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Abstract

The present paper shows that, for a submodular function £
on a crossing family F of subsets of E with E € F, the

polytope defined by
B(£) = {x | x eRE,x(X) SE(X) (X eF),x(E)=£(E)}

coincides with the bace polytope of a submodular function on a
distributive lattice. Based on this fact, we also show the
relationship between the independent-flow proBlem considered by

the author and the minimum cost flow problem considered by J. Edmonds

and R. Giles.
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1. Introduction

Let F be a crossing family of subsets of a finite set E
with E ¢ F and £ a submodular function on F. Define a polytope

B(f) by
B(F) = {x | x R, x(X) <£(X) (X ¢ F),x(E)=£(E) }, (1.1)

where RE is the set of all functions (or vectors) from E to the

set 'R of reals and for any X ¢ E

x(X) = ) x(e). (1.2)

eeX

Suppose B(f) 1is nonempty.

The main purpose of the present paper is to show that there
exist a distributive lattice T formed by subsets of E with
E ¢ U and a submodular function f£* on D such that the polytope

B{(£f*) defined by
B(£%) = {x | x e RE,x(X) S£4(X) (XeD),x(B)=£*(E)}  (1.3)

coincides with B(f) defined by (1.1).

Based on this fact, we also show the relationship between the
independent-flow problem considered by the author [6] and the minimum
cost flow problem considered by J. Edmonds and R. Giles [2].

The relationship between the independent-flow problem and

the polymatroidal flow problem of R. Hassin [7] and E. L. Lawler

and C. V. Martel [10] has been examined by U. Zimmermann [11]. Recently,

A. Frank [3] has considered the minimum cost flow problem of Edmonds

and Giles and proposed a solution algorithm for it.



2. .Definitions and Preliminaries

Let E be a finite set. We denote the cardinality of E
by |E|. For a collection of subsets Xi (ieI) of E, we adopt
the notations {Xil ieI} for a set and (Xil ieI) for a family
of subsets Xi (iel) of E. We use set-theoretical notations for
families as well. For example, "Ye¢ (Xi| ieI)" means "for some i
e I, Y=X,". Given two families Gl = (X, |ie1) and 62 = (Yj |

jeJ), the direct sum of G, and G2 is the family

1
G, = (2, |kelI+D), (2.1)
where I+J = {(i,1) |i<¢f}V{(j,2) |jeJI} (the direct sum of I

k k
k=(j,2) and jed).

and J) and Z, = Xi (if k= (i,1) and ieI) and 2Z = Yj (if

For any X, Y ¢ E, we say that X and Y cross if XnaY,
Xn(E-Y), (E-X)nY and (E-X)n (E-Y) are nonempty. A family F

of subsets of E 1is called a crossing family if, for any X, Y ¢ F

which cross, we have XUY ¢ F and XnY e F. A family F of
subsets of E is a crossing family if and only if for any X, Y ¢ F
with XUYY #E and XnY # f§ we have XYY, XnY e F, If, for
all X, YeF, X and Y do not cross, then F is called a €ross-

free family.

We say X and Y intersect if XnY #P. A family F of

subsets of E is called an intersecting family if for any X, Y e F

which intersect we have X VY, XnY ¢ F. By definition an intersecting
family is a crossing family.

Let F be a crossing (or intersecting) family of subsets of E.

A function f from F to the set R of reals is called a submodular
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function on F if

F(X) + £(Y) > F(XYY) + £(XnY) (2.2)

for any crossing (or intersecting) pair of X, Y ¢ F.

A set {Xil ieI} of subsets of E 1is a partition of E

if Xi € E (iel) satisfy
X. #9 (ieI}, (2.3)
Kinxj=¢ (1,jeI, i #]), (2.4
u{xX; |ieI} = E. (2.5)

We call {E-X, [ieI} a co-partition of E if (X, |icI} isa

partition of E,
For a subset X ¢ E and a partition {Yi[ ieIl}l of E-X,

we call {E-Yi lieI} a co-partition of E-X augmented by X.

Llet D c 2t be a distributive lattice with respect to set
inclusion and £ a submodular function on ¥, We call the pair

(0,£) a submodular system. The polytope P(f) defined by

P = {x | xeRE,x(0) <£00 (X e DY) (2.6)

is called a submodular polytope associated with the submodular
system (D,f). Here, RE is the set of functions (or vectors)
from E to R and for any X cE x(X) 1is defined by (1.2).

