No. 121 (81-22)

Structures of Polytopes Determined by Submodular Functions on Crossing Families

by
Satoru FUJISHIGE

August 6, 1981

STRUCTURES OF POLYTOPES DETERMINED BY SUBMODULAR FUNCTIONS ON CROSSING FAMILIES

Satoru FUJISHIGE

Institute of Socio-Economic Planning
University of Tsukuba
Sakura, Ibaraki 305
JAPAN

Abstract

The present paper shows that, for a submodular function $\,f\,$ on a crossing family $\,F\,$ of subsets of $\,E\,$ with $\,E\,$ $\,\varepsilon\,$ $\,F\,$, the polytope defined by

$$B(f) = \{x \mid x \in R^{E}, x(X) \leq f(X)(X \in F), x(E) = f(E)\}$$

coincides with the base polytope of a submodular function on a distributive lattice. Based on this fact, we also show the relationship between the independent-flow problem considered by the author and the minimum cost flow problem considered by J. Edmonds and R. Giles.

1. Introduction

Let F be a crossing family of subsets of a finite set E with $E \in F$ and f a submodular function on F. Define a polytope B(f) by

$$B(f) = \{x \mid x \in R^{E}, x(X) \leq f(X) (X \in F), x(E) = f(E)\},$$
 (1.1)

where R^E is the set of all functions (or vectors) from E to the set R of reals and for any $X\subseteq E$

$$x(X) = \sum_{e \in X} x(e). \tag{1.2}$$

Suppose B(f) is nonempty.

The main purpose of the present paper is to show that there exist a distributive lattice $\mathcal D$ formed by subsets of E with E $\in \mathcal D$ and a submodular function f* on $\mathcal D$ such that the polytope B(f*) defined by

$$B(f^*) = \{x \mid x \in R^E, x(X) \leq f^*(X) \ (X \in \mathcal{D}), x(E) = f^*(E)\}$$
 (1.3) coincides with B(f) defined by (1.1).

Based on this fact, we also show the relationship between the independent-flow problem considered by the author [6] and the minimum cost flow problem considered by J. Edmonds and R. Giles [2].

The relationship between the independent-flow problem and the polymatroidal flow problem of R. Hassin [7] and E. L. Lawler and C. V. Martel [10] has been examined by U. Zimmermann [11]. Recently, A. Frank [3] has considered the minimum cost flow problem of Edmonds and Giles and proposed a solution algorithm for it.

2. Definitions and Preliminaries

Let E be a finite set. We denote the <u>cardinality</u> of E by |E|. For a collection of subsets X_i ($i \in I$) of E, we adopt the notations $\{X_i \mid i \in I\}$ for a set and $(X_i \mid i \in I)$ for a family of subsets X_i ($i \in I$) of E. We use set-theoretical notations for families as well. For example, " $Y \in (X_i \mid i \in I)$ " means "for some $i \in I$, $Y = X_i$ ". Given two families $G_1 = (X_i \mid i \in I)$ and $G_2 = (Y_j \mid i \in J)$, the <u>direct sum</u> of G_1 and G_2 is the family

$$G_3 = (Z_k \mid k \in I+J), \qquad (2.1)$$

where $I+J=\{(i,1)\mid i\in I\}\cup\{(j,2)\mid j\in J\}$ (the direct sum of I and J) and $Z_k=X_i$ (if k=(i,1) and $i\in I$) and $Z_k=Y_j$ (if k=(j,2) and $j\in J$).

For any X, Y \subseteq E, we say that X and Y $\underline{\operatorname{cross}}$ if X \cap Y, X \cap (E-Y), (E-X) \cap Y and (E-X) \cap (E-Y) are nonempty. A family F of subsets of E is called a $\underline{\operatorname{crossing}}$ $\underline{\operatorname{family}}$ if, for any X, Y \in F which cross, we have X \cup Y \in F and X \cap Y \in F. A family F of subsets of E is a crossing family if and only if for any X, Y \in F with X \cup Y \neq E and X \cap Y \neq Ø we have X \cup Y, X \cap Y \in F. If, for all X, Y \in F, X and Y do not cross, then F is called a $\underline{\operatorname{cross-free}}$ $\underline{\operatorname{family}}$.

We say X and Y <u>intersect</u> if $X \cap Y \neq \emptyset$. A family F of subsets of E is called an <u>intersecting family</u> if for any X, Y \in F which intersect we have $X \cup Y$, $X \cap Y \in F$. By definition an intersecting family is a crossing family.

Let F be a crossing (or intersecting) family of subsets of E. A function f from F to the set R of reals is called a submodular

function on F if

$$f(X) + f(Y) \ge f(X \cup Y) + f(X \cap Y)$$
 (2.2)

for any crossing (or intersecting) pair of X, $Y \in \mathcal{F}$.

A set $\{X_i \mid i \in I\}$ of subsets of E is a partition of E if $X_i \subseteq E$ ($i \in I$) satisfy

$$X_i \neq \emptyset \quad (i \in I),$$
 (2.3)

$$X_{i} \cap X_{j} = \emptyset$$
 (i,j \in I, i \neq j), (2.4)

We call $\{E-X_i \mid i \in I\}$ a <u>co-partition</u> of E if $\{X_i \mid i \in I\}$ is a partition of E.

For a subset $X \subseteq E$ and a partition $\{Y_i \mid i \in I\}$ of E - X, we call $\{E - Y_i \mid i \in I\}$ a <u>co-partition</u> of E - X <u>augmented</u> by X.

