206 (Department of Social Systems

and Management, University of Tsukuba, May 2008).

[9] J. F. Thisse and X. Vives: On the strategic choice of spatial price policy. American

Economic Review, 78-1 (1988) 122–137.

[10] Y. Zhang and Y. Teraoka: A location game of spatial competition. Mathematica Japon-

ica, 48-2 (1998) 187–190.

11