Moreover, when E e U, the polytope B(f) defined by

B(E) = {x|xeRE,x(0) <FX) (XeD),x(E)=EE)} (2.7

is called a base polytope associated with (0,f). The base polytope

B(f) 1is nonempty for any submodular system (D,f) with E € D.



Now, we briefly survey the graph-theoretical notations and
terminology which will be employed in the paper. Let T = (V,A)
be a graph with a vertex set V and an arc set A. FEach arc a € A

has an initial vertex (or a tail) denoted by 57a and a terminal

vertex (or a head) denoted by 3 a. When 8 a # 972, we say the
+ - .
vertex o a and the vertex 23 a are adjacent. For each vertex

v eV, we define

§v={alach,da=v}, (2.8)

§v=1{al|ach,d a=v}, (2.9)

1

A path is a sequence Q = (vo,al,vl,az,...,ak,vk) of vertices vs
{(02i<k) and arcs aj (1£3<k) for some k > 0 such that for

each j =1, 2, ..., k

+ -
{5 aj,a aj} = {Vj-l’vj}‘ _ (2.10)

The vertices VO and vk

vertex and a terminal vertex of the path Q. Also we say the path

are, respectively, called the initial

with the vertex v,. For j =1, 2, ...,

Q connects the vertex v k

0
k, if

+ -
3a.,87a.) = (V. ,,v.), 2.1
(5a;,97a) = (v;_1.v.) (2.11)

then we say the arc aj is positively oriented in the path Q

and, otherwise, we say the arc aj is negatively oriented in Q.

If all the arcs in Q are positively oriented, Q 1is called a

directed path.

If, for any vertices u, v ¢ V, there exists one and only one path
which connects u with v in T = (V,A), then we call T a

tree. A vertex v in a tree T is called an end-vertex of T
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if I(5+V)LJ(G-V)I = 1. Atree T is a directed tree if, for each

veV, |§v|] <1. By the definition of a directed tree, there exists
a unique vertex v* in a directed tree T such that |8 v| = 0,
which is called the root of T. For each vertex v e V- {v¥}

there exists a unique directed path in T which connects the

root v*¥ of T with v.

We shall use the following theorem due to Edmonds and Giles [1].

Theorem 2.1: Let F = (Xi | ieI) be a cross-free family of subsets

of E. Then F can be represented by a tree T = (V,A) with a

vertex set V and an arc set

A={a, liel} p (2.12)

together with a family

P = @vlveV) : (2.13)
of subsets of E, where the set of all the nonempty Pv's forms a

partition of E and each Xi e F (1el) is expressed as

X, = U{PV | veV, there exists a path Q, in T, connecting v
with 8+ai such that B_ai does not lie on Q}.

(2.14) :

3. Polytopes Determined by Submodular Functions on Crossing Families

Let F be a crossing family of subsets of E and £

a submodular function on F. We suppose that f(f) =0 1if @ < F.



Let us define a polytope P(f) by
P() = {x|xeRE,x(X) < £00 (XeF)). (3.1)

Note that such polytope P(f) is nonempty for every set function
f with £(8) > 0.

Furthermore, define
F(Y) = max{x(¥) | xeP(£)} (3.2)

for any Y ¢ E. Then, by the LP duality theorem, we have

) = min{ ) f(X)c(X)l (3.4),(3.5)}, (3.3)
XeF
where
1 (eeY)
Y e = 8CelY) = (e€E), (3.4)
ecXeF 1 0 (edY)
c(X) 20 (XeF). (3.5)

- Here, if there is no such c¢(X) (XeF) that (3.4) and (3.5} are
satisfied, we put %(Y) = +o, We thus have a set function ¢:
2% > RV {4s},

Since the minimum value of (3.3) can be attained by rational

c{X) (XeF), (3.3)-(3.5) can be rewritten as follows.

2y = min{ﬁfé%?j-i zlf(xi) (3.7)-(3.9)}, (3.6)
where
G = ﬂiliel) (3.7)
with
X, <F, X, €Y (ieD) (3.8)
and

Hiliel,e eXi}l = const. = w(G,Y)>0(ecY). (3.9) .