Let $\mathcal{D} \subseteq 2^{\mathbf{E}}$ be a distributive lattice with respect to set inclusion and f a submodular function on \mathcal{D} . We call the pair $(\mathcal{D}, \mathbf{f})$ a submodular system. The polytope $P(\mathbf{f})$ defined by

$$P(f) = \{x \mid x \in \mathbb{R}^{E}, x(X) \leq f(X) (X \in \mathcal{D})\}$$
 (2.6)

is called a submodular polytope associated with the submodular system (\mathcal{D},f) . Here, R^E is the set of functions (or vectors) from E to R and for any $X \subseteq E$ x(X) is defined by (1.2). Moreover, when $E \in \mathcal{D}$, the polytope B(f) defined by

$$B(f) = \{x \mid x \in \mathbb{R}^{E}, x(X) \leq f(X) (X \in \mathcal{D}), x(E) = f(E)\}$$
 (2.7)

is called a <u>base polytope</u> associated with (\mathcal{D}, f) . The base polytope B(f) is nonempty for any submodular system (\mathcal{D}, f) with $E \in \mathcal{D}$.

Now, we briefly survey the graph-theoretical notations and terminology which will be employed in the paper. Let T = (V,A) be a graph with a vertex set V and an arc set A. Each arc $a \in A$ has an initial vertex (or a tail) denoted by ∂^+a and a terminal vertex (or a head) denoted by ∂^-a . When $\partial^+a \neq \partial^-a$, we say the vertex ∂^+a and the vertex ∂^-a are adjacent. For each vertex $V \in V$, we define

$$\delta^{\dagger} v = \{ a \mid a \in A, \partial^{\dagger} a = v \}, \qquad (2.8)$$

$$\delta v = \{a \mid a \in A, \partial a = v\}. \tag{2.9}$$

A path is a sequence $Q = (v_0, a_1, v_1, a_2, \dots, a_k, v_k)$ of vertices v_i $(0 \le i \le k)$ and arcs a_j $(1 \le j \le k)$ for some $k \ge 0$ such that for each $j = 1, 2, \dots, k$

$$\{\partial^{\dagger} a_{j}, \partial^{-} a_{j}\} = \{v_{j-1}, v_{j}\}.$$
 (2.10)

The vertices v_0 and v_k are, respectively, called the <u>initial</u> <u>vertex</u> and a <u>terminal vertex</u> of the path Q. Also we say the path Q <u>connects</u> the vertex v_0 <u>with</u> the vertex v_k . For j = 1, 2, ..., k, if

$$(\partial^{+} a_{j}, \partial^{-} a_{j}) = (v_{j-1}, v_{j}),$$
 (2.11)

then we say the arc a_j is <u>positively oriented</u> in the path Q and, otherwise, we say the arc a_j is <u>negatively oriented</u> in Q. If all the arcs in Q are positively oriented, Q is called a <u>directed path</u>.

If, for any vertices $u, v \in V$, there exists one and only one path which connects u with v in T = (V,A), then we call T a \underline{tree} . A vertex v in a tree T is called an $\underline{end-vertex}$ of T

if $|(\delta^+ v) \cup (\delta^- v)| = 1$. A tree T is a <u>directed tree</u> if, for each $v \in V$, $|\delta^- v| \leq 1$. By the definition of a directed tree, there exists a unique vertex v^* in a directed tree T such that $|\delta^- v| = 0$, which is called the <u>root</u> of T. For each vertex $v \in V - \{v^*\}$ there exists a unique directed path in T which connects the root v^* of T with v.

We shall use the following theorem due to Edmonds and Giles [1].

Theorem 2.1: Let $F = (X_i \mid i \in I)$ be a cross-free family of subsets of E. Then F can be represented by a tree T = (V,A) with a vertex set V and an arc set

$$A = \{a_i \mid i \in I\}$$
 (2.12)

together with a family

$$P = (P_{v} \mid v \in V) \tag{2.13}$$

of subsets of E, where the set of all the nonempty P_V 's forms a partition of E and each X_i \in F (i \in I) is expressed as

 $X_i = \bigcup \{P_v \mid v \in V, \text{ there exists a path } Q, \text{ in } T, \text{ connecting } v$ with $\partial^+ a_i$ such that $\partial^- a_i$ does not lie on $Q\}$.
(2.14)

3. Polytopes Determined by Submodular Functions on Crossing Families

Let F be a crossing family of subsets of E and f a submodular function on F. We suppose that $f(\emptyset) = 0$ if $\emptyset \in F$.

Let us define a polytope P(f) by

$$P(f) = \{x \mid x \in \mathbb{R}^{E}, x(X) \leq f(X) (X \in F)\}.$$
 (3.1)

Note that such polytope P(f) is nonempty for every set function f with $f(\emptyset) \ge 0$.

Furthermore, define

$$\hat{f}(Y) = \max\{x(Y) \mid x \in P(f)\}$$
(3.2)

for any $Y \subseteq E$. Then, by the LP duality theorem, we have

$$\hat{f}(Y) = \min \left\{ \sum_{X \in F} f(X) c(X) \mid (3.4), (3.5) \right\},$$
 (3.3)

where

$$\sum_{e \in X \in F} c(X) = \delta(e|Y) \equiv \begin{cases} 1 & (e \in Y) \\ 0 & (e \notin Y) \end{cases}$$
 (e \in E), (3.4)

$$c(X) \ge 0 \qquad (X \in F). \tag{3.5}$$

Here, if there is no such c(X) $(X \in F)$ that (3.4) and (3.5) are satisfied, we put $\hat{f}(Y) = +\infty$. We thus have a set function \hat{f} : $2^E \to R \cup \{+\infty\}$.