Informally, conditions (3.7) - (3.9) mean that the family G is
composed of (possibly repeated) elements of F which are subsets
of Y and that elements (subsets of E) of G uniformly cover
each e e Y,

By the definition of the set function B - RY {+oo}
we have

00

A

£(X) (XeF), (3.10)

PE) = {x|xeR,x(0 <EM (X<E}}. (3.11)

It should be noted that if we decrease any %(X) (XSE),
{3.11) does not hold any more and that (3.1) - (3.11} are valid
for any set function defined on any family of subsets of E. In the
following, we simplify (3.6) - (3.9) by use of the property of the
submodular function £ on the crossing family F.

From the submodularity of £ and (3.6) - {(3.9), we can restrict
admissible families G in (3.6} - (3.9) to those which satisfy

(i) G is a cross-free family, (3.12)

(i1) ¢ £ G. (3.13)

Theorem 3.1: Let %1(E) and %Z(E) be defined by

£,(E) = min{ ) £(X;) {Xi |iel}:a partition of E,
iel
XieF(ieI)}, (3.14)
[ 1 o .
£,(E) = mln{TTTfTT ié If(XiJ {E_Xi | ie1}:a partition of E,

XieF(ieI),|I|;3}.
(3.15)

Then we have



£E) = min{%l(ﬁ),% (E)}. (3.16)

{(Proof) Let us choose an arbitrary family G = (Xil ie I} which
satisfies (3.7) - (3.9), (3.12) and (3.13). We first supposé

E ¢ G. (3.17)
Since G = (Xi} ieI) is a cross-free family because of (3.12),
G can be represented by a tree T = (V,A) with a vertex set V

and an arc set A = {ail ieI} together with a family
P, vew (3.18)

of subsets of E, by Theorem 2.1. Here, by (3.13) and (3.17),

for any end-vertex v of T,

P_# B | (3.19)

Now, from the assumption and (3.19) there exists ~t least one Xi

such that .Ki # B, E. Therefore, there exist distinct vertices

vy and v, of T satisfying the conditions that

Pvl o, Pv2 7P (3.20) '

and that, for any vertex u (¥ Vi v2) lying on the unique path

Q(vl,vz) in T connecting vy with Vs

P = §. (3.21)

It follows from (3.9) with Y = E that the number of positively

oriented arcs in Q(v1 is equal to the number of negatively

!Vz

oriented arcs in Q(Vl,vz). (If this is not the case, the value of

{3.9) for any e, ¢ PVl can not be equal to that for any e, € Pvz.}

Consequently, there is a vertex u (# Vi, v2) on the path Q(vl,vz)
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satisfying (3.21). Let { be the vertex on Q(vl,vz) adjacent to

vy and let {VZ’VS’

of T such that, for each 2 =2, 3, ..., kK, Pv # P, the vertex
L

i lies on the unique path Q(vl,vg) connecting vy with vy

satisfies (3.21).

...,vk} {k>2) be the maximal set of vertices

and any vertex u (# Vs Vg) lying on Q(vl,vg)

5 € A be the arc connecting vy with @ and
for each 2 =2, 3, ..., k¥ let aj(g) € A be the arc on Q(vl,v

Morsover, let a

o)
such that the orientation of the arc aj(L) is opposite to the

orientation of the arc a. and any arc a, a. between a.
i 5 (D) Y i 350

i)
and aj[ﬂ) on Q(vl,vg) has the same orientation as aj(l)' (Note
that arcs ajti) (2 =2, 3, ..., k) are not necessarily distinct.)

Let us put
= {X. X. - G,1<2<k}. 3.22
gy 1 %50y € 0122200 (3.22)
Then
(i) if 3+aj(l) =v,, T is apartition of E
and
(ii) if a_aj(l) =V I is a co-partition of E.

Therefore, the family G contains a subfamily which forms a partition

or a co-partition of E. Define
6" = (X, bieI-{j(®) | 2=1,2,...,k}). (3.23)
If G' 1is not empty, then G' also satisfies (3.7) - (3.9}, (3.12)
and (3.13). Repeating the above mentioned argument, we see that G,
satisfying (3.7} - (3.9) with Y = E, (3.12) and (3.13), can be expressed

as a direct sum of families which form partitions and co-partitions

of E. This is also true for the case where E ¢ G,



Since every subfamily of G forming a partition or a
co-partition of E satisfies (3.7) - (3.9) with Y = E, (3.12) and
(3.13), it follows that we can restrici admissible families G to
those which form partitions and co-partitions and satisfy (3.7) - (3.9)
with Y = B, Note that the co-partition {6} of cardinaiity 1 is
excluded by (3.13) and that co-partitions of cardinality 2 are

also partitions. This completes the proof of Theorem 3.1. Q.E.D.

Theorem 3.2: For each Y c E,

£FY) = min{ ) £X,) {Xi| ielI}l:a partition of Y,
iel
X, e F(ie I)}. (3.24)
(Proof) By the same argument as in the case of Y = E in the proof

of Theorem 3.1, we see that we can restrict admissible families G

in (3.7} - (3.9) to those which form partitions and co-partitions of Y.

Let P* = {X, |1 €I} be a co-partition of Y with X, ¢ F
(iel). Here, |I| »3. (If |I]| =2, P* is also a partition of
Y.} Then, for any distinct Xi’ Xje P*, Xi and Xj cross. It
follows from (3.12} that we need not consider co-partitions of Y.

Q.E.D.

It should be noted that, if f 1is integer-valued, £ is
also integer-valued except for %(E).

The following lemma will be used in the next section.

Lemma 3.3: For any X, Y SE with XYY #E, if £(X), £(Y) < +,

11



then we have
FO0 + B 2 FxuY) + E(XaY). (3.25)

(Proof) For some partition {X, | ieI} of X and some partition

{Yj | jeJd} of Y such that X, € F(ieI) and Yj e F (jen,

B o+ B o= §OF(X) ¢+ T (YY) . (3.26)
iel Cjed J
due to Theorem 3.2. Let G = (Zk] keI+J) be the direct sum of

families (X, | ieI) and (Yj | jeJy. Since XUY # E, for any

Zi, Zj e G one of the following (i) - (iii) holds.
(i) Zi and Zj are disjoint, (3.27)
(ii) Zi <« Zj or Zj < Zi’ " (3.28)
(iii) Zi and Zj CTOss. _ (3.29)

If Zi and Zj cross, we replace Zi and Zj as

Z.i + Zi UZj, Zj <« Zir1Zj. (3.30)
Repeat this replacement until the obtained family G = (Zk [k eI+3)
becomes a cross-free family and satisfies (3.27) and (3.28) for any .
Zi’ Zj € G. We can easily see that this process terminates in finite
steps and that the finally obtained G is the direct sum of families
which form a partition {ﬁi | i eT} (ii e F (i ef]) of XYY and
a partition {?j |3 e J} (?j e F (3 63)) of XnY. Since the

replacement (3.30) reduces the value of (3.26), we get

Fo + £ 2 [ER) ¢ ] £CD
€

v

FXuyy « £(xny). Q.E.D.

12



It should be noted that A = {X| Xg]ﬁ,f(X)‘<+M} does not

form a distributive lattice with respect to-set inclusion.

4, From Submodular Functions on Crossing Families to Submodular

Functions on Distributive lattices

In this section, we suppose that f is a submodular
on a crossing family F with E e F and that the polytope

defined by

B(£)

is nonempty, i.e., %(E) defined by (3.6) (or (3.16)) 1is
given by
£(E)

For each Y c E, define

£40Y) = max{x(Y) | x«B(H)}. (4,

Then, by the LP duality theorem, we have

Fr(Y) = min{ Y OF(X) c(X) (4.5),(4.6)}, (4.
XeF
where
z c(X) = S(eIY) (e €E), (4.
eecXefF
c(X) 20  (XeF, X#E). (4.

Similarly as (3.6}, (4.4) can be rewritten as

1 [
(G, - H(G,ET)

Fr(Y) = min{
iel

{x | x € RE,x(X) <£00) (Xe F) ,x(B)=£(E)} (4.