Since the minimum value of (3.3) can be attained by rational c(X) ($X \in F$), (3.3) - (3.5) can be rewritten as follows.

$$\hat{f}(Y) = \min \left\{ \frac{1}{\mu(G,Y)} \sum_{i \in T} f(X_i) \mid (3.7) - (3.9) \right\}, \quad (3.6)$$

where

$$G = (X_{i} \mid i \in I)$$
 (3.7)

with

$$X_{i} \in F$$
, $X_{i} \subseteq Y$ (i \in I) (3.8)

and

$$|\{i \mid i \in I, e \in X_i\}| = const. \equiv \mu(G,Y) > 0 (e \in Y).$$
 (3.9)

Informally, conditions (3.7) - (3.9) mean that the family G is composed of (possibly repeated) elements of F which are subsets of Y and that elements (subsets of E) of G uniformly cover each $e \in Y$.

By the definition of the set function $\hat{f}\colon 2^E \to R^{\,\cup\,}\{+\infty\}$, we have

$$\hat{f}(X) \leq f(X) \quad (X \in F),$$
 (3.10)

$$P(f) = \{x \mid x \in \mathbb{R}^{E}, x(X) \leq \hat{f}(X) (X \subseteq E) \}.$$
 (3.11)

It should be noted that if we decrease any $\hat{f}(X)$ $(X \subseteq E)$, (3.11) does not hold any more and that (3.1) - (3.11) are valid for any set function defined on any family of subsets of E. In the following, we simplify (3.6) - (3.9) by use of the property of the submodular function f on the crossing family F.

From the submodularity of f and (3.6) - (3.9), we can restrict admissible families G in (3.6) - (3.9) to those which satisfy

(i)
$$G$$
 is a cross-free family, (3.12)

(ii)
$$\emptyset \notin G$$
. (3.13)

Theorem 3.1: Let
$$\hat{\mathbf{f}}_1(E)$$
 and $\hat{\mathbf{f}}_2(E)$ be defined by
$$\hat{\mathbf{f}}_1(E) = \min \left\{ \sum_{\mathbf{i} \in I} \mathbf{f}(X_{\mathbf{i}}) \mid \{X_{\mathbf{i}} \mid \mathbf{i} \in I\} : \mathbf{a} \text{ partition of } E, \\ X_{\mathbf{i}} \in F(\mathbf{i} \in I) \right\}, \qquad (3.14)$$

$$\hat{\mathbf{f}}_2(E) = \min \left\{ \frac{1}{|\mathbf{I}| - 1} \sum_{\mathbf{i} \in I} \mathbf{f}(X_{\mathbf{i}}) \mid \{E - X_{\mathbf{i}} \mid \mathbf{i} \in I\} : \mathbf{a} \text{ partition of } E, \\ X_{\mathbf{i}} \in F(\mathbf{i} \in I), |\mathbf{I}| \ge 3 \right\}. \qquad (3.15)$$

Then we have

$$\hat{f}(E) = \min{\{\hat{f}_1(E), \hat{f}_2(E)\}}.$$
 (3.16)

(Proof) Let us choose an arbitrary family $G=(X_i \mid i \in I)$ which satisfies (3.7) - (3.9), (3.12) and (3.13). We first suppose

$$E \notin G.$$
 (3.17)

Since $G = (X_i \mid i \in I)$ is a cross-free family because of (3.12), G can be represented by a tree T = (V,A) with a vertex set V and an arc set $A = \{a_i \mid i \in I\}$ together with a family

$$P = (P_{V} \mid v \in V) \tag{3.18}$$

of subsets of E, by Theorem 2.1. Here, by (3.13) and (3.17), for any end-vertex v of T,

$$P_{V} \neq \emptyset. \tag{3.19}$$

Now, from the assumption and (3.19) there exists at least one X_i such that $X_i \neq \emptyset$, E. Therefore, there exist distinct vertices v_1 and v_2 of T satisfying the conditions that

$$P_{v_1} \neq \emptyset, \qquad P_{v_2} \neq \emptyset$$
 (3.20)

and that, for any vertex $u \neq v_1, v_2$ lying on the unique path $Q(v_1, v_2)$ in T connecting v_1 with v_2 ,

$$P_{u} = \emptyset. \tag{3.21}$$

It follows from (3.9) with Y = E that the number of positively oriented arcs in $Q(v_1,v_2)$ is equal to the number of negatively oriented arcs in $Q(v_1,v_2)$. (If this is not the case, the value of (3.9) for any $e_1 \in P_{v_1}$ can not be equal to that for any $e_2 \in P_{v_2}$.) Consequently, there is a vertex $u \neq v_1, v_2$ on the path $Q(v_1,v_2)$

satisfying (3.21). Let $\hat{\mathbf{u}}$ be the vertex on $\mathbf{Q}(\mathbf{v}_1,\mathbf{v}_2)$ adjacent to \mathbf{v}_1 and let $\{\mathbf{v}_2,\mathbf{v}_3,\dots,\mathbf{v}_k\}$ $(k\geq 2)$ be the maximal set of vertices of T such that, for each $\ell=2,3,\dots,k$, $\mathbf{P}_{\mathbf{v}_\ell}\neq\emptyset$, the vertex $\hat{\mathbf{u}}$ lies on the unique path $\mathbf{Q}(\mathbf{v}_1,\mathbf{v}_\ell)$ connecting \mathbf{v}_1 with \mathbf{v}_ℓ and any vertex \mathbf{u} $(\neq \mathbf{v}_1,\mathbf{v}_\ell)$ lying on $\mathbf{Q}(\mathbf{v}_1,\mathbf{v}_\ell)$ satisfies (3.21). Moreover, let $\mathbf{a}_{\mathbf{j}(1)}\in A$ be the arc connecting \mathbf{v}_1 with $\hat{\mathbf{u}}$ and for each $\ell=2,3,\dots,k$ let $\mathbf{a}_{\mathbf{j}(\ell)}\in A$ be the arc on $\mathbf{Q}(\mathbf{v}_1,\mathbf{v}_\ell)$ such that the orientation of the arc $\mathbf{a}_{\mathbf{j}(\ell)}$ is opposite to the orientation of the arc $\mathbf{a}_{\mathbf{j}(\ell)}$ and any arc $\mathbf{a}_{\mathbf{j}(\ell)}$ between $\mathbf{a}_{\mathbf{j}(1)}$ and $\mathbf{a}_{\mathbf{j}(\ell)}$ on $\mathbf{Q}(\mathbf{v}_1,\mathbf{v}_\ell)$ has the same orientation as $\mathbf{a}_{\mathbf{j}(\ell)}$. (Note that arcs $\mathbf{a}_{\mathbf{j}(\ell)}$ $(\ell=2,3,\dots,k)$ are not necessarily distinct.) Let us put