£(E). (4.

function

B(f)

1

2)

3)

4)

5)

6)

I £(X) - u(G,E-V)£(E)]

{(4.8) - (4.12)}, (4.7)

13



where
G=(Xi[iel), (4.8)
Xi e F, Xi £ E (ie 1), {(4.9)
[{i|ee X;.ie I}{ = const. = u(G,Y) (eecY), (4.10)
[{ilee X;,ie I}| = const. = u(G,E-Y) (ecE-Y), (4.11)

u(G,Y) > u(G,E-Y). (4.12)

By use of the set function £: 2 > RU {4=] defined by
(3.6} (or (3.16) and (3.24}), the polytope B(f) of (4.1) can
also be expressed as

B(£) = {x|xeRE,x(0 <30 (Xe F),x(E)=2(E) (=£(E)) .
{4.13)
Therefore, f in (4.7) can be replaced by £.

Theorem 4,1: For each Y S E,

£r(Y) = min{_ I £og) - (1] - DEE)

1el

‘{E-Xi |ie1}:a partition of E-Y,

XisF(ieI)}. (4.14)

(Proof) If f 4is replaced by % in (4.7), we can restrict admissible
families G in (4.8) - (4.12) to those which satisfy (4.8) - (4.12)
and the following (i) - (iv):.

(i) G 1is a cross-free family, {(4.15)

(ii) foxr any Xi, X.

J
(iii) G does not contain a subfamily which forms a co-partition

<G, X 0X; #4, (4.16)

of E, (4.17)

(iv) E £ G. (4.18)

14
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(Here, (ii) and (iii) follow from Theorems 3.1 and 3.2.) From (i),

the family G

Il

(Xi| ieI) can be represented by a tree T = (V,A)

together with a family
P=(P fvew, (4.19)

where A = {ai] ie I} and nonempty Pv's form a partition of E
as in Theorem 2.1. It follows from (4.16) that T  is a directed
tree. (For if there are distinct arcs 2, and aj in T with

da, =3 a., then X.nX. = §.)
i 3 i 7j

Let vy be the root of T. If PVO = @, then G contains a
subfamily which forms a co-partition of E. Therefore, PVO £ 0 from
(4.17). Since for each e¢E the nunber of i's for which e ¢ Xi
should be taken from the fixed set of two distinct values of (4.10) and

(4.11), for any end-vertex u of T every vertex 'w (# u, vo) lying

in T gives

on the unique path Q[u,vO) connecting wu with vy

P =90 (4.20)

This implies that

pVo =Y (4.21)

and that

. +
{Xi |ie1,d ai-vo} (4.22)

is a co-partition of E-Y augmented by Y.

Since any co-partition {Zj |jed} of E-Y augmented by Y
with zj e F (jeJ) satisfies (4.9) - (4.12) with X; and I replaced
by Zj and J, G = [Xi |ieI) 1is a direct sum of families which

form co-partitions of E-Y augmented by Y. It follows from (4.7)



that G = (Xi! ieI) in (4.7) can be restricted to these for which

{Xi[ ieI} is a co-partition of E-Y augmented by Y. This completes

the proof of Theorem 4.1. Q.E.D.
We define
r(E) = E(B) (= £()). (4.23)

From (4.7) (or (4.14)) and (4.23), # is a function from 2° to

RU {+oo}_

Theorem 4.2: For any X, Y ¢ E, if %*(X), %*{Y) <+ then
B0+ () 2 BXXUY) + Bx(XnY). (4.24)

(Proof) If X =E or Y =E, then (4.24) is trivial: So, we suppose
X#E and Y # E. Then, from Theorem 4.1, for some partition
{E-x; |ie€I} of E-X and some partition {E—Yj | jeJ} of E-Y with

Xi e F (ie¢I) and Yj e F(jed), we get
B0 + Br ()

= I i - dif-ni@ + § Roy - dil-nim.
iel jed (4.25)

Let G = (Z |k e I+J) be the direct sum of families (X, |ie1) and
(Yj | jed). 1f, for Zys zj € G, (E-Z;) N (E-Zj) # 0, 2,0 (E-Zj) £ 0

and (E-Zi) an # @, then replace
Z, =« Z. . VZ,, Z.«Z.nZ.. {4.26)
i i 7] j i7"

Repeat such replacement until there is no such pair of Zi and Zj in

G. We can easily see that the finally obtained G is the direct sum



of families Gl = (Xi*| iegI*) aﬂd 62 = (Yj*| jeJ*) such tha@
{E—Xi* | ieI*} is a partition of E- (XVY) and {E—Yj* | 5eJd%} is
a partition of E-(XnY), where, if XnY = §, the family 62 may
be composedof the empty set alone.
For any pair of Zi and Zj to be replaced by (4.26), we have
Zi‘JZj # E. (4.27)