$$\Pi = \{X_{j(\ell)} \mid X_{j(\ell)} \in G, 1 \leq \ell \leq k\}.$$
(3.22)

Then

- (i) if $\partial^+ a_{j(1)} = v_1$, Π is a partition of E and
- (ii) if $\partial^- a_{j(1)} = v_1$, Π is a co-partition of E. Therefore, the family G contains a subfamily which forms a partition or a co-partition of E. Define

$$G' = (X_i \mid i \in I - \{j(k) \mid k=1,2,...,k\}).$$
 (3.23)

If G' is not empty, then G' also satisfies (3.7) - (3.9), (3.12) and (3.13). Repeating the above mentioned argument, we see that G, satisfying (3.7) - (3.9) with Y = E, (3.12) and (3.13), can be expressed as a direct sum of families which form partitions and co-partitions of E. This is also true for the case where $E \in G$.

Since every subfamily of G forming a partition or a co-partition of E satisfies (3.7) - (3.9) with Y = E, (3.12) and (3.13), it follows that we can restrice admissible families G to those which form partitions and co-partitions and satisfy (3.7) - (3.9) with Y = E. Note that the co-partition $\{\emptyset\}$ of cardinality 1 is excluded by (3.13) and that co-partitions of cardinality 2 are also partitions. This completes the proof of Theorem 3.1. Q.E.D.

Theorem 3.2: For each $Y \subseteq E$,

$$\hat{f}(Y) = \min \left\{ \sum_{i \in I} f(X_i) \mid \{X_i \mid i \in I\} : a \text{ partition of } Y, \\ X_i \in F(i \in I) \right\}.$$
 (3.24)

(Proof) By the same argument as in the case of Y = E in the proof of Theorem 3.1, we see that we can restrict admissible families G in (3.7) - (3.9) to those which form partitions and co-partitions of Y.

Let $P^* = \{X_i \mid i \in I\}$ be a co-partition of Y with $X_i \in F$ $(i \in I)$. Here, $|I| \geq 3$. (If |I| = 2, P^* is also a partition of Y.) Then, for any distinct X_i , $X_j \in P^*$, X_i and X_j cross. It follows from (3.12) that we need not consider co-partitions of Y. Q.E.D.

It should be noted that, if f is integer-valued, \hat{f} is also integer-valued except for $\hat{f}(E)$.

The following lemma will be used in the next section.

Lemma 3.3: For any X, Y \subseteq E with X \cup Y \neq E, if $\hat{f}(X)$, $\hat{f}(Y) < +\infty$,

then we have

$$\hat{f}(X) + \hat{f}(Y) \ge \hat{f}(X \cup Y) + \hat{f}(X \cap Y). \tag{3.25}$$

(Proof) For some partition $\{X_i \mid i \in I\}$ of X and some partition $\{Y_j \mid j \in J\}$ of Y such that $X_i \in F$ ($i \in I$) and $Y_j \in F$ ($j \in J$),

$$\hat{f}(X) + \hat{f}(Y) = \sum_{i \in I} f(X_i) + \sum_{j \in J} f(Y_j)$$
 (3.26)

due to Theorem 3.2. Let $G = (Z_k \mid k \in I+J)$ be the direct sum of families $(X_i \mid i \in I)$ and $(Y_j \mid j \in J)$. Since $X \cup Y \neq E$, for any Z_i , $Z_j \in G$ one of the following (i) - (iii) holds.

(i)
$$Z_i$$
 and Z_i are disjoint, (3.27)

(ii)
$$Z_{i} \subseteq Z_{j}$$
 or $Z_{i} \subseteq Z_{i}$, (3.28)

(iii)
$$Z_i$$
 and Z_j cross. (3.29)

If Z_{i} and Z_{j} cross, we replace Z_{i} and Z_{j} as

$$Z_{i} \leftarrow Z_{i} \cup Z_{j}, \qquad Z_{j} \leftarrow Z_{i} \cap Z_{j}.$$
 (3.30)

Repeat this replacement until the obtained family $G = (Z_k \mid k \in I+J)$ becomes a cross-free family and satisfies (3.27) and (3.28) for any Z_i , $Z_j \in G$. We can easily see that this process terminates in finite steps and that the finally obtained G is the direct sum of families which form a partition $\{\hat{X}_i \mid i \in \hat{I}\}$ $(\hat{X}_i \in F(i \in \hat{I}))$ of $X \cup Y$ and a partition $\{\hat{Y}_j \mid j \in \hat{J}\}$ $(\hat{Y}_j \in F(j \in \hat{J}))$ of $X \cap Y$. Since the replacement (3.30) reduces the value of (3.26), we get

$$\hat{f}(X) + \hat{f}(Y) \ge \sum_{i \in \hat{I}} f(\hat{X}_i) + \sum_{j \in \hat{J}} f(\hat{Y}_j)$$

$$\ge \hat{f}(X \cup Y) + \hat{f}(X \cap Y).$$
Q.E.D.