Therefore, from the replacement of (4.26), Lemma 3.3 and (4.25),

Fr ) + BN

K%

I 2™ - (J1%] - n¥E + ] By, sy - (lor] - DEE
iel¥ jegr

BE(XUY) + F*(XnY). Q.E.D.

fv

From Theoxem 4.2,
0, = {X| X<E,F*(X) <+l (4.28)

is a distributive lattice with respect to set inclusion. Denote by f£*

the function obtained by restricting the domain ZE of F* to -DO.

Then f£* is a submodular function on the distributive lattice DO

and the polytope B(f) defined by (4.1) is also expressed as

B(E) = {x | x e R™,x(X) < £5(X) (X e D) ,x(E)=£* (E) (=£(E)) }
(4.29)
which is the base polytope B(f*) associated with the submodular

system (Do,f*).

We have thus shown the following theorem.

Theorem 4.3: Suppose f is a submodular function on a crossing family

17
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F of subsets of E with EefF. Let f* be the submodular function
on the distributive lattice DO defined as above.. Then the polytope
B(F) defined by (4.1) coincides with the base polytope B(f*) asscciated
with the submodular system [Do,f*). Furthermore, f* is integer-valued

if f 1is.

5. Submodular Functions on Intersecting Families

Let F be an intersecting family of subssts of E and £:
F -+~ R a submodular function on F. Then, from Theorems 3.1 and
3.2, the polytope
P(£) = {x | xcRE,x(X) < £(X) (Xe F)} (5.1)
is also expressed as
P(f) = {x]xeRE,x(X)j__%(X)(XgE)}, (5.2}

where £ is defined by (3.14) - (3.16) and (3.24).
Since F is an intersecting family, we can restrict G in
(3.6) - (3.9) to those which satisfy (3.8}, (3.9), (3.12), (3.13) and

the following (i):

m

(i) for any Xi, Xj G, if Xif1Xj # 0, then
X. « X, or X, X.. (5.3)
=) J

1 1

In particular, %1(5) and £,(B) defined by (3.14) and (3.15) satisfy
HOEENCE (5.4)

It follows from (5.4) and Theorems 3.1 and 3.2 that for any Y < E
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£(X,) |{Xi |ieI}:a partition of Y,
{(5.5)

%(Y) = min{ Z
ied
XieF(iEI)}.

is a submodular function on an intersecting

Lemma 5.1: Suppose £
family F. For X, Y< E and #: 2" + RU {+w} defined by (5.5,

if E(X), £(Y) < 4o then
FIY) i:%[xljy} + %(XrlY). {5.8)

{0+ £10Y)
is a submodular function on an intersecting family

524

as well, which

(Proof) Since £

F, Lemma 3.3 holds for X, Y € E with XUVY = E

is Lemma 5.1. Q.E.D.
(5.7}

From Lemma 5.1,

D, = (X | XeB,E(X) <4}
the function obtained

Let us denote by £

is a distributive lattice.
by restricting the domain of £ oto Dl' Then f£' is a submodular
Dl and the polytope P(f) of

function on the distributive lattice
as

(5.1} is expressed in terms of f£'
(5.8)

P(E) = {x|x eR x(X) S£ (X) (XeD))

which is the submodular polytope P(£f') associated with the submodular

system (Dl,f')

is a submodular function on an intersecting
be the submodular function on

Theorem 5.2: Suppose f
family F of subsets of E. Let f£!
Dl defined as above. Then the polytope

the distributive lattice



P(f) definzd by (5.1) coincides with the submodular polytope P(f')
associated with the submodular system (Dl,f'). Furthermore, f!

is integer-valued if f is.

6. Relationship Between the Independent-Flow Problem and the Minimum

Cost Flow problem of Edmonds and Gilss

The authcr considered in [6] the minimum cost flow prebiem called

the independent-flow problem as follows.

Let G = (V,A;$7,87) be a graph with a vertex set V, an arc
set A, an entrance vertex set st cv and an exit vertex set § cv,
where we asstme S n§~ = p for simplicity. Each arc aecA 1is given
a capacity c(a) > 0. Also let P* = (s7,0") and P™ = (57,07) be
polymatroids defined on the entrance vertex set -S+ and the exit vertex
set § , respectively. (For polymatroids, see [1].) We denote the

network with these characteristics by N = (G,cﬂP+JP-).