It should be noted that $A = \{X \mid X \subseteq E, f(X) < +\infty\}$ does not form a distributive lattice with respect to set inclusion.

4. From Submodular Functions on Crossing Families to Submodular Functions on Distributive lattices

In this section, we suppose that f is a submodular function on a crossing family F with E ϵ F and that the polytope B(f) defined by

$$B(f) = \{x \mid x \in \mathbb{R}^{E}, x(X) \leq f(X) (X \in F), x(E) = f(E)\}$$
 (4.1)

is nonempty, i.e., $\hat{f}(E)$ defined by (3.6) (or (3.16)) is given by

$$\hat{f}(E) = f(E). \tag{4.2}$$

For each $Y \subseteq E$, define

$$\hat{f}^*(Y) = \max\{x(Y) \mid x \in B(f)\}.$$
 (4.3)

Then, by the LP duality theorem, we have

$$\hat{f}^*(Y) = \min \left\{ \sum_{X \in F} f(X) c(X) \mid (4.5), (4.6) \right\},$$
 (4.4)

where

$$\sum_{e \in X \in F} c(X) = \delta(e|Y) \quad (e \in E),$$
 (4.5)

$$c(X) \ge 0 \qquad (X \in F, X \ne E). \tag{4.6}$$

Similarly as (3.6), (4.4) can be rewritten as

$$\hat{f}^{*}(Y) = \min \left\{ \frac{1}{\mu(G,Y) - \mu(G,E-Y)} \left[\sum_{i \in I} f(X_{i}) - \mu(G,E-Y) f(E) \right] \right\}$$

$$\left\{ (4.8) - (4.12) \right\}, \qquad (4.7)$$

where

$$G = (X_i \mid i \in I), \qquad (4.8)$$

$$X_{i} \in F$$
, $X_{i} \neq E$ (i \in I), (4.9)

$$|\{i \mid e \in X_i, i \in I\}| = const. \equiv \mu(G,Y) \quad (e \in Y), \quad (4.10)$$

$$|\{i \mid e \in X_i, i \in I\}| = const. \equiv \mu(G,E-Y) \quad (e \in E-Y), \quad (4.11)$$

$$\mu(G,Y) > \mu(G,E-Y).$$
 (4.12)

By use of the set function $\hat{f}: 2^E \to R^{\cup} \{+\infty\}$ defined by (3.6) (or (3.16) and (3.24)), the polytope B(f) of (4.1) can also be expressed as

$$B(f) = \{x \mid x \in \mathbb{R}^{E}, x(X) \leq \hat{f}(X) (X \in F), x(E) = \hat{f}(E) (=f(E))\}.$$
(4.13)

Therefore, f in (4.7) can be replaced by \hat{f} .

Theorem 4.1: For each $Y \subseteq E$,

$$\hat{f}^{*}(Y) = \min \left\{ \sum_{i \in I} \hat{f}(X_{i}) - (|I| - 1) \hat{f}(E) \right\}$$

$$\left\{ E - X_{i} \mid i \in I \} : \text{a partition of } E - Y,$$

$$X_{i} \in F(i \in I) \right\}.$$

$$(4.14)$$

(Proof) If f is replaced by \hat{f} in (4.7), we can restrict admissible families G in (4.8) - (4.12) to those which satisfy (4.8) - (4.12) and the following (i) - (iv):

(i)
$$G$$
 is a cross-free family, (4.15)

(ii) for any
$$X_i$$
, $X_j \in G$, $X_i \cap X_j \neq \emptyset$, (4.16)

(iii) G does not contain a subfamily which forms a co-partition

(iv)
$$E \not\in G$$
. (4.18)

(Here, (ii) and (iii) follow from Theorems 3.1 and 3.2.) From (i), the family $G = (X_i \mid i \in I)$ can be represented by a tree T = (V,A) together with a family

$$P = (P_{V} \mid V \in V), \qquad (4.19)$$

where $A = \{a_i \mid i \in I\}$ and nonempty P_V 's form a partition of E as in Theorem 2.1. It follows from (4.16) that T is a directed tree. (For if there are distinct arcs a_i and a_j in T with $\partial^- a_i = \partial^- a_j$, then $X_i \cap X_j = \emptyset$.)

Let v_0 be the root of T. If $P_{v_0} = \emptyset$, then G contains a subfamily which forms a co-partition of E. Therefore, $P_{v_0} \neq \emptyset$ from (4.17). Since for each $e \in E$ the number of i's for which $e \in X_1$ should be taken from the fixed set of two distinct values of (4.10) and (4.11), for any end-vertex u of T every vertex w ($\neq u$, v_0) lying on the unique path $Q(u,v_0)$ connecting u with v_0 in T gives

$$P_{w} = \emptyset. \tag{4.20}$$

This implies that

$$P_{V_0} = Y \tag{4.21}$$

and that

$$\{X_{i} \mid i \in I, \partial^{+} a_{i} = v_{0}\}$$

$$(4.22)$$

is a co-partition of E-Y augmented by Y.

Since any co-partition $\{Z_j \mid j \in J\}$ of E-Y augmented by Y with $Z_j \in F$ $(j \in J)$ satisfies (4.9) - (4.12) with X_i and I replaced by Z_j and J, $G = (X_i \mid i \in I)$ is a direct sum of families which form co-partitions of E-Y augmented by Y. It follows from (4.7)

that $G = (X_i \mid i \in I)$ in (4.7) can be restricted to those for which $\{X_i \mid i \in I\}$ is a co-partition of E-Y augmented by Y. This completes the proof of Theorem 4.1. Q.E.D.

We define

$$\hat{f}^*(E) = \hat{f}(E) (= f(E)).$$
 (4.23)

From (4.7) (or (4.14)) and (4.23), \hat{f}^* is a function from 2^E to $\mathbb{R} \cup \{+\infty\}$.

Theorem 4.2: For any X, Y \subseteq E, if $\hat{f}^*(X)$, $\hat{f}^*(Y) < +\infty$, then $\hat{f}^*(X) + \hat{f}^*(Y) \ge \hat{f}^*(X \cup Y) + \hat{f}^*(X \cap Y). \tag{4.24}$

(Proof) If X = E or Y = E, then (4.24) is trivial. So, we suppose $X \neq E$ and $Y \neq E$. Then, from Theorem 4.1, for some partition $\{E-X_{\mathbf{i}} \mid \mathbf{i} \in I\}$ of E-X and some partition $\{E-Y_{\mathbf{j}} \mid \mathbf{j} \in J\}$ of E-Y with $X_{\mathbf{i}} \in F$ ($\mathbf{i} \in I$) and $Y_{\mathbf{j}} \in F$ ($\mathbf{j} \in J$), we get

$$\hat{\mathbf{f}}^*(\mathbf{X}) + \hat{\mathbf{f}}^*(\mathbf{Y})$$

$$= \sum_{i \in I} \hat{f}(X_i) - (|I| - 1)\hat{f}(E) + \sum_{j \in J} \hat{f}(Y_j) - (|J| - 1)\hat{f}(E).$$
(4.25)

Let $G = (Z_k \mid k \in I+J)$ be the direct sum of families $(X_i \mid i \in I)$ and $(Y_j \mid j \in J)$. If, for Z_i , $Z_j \in G$, $(E-Z_i) \cap (E-Z_j) \neq \emptyset$, $Z_i \cap (E-Z_j) \neq \emptyset$ and $(E-Z_i) \cap Z_j \neq \emptyset$, then replace

$$Z_{i} \leftarrow Z_{i} \cup Z_{j}, \qquad Z_{j} \leftarrow Z_{i} \cap Z_{j}.$$
 (4.26)

Repeat such replacement until there is no such pair of Z_i and Z_j in G. We can easily see that the finally obtained G is the direct sum

of families $G_1 = (X_i^* \mid i \in I^*)$ and $G_2 = (Y_j^* \mid j \in J^*)$ such that $\{E - X_i^* \mid i \in I^*\}$ is a partition of $E - (X \cup Y)$ and $\{E - Y_j^* \mid j \in J^*\}$ is a partition of $E - (X \cap Y)$, where, if $X \cap Y = \emptyset$, the family G_2 may be composed of the empty set alone.

For any pair of Z_i and Z_j to be replaced by (4.26), we have $Z_i \cup Z_j \neq E. \tag{4.27}$

Therefore, from the replacement of (4.26), Lemma 3.3 and (4.25),

$$\hat{f}^{*}(X) + \hat{f}^{*}(Y)
\geq \sum_{i \in I^{*}} \hat{f}(X_{i}^{*}) - (|I^{*}| - 1)\hat{f}(E) + \sum_{j \in J^{*}} \hat{f}(Y_{j}^{*}) - (|J^{*}| - 1)\hat{f}(E)
\geq \hat{f}^{*}(X \cup Y) + \hat{f}^{*}(X \cap Y).$$
Q.E.D.

From Theorem 4.2,

$$\mathcal{D}_{0} = \{X \mid X \subseteq E, \hat{f}^{*}(X) < +\infty\}$$
 (4.28)

is a distributive lattice with respect to set inclusion. Denote by f^* the function obtained by restricting the domain 2^E of \hat{f}^* to \mathcal{D}_0 . Then f^* is a submodular function on the distributive lattice \mathcal{D}_0 and the polytope B(f) defined by (4.1) is also expressed as

B(f) =
$$\{x \mid x \in R^E, x(X) \leq f^*(X) (X \in \mathcal{D}_0), x(E) = f^*(E) (=f(E))\}$$
(4.29)

which is the base polytope B(f*) associated with the submodular system $(\mathcal{D}_0,\mathbf{f}^*)$.

We have thus shown the following theorem.

Theorem 4.3: Suppose f is a submodular function on a crossing family

F of subsets of E with $E \in F$. Let f^* be the submodular function on the distributive lattice \mathcal{D}_0 defined as above. Then the polytope B(f) defined by (4.1) coincides with the base polytope $B(f^*)$ associated with the submodular system (\mathcal{D}_0 , f^*). Furthermore, f^* is integer-valued if f is.

5. Submodular Functions on Intersecting Families

Let F be an intersecting family of subsets of E and f: $F \to R$ a submodular function on F. Then, from Theorems 3.1 and 3.2, the polytope

$$P(f) = \{x \mid x \in R^{E}, x(X) \le f(X) (X \in F)\}$$
 (5.1)

is also expressed as

$$P(f) = \{x \mid x \in \mathbb{R}^{E}, x(X) \leq \hat{f}(X) (X \subseteq E)\}, \tag{5.2}$$

where \hat{f} is defined by (3.14) - (3.16) and (3.24).