An independent flow ¢ in N is a function from A to R

such that
0 < ¢(a) £ c(a) (a € A), (6.1)
(W) =0  (veV-(sTUST)), (6.2)
(3p(v) | vesh) e (0", (6.3)
(-3¢(v) | vesT) e PT(p7), (6.4)

where for each v ¢ V

3(v) = I, () - I _ 9(a), (6.5)
v

aed v aed
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and
+, + S+ + +
P (o) ={x|xeR ,0<x(U) <p (W8I, (6.6)
at e S” . T et Frr e RN
Plpr={x]|xeR ,02x() Lo (B){UeS;]. 6.7
The flow value of ¢ is given by
+ .
P(S) = ) ,L39(v). (6.8)

Vel

For a given function <vy: A+ R, the cost C(¢) of an

independent flow ¢ ir N is defined by

Cle) = ) v(a)i(a). (6.9)

aeh

Given a nonnegative value v the independent-flow problem is to

O’

find an independent flow ¢ in N with the flow value v, which

0
has the minimum cost among all independent flows in N with the
flow value Vo

On the other hand, Edmonds and Giles considered the minimum
cost flow problem as follows [2]. Let G = (V,A} be a graph with a
vertex set V and an arc set A, F* a crossing family of subsets of
V, f* a submodular function on F* and b, ¢ and <y functions from
A to RVY{+»x -}, Denote by ﬁ the network with these characteristics.
A feasible flow ¢ in ﬁ is a function from A to RV {+»,-®} such
that

b(a) £ ¢(a) < c(a) (a € A), (6.10)

3P(V-U) < £*(U) (U e F*). (6.11)
The cost C(¢) of the flow ¢ 1is given by

Cld) = 1 v(a)o(a). (6.12)

ach



The problem is to find a feasible flow in N of the minimum cost.
The theorv and algorithms for the independent-flow problem
in [6] can easiliy be generalized to the case where
{1) the lower capacity in (6.1) of each arc is not necessarily
zero (possibly -],
(1i1) the functions ¢ and Yy take values from RV {+x} and
from RVY {+»,-o} respectively,

(1i1) PY(o") and PT(pT) in (6.3) and (6.4) are, respectively,
replaced by submodular polytopes P(f') and P(f)
associated with submodular systems (D',f) and 0 ,f3.

Here, p" and D are, respectively, distributive lattices formed
by subsets of s* and S . We shall show that “he minimum cost flow
problem of Edmonds and Giles can be reduced to an independent-flow
problem generalized as above.

Let us define
F={V-U|UeF*}, (6.13)
F(V-U) = £*(U) (U e F*), (6.14)
Then, F is a crossing family of subsets of V, f is a submodular
function on F, and (6.11) is rewritten as
ap(U) £ £(W) (Ueh. (6.15)

Since

1]

9p(B) = (V) = 0, (6.16)

we can suppose, without loss of generality (as far as a feasible flow

22



exists in ﬁ), that

#, VefF, (6.17)

£(8) = £(V) = 0. (6.18)

Because of {6.16) and (6.18), the system of inequalities (6.15) is

equivalent to
ap(U) < £*(U) (U e Dy, (6.19)

where f* 1is a submodular function on a distributive lattice 7
which is defined in terms of £ similarly as described in Sections 3

and 4 (see Theorem 4.3). The (6.19) means
3p € P(£*), (6.20)

where P(£f*) is the submodular polytope associated with the submodular
system (D,f*). Therefore, the minimum cost flow problem of Edmonds
and Giles can be reduced to a generalized version of the independent-
flow problem in a network N = (G=(V,A;S+,S_),cﬂP+=[D+,f+)JP-=(D_,fH)),
where

sT=v, s =¢ (6.21)

and the flow value VO is taken as zero.

Since f£* in (6.20) is integer-valued if f 1is integer-valued,
the integrality property of the optimal (primal and dual) solutions of
the minimum cost flow problem of Edmonds and Giles easily follows

from the results of [4] - [6], [8] and [9] (also see [10] and [11])}.
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