Since F is an intersecting family, we can restrict G in (3.6) - (3.9) to those which satisfy (3.8), (3.9), (3.12), (3.13) and the following (i):

(i) for any
$$X_i$$
, $X_j \in G$, if $X_i \cap X_j \neq \emptyset$, then
$$X_i \subseteq X_j \text{ or } X_j \subseteq X_i.$$
 (5.3)

In particular, $\hat{f}_1(E)$ and $\hat{f}_2(E)$ defined by (3.14) and (3.15) satisfy

$$\hat{\mathbf{f}}_1(\mathbf{E}) \le \hat{\mathbf{f}}_2(\mathbf{E}). \tag{5.4}$$

It follows from (5.4) and Theorems 3.1 and 3.2 that for any $Y \subseteq E$

$$\hat{f}(Y) = \min \left\{ \sum_{i \in I} f(X_i) \mid \{X_i \mid i \in I\} : a \text{ partition of } Y, \\ X_i \in F(i \in I) \right\}.$$
 (5.5)

Lemma 5.1: Suppose f is a submodular function on an intersecting family F. For X, Y \subseteq E and $\hat{f}: 2^E \to R^U \{+\infty\}$ defined by (5.5), if $\hat{f}(X)$, $\hat{f}(Y) < +\infty$ then

$$\hat{\mathbf{f}}(\mathbf{X}) + \hat{\mathbf{f}}(\mathbf{Y}) \ge \hat{\mathbf{f}}(\mathbf{X}^{\mathsf{U}}\mathbf{Y}) + \hat{\mathbf{f}}(\mathbf{X} \cap \mathbf{Y}). \tag{5.6}$$

(Proof) Since f is a submodular function on an intersecting family F, Lemma 3.3 holds for X, $Y \subseteq E$ with $X \cup Y = E$ as well, which is Lemma 5.1. Q.E.D.

From Lemma 5.1,

$$\mathcal{D}_{I} = \{X \mid X \subseteq E, \hat{f}(X) < +\infty\}$$
 (5.7)

is a distributive lattice. Let us denote by f' the function obtained by restricting the domain of \hat{f} to \mathcal{D}_1 . Then f' is a submodular function on the distributive lattice \mathcal{D}_1 and the polytope P(f) of (5.1) is expressed in terms of f' as

$$P(f) = \{x \mid x \in \mathbb{R}^{E}, x(X) \leq f'(X) (X \in \mathcal{D}_{1})\}$$
 (5.8)

which is the submodular polytope P(f') associated with the submodular system (\mathcal{D}_1,f') .

Theorem 5.2: Suppose f is a submodular function on an intersecting family F of subsets of E. Let f' be the submodular function on the distributive lattice \mathcal{D}_1 defined as above. Then the polytope

P(f) defined by (5.1) coincides with the submodular polytope P(f') associated with the submodular system (\mathcal{D}_1 ,f'). Furthermore, f' is integer-valued if f is.

6. Relationship Between the Independent-Flow Problem and the Minimum Cost Flow problem of Edmonds and Giles

The author considered in [6] the minimum cost flow problem called the independent-flow problem as follows.

Let $G = (V,A;S^+,S^-)$ be a graph with a vertex set V, an arc set A, an entrance vertex set $S^+ \subseteq V$ and an exit vertex set $S^- \subseteq V$, where we assume $S^+ \cap S^- = \emptyset$ for simplicity. Each arc $a \in A$ is given a capacity $c(a) \ge 0$. Also let $\mathbb{P}^+ = (S^+,\rho^+)$ and $\mathbb{P}^- = (S^-,\rho^-)$ be polymatroids defined on the entrance vertex set S^+ and the exit vertex set S^- , respectively. (For polymatroids, see [1].) We denote the network with these characteristics by $N = (G,c;\mathbb{P}^+,\mathbb{P}^-)$.

An independent flow φ in N is a function from A to R such that

$$0 \le \phi(a) \le c(a) \qquad (a \in A), \tag{6.1}$$

$$\partial \phi(\mathbf{v}) = 0 \qquad (\mathbf{v} \in \mathbf{V} - (\mathbf{S}^{+} \cup \mathbf{S}^{-})), \qquad (6.2)$$

$$(\partial \phi(v) \mid v \in S^{+}) \in P^{+}(\rho^{+}), \tag{6.3}$$

$$(-\partial \phi(v) \mid v \in S^{-}) \in P^{+}(\rho^{-}), \qquad (6.4)$$

where for each $v \in V$

$$\partial \phi(\mathbf{v}) = \sum_{\mathbf{a} \in \delta^{+} \mathbf{v}} \phi(\mathbf{a}) - \sum_{\mathbf{a} \in \delta^{-} \mathbf{v}} \phi(\mathbf{a}), \qquad (6.5)$$

and

$$P^{+}(\rho^{+}) = \{x \mid x \in R^{S^{+}}, 0 \le x(U) \le \rho^{+}(U) (U \subseteq S^{+})\},$$
 (6.6)

$$P^{+}(\rho^{-}) = \{x \mid x \in R^{S^{-}}, 0 \le x(U) \le \rho^{-}(U) (U \subseteq S^{-})\}.$$
 (6.7)

The flow value of ϕ is given by

$$\partial \phi(S^{+}) = \sum_{v \in S^{+}} \partial \phi(v). \tag{6.8}$$

For a given function $\,\gamma\colon\, A\to R,\,\,$ the cost $\,C(\varphi)\,\,$ of an independent flow $\,\varphi\,\,$ in $\,N\,\,$ is defined by

$$C(\phi) = \sum_{a \in A} \gamma(a)\phi(a). \tag{6.9}$$

Given a nonnegative value $\,v_0^{}$, the independent-flow problem is to find an independent flow $\,\phi\,$ in N with the flow value $\,v_0^{}$ which has the minimum cost among all independent flows in N with the flow value $\,v_0^{}$.

On the other hand, Edmonds and Giles considered the minimum cost flow problem as follows [2]. Let G = (V,A) be a graph with a vertex set V and an arc set A, F^* a crossing family of subsets of V, \overline{f}^* a submodular function on F^* and B, B, and B and B functions from B to B and B benote by B the network with these characteristics. A feasible flow B in B is a function from A to B and B such that

$$b(a) \leq \phi(a) \leq c(a) \qquad (a \in A), \qquad (6.10)$$

$$\partial \phi(V-U) \leq \overline{f}^*(U) \qquad (U \in F^*).$$
 (6.11)

The cost $C(\phi)$ of the flow ϕ is given by

$$C(\phi) = \sum_{a \in A} \gamma(a) \phi(a). \qquad (6.12)$$

The problem is to find a feasible flow in \hat{N} of the minimum cost.

The theory and algorithms for the independent-flow problem in [6] can easily be generalized to the case where

- (i) the lower capacity in (6.1) of each arc is not necessarily zero (possibly $-\infty$),
- (ii) the functions c and γ take values from $R \cup \{+\infty\}$ and from $R \cup \{+\infty, -\infty\}$, respectively,
- (iii) $P^+(\rho^+)$ and $P^+(\rho^-)$ in (6.3) and (6.4) are, respectively, replaced by submodular polytopes $P(f^+)$ and $P(f^-)$ associated with submodular systems (\mathcal{D}^+, f^+) and (\mathcal{D}^-, f^-) .

Here, \mathcal{D}^+ and \mathcal{D}^- are, respectively, distributive lattices formed by subsets of S^+ and S^- . We shall show that the minimum cost flow problem of Edmonds and Giles can be reduced to an independent-flow problem generalized as above.

Let us define

$$F = \{V-U \mid U \in F^*\}, \tag{6.13}$$

$$f(V-U) = \overline{f}^*(U) \qquad (U \in F^*). \tag{6.14}$$

Then, F is a crossing family of subsets of V, f is a submodular function on F, and (6.11) is rewritten as

$$\partial \phi(U) \le f(U) \quad (U \in F).$$
 (6.15)

Since

$$\partial \phi(\emptyset) = \partial \phi(V) = 0,$$
 (6.16)

we can suppose, without loss of generality (as far as a feasible flow

exists in \hat{N}), that

$$\emptyset$$
, $V \in \overline{F}$, (6.17)

$$f(\emptyset) = f(V) = 0.$$
 (6.18)

Because of (6.16) and (6.18), the system of inequalities (6.15) is equivalent to

$$\partial \phi(U) \leq f^*(U) \qquad (U \in \mathcal{D}), \qquad (6.19)$$

where f^* is a submodular function on a distributive lattice $\mathcal D$ which is defined in terms of f similarly as described in Sections 3 and 4 (see Theorem 4.3). The (6.19) means

$$\partial \phi \in P(f^*),$$
 (6.20)

where $P(f^*)$ is the submodular polytope associated with the submodular system (\mathcal{D}, f^*) . Therefore, the minimum cost flow problem of Edmonds and Giles can be reduced to a generalized version of the independent-flow problem in a network $N = (G=(V,A;S^+,S^-),c;\mathbb{P}^+=(\mathcal{D}^+,f^+),\mathbb{P}^-=(\mathcal{D}^-,f^-))$, where

$$S^{+} = V, \qquad S^{-} = \emptyset \tag{6.21}$$

and the flow value $\,{\bf v}_0^{}\,$ is taken as zero.

Since f^* in (6.20) is integer-valued if f is integer-valued, the integrality property of the optimal (primal and dual) solutions of the minimum cost flow problem of Edmonds and Giles easily follows from the results of [4] - [6], [8] and [9] (also see [10] and [11]).

References

- [1] J. Edmonds: Submodular functions, matroids, and certain polyhedra.

 Proceedings of the International Conference on Combinatorial Structures
 and Their Applications (Gordon and Breach, New York, 1970), pp. 67 87.
- [2] J. Edmonds and R. Giles: A min-max relation for submodular functions on graphs. <u>Annals of Discrete Mathematics</u>, Vol. 1 (1977), pp. 185 - 204.
- [3] A. Frank: An algorithm for submodular functions on graphs. To appear in Annals of Discrete Mathematics.
- [4] S. Fujishige: A primal approach to the independent assignment problem. <u>Journal of the Operations Research Society of Japan</u>, Vol. 20 (1977), pp. 1 15.
- [5] S. Fujishige: An algorithm for finding an optimal independent linkage. <u>Journal of the Operations Research Society of Japan</u>, Vol. 20 (1977), pp. 59 75.
- [6] S. Fujishige: Algorithms for solving the independent-flow problems.

 <u>Journal of the Operations Research Society of Japan</u>, Vol. 21

 (1978), pp. 189 204.
- [7] R. Hassin: On Network Flows. Ph.D. Thesis, Yale University, 1978.
- [8] M. Iri: A practical algorithm for the Menger-type generalization of the independent assignment problem. <u>Mathematical Programming</u> Study, Vol. 8 (1978), pp. 88 105.
- [9] M. Iri and N. Tomizawa: An algorithm for finding an optimal "independent assignment". <u>Journal of the Operations Research</u> Society of Japan, Vol. 19 (1976), pp. 32 57.
- [10] E. L. Lawler and C. U. Martel: Computing maximal "polymatroidal" network flows. Memorandom No. UCB/ERL M80/52, Electronics Research laboratory, College of Engineering, University of California (1980).
- [11] U. Zimmermann: Minimization of some nonlinear functions over polymatroidal flows. Report 81-5, Mathematisches Institut, Universität Köln (1981).