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METRIC-PRESERVING REDUCTION OF EARTH MOVER’S
DISTANCE AND ITS APPLICATION TO NON-NEGATIVE MATRIX

FACTORIZATION

YUICHI TAKANO AND YOSHITSUGU YAMAMOTO

Abstract. We prove that the earth mover’s distance problem reduces to a problem with
half the number of constraints regardless of the ground distance, and propose a further
reduced formulation when the ground distance comes from a graph with a homogeneous
neighborhood structure. We also propose to apply our formulation to the non-negative
matrix factorization.

1. Introduction

Earth mover’s distance (EMD in short) proposed by Rubner et al. [7] is a mathematical
measure of the dissimilarity between two distributions. In a recent issue Ling and Okada [6]
proposed a new formulation EMD-L1 to compute EMD when the L1 ground distance
is used. It significantly simplifies the original formulation of EMD. Motivated by their
work, we propose in this paper, a reduced EMD formulation and prove its equivalence to
the original EMD problem via the flow decomposition theorem regardless of the ground
distance employed. We also show that the number of variables of the reduced EMD
formulation is reduced from O(m2) to O(m) for a histogram with m locations when the
ground distance is derived from a graph with a homogeneous neighborhood structure.
Application to non-negative matrix factorization (NMF) is also described.

2. Earth Mover’s Distance

Let us consider two histograms { p(i,j) | 1 ≤ i ≤ m1, 1 ≤ j ≤ m2 } and { q(i,j) | 1 ≤
i ≤ m1, 1 ≤ j ≤ m2 } defined on the two-dimensional coordinate system. Histogram
is a mapping from a set of grid locations (i, j) to the set of non-negative weights p(i,j)

or q(i,j), which can be seen a mass of earth (supply) and a collection of holes (demand),
respectively. For example, digital imaging can be seen as an histogram if luminosity of each
pixel corresponds to the weights. Then, by measuring the least distance to fill the holes
with earth, EMD provides the dissimilarity of the two histograms. With the assumption
that the total supply and demand are equal, i.e.,

∑

(i,j)∈N
p(i,j) =

∑

(i,j)∈N
q(i,j),

where N := { (i, j) | 1 ≤ i ≤ m1, 1 ≤ j ≤ m2 }, EMD is computed as an optimal value of
the following well-known transportation problem of Hitchcock type:
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(EMD)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize
∑

(i,j)∈N

∑

(k,l)∈N
d(i,j)(k,l)f(i,j)(k,l)

subject to
∑

(k.l)∈N
f(i,j)(k,l) = p(i,j) for all (i, j) ∈ N

∑

(k,l)∈N
f(k,l)(i,j) = q(i,j) for all (i, j) ∈ N

f(i,j)(k,l) ≥ 0 for all (i, j), (k, l) ∈ N ,

where f(i,j)(k,l) is a flow from location (i, j) to location (k, l). The objective function
coefficient d(i,j)(k,l) is a distance between location (i, j) and location (k, l), and referred to
as the ground distance. Let m = m1 ×m2. For k = 1, 2, . . . , m let Ek be the m×m zero
matrix with its kth row replaced by the m-dimensional row vector e := (1, 1, . . . , 1). Let
A denote the m ×m2 matrix [E1 |E2 | . . . |Em ] and B denote the matrix [ I | I | . . . | I ]
of the same size, where I is the m ×m identity matrix. By an appropriate definition of
row vector d, column vectors p and q, and variable column vector f , problem (EMD) is
rewritten as follows:

(EMD)

∣∣∣∣∣∣∣∣

minimize df
subject to Af = p

Bf = q
f ≥ 0.

In the sequel we consider

(R)

∣∣∣∣∣∣

minimize dg
subject to (A−B)g = p− q

g ≥ 0,

which we call problem (R), standing for the reduced (EMD), and we denote the optimal
value of a problem by v( · ).
Lemma 2.1.

v(EMD) ≥ v(R).

Proof. Straightforward from the fact that a feasible solution of (EMD) is a feasible solution
of (R). ¤

3. Equivalence of The Two Problems

First note that the matrix A−B is of the form

[E1 − I |E2 − I | . . . |Em − I ] ,

and that this is the incidence matrix of a complete directed graph without a self loop on
node set N. We denote its arc set by D. We classify the nodes according to the sign of
p(i,j) − q(i,j), namely

N+ := { (i, j) ∈ N | p(i,j) − q(i,j) > 0 }
N0 := { (i, j) ∈ N | p(i,j) − q(i,j) = 0 }
N− := { (i, j) ∈ N | p(i,j) − q(i,j) < 0 }.
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Following the convention of network flow theory (see for example [1]), we refer to a node
in each set as deficit node, balanced node and excess node, respectively. Problem (R) is
known as an arc flow formulation of network flow problem and a feasible solution g of
(R) is called an arc flow. Another formulation, a path-and-cycle flow formulation, of the
network flow problem starts with enumerating all directed paths between any pair of nodes
and all directed cycles. The decision variables are the flow value on each path and cycle.

Theorem 3.1 (Theorem 3.5 (Flow Decomposition Theorem), [1]). Every arc flow can
be represented as a path-and-cycle flow (though not necessarily uniquely) such that every
directed path with positive flow connects a deficit node to an excess node.

Let Π and Γ be the set of all directed paths and the set of all directed cycles of the
network (N ,D), respectively. Applying the above theorem to problem (R), we obtain the
following corollary.

Corollary 3.2. Let g be a feasible solution of (R). Then for each directed path π ∈ Π
there is a non-negative path flow value f(π), and for each directed cycle γ ∈ Γ there is a
non-negative cycle flow value f(γ) with the following two properties:

(1) For every arc ((i, j)(k, l)) ∈ D it holds that

(3.1) g(i,j)(k,l) =
∑

π:((i,j)(k,l))∈π∈Π

f(π) +
∑

γ:((i,j)(k,l))∈γ∈Γ

f(γ).

(2) f(π) is positive only when path π connects a node in N+ to a node in N−.

The arc-path incidence vector of a directed path π is the vector δ(π) of components

δ(i,j)(k,l)(π) :=

{
1 when ((i, j)(k, l)) ∈ π

0 otherwise.

The arc-cycle incidence vector of a directed cycle γ, denoted by δ(γ), is defined in the
same way. Then (4.2) is rewritten as

g =
∑

π∈Π

f(π)δ(π) +
∑

γ∈Γ

f(γ)δ(γ).

Let

(3.2) g′ =
∑

π∈Π

f(π)δ(π).

Lemma 3.3. If g is a feasible solution of (R), the following statements hold.
(1) g′ is a feasible solution of (R),
(2) dg′ ≤ dg.

Proof. Straightforward from the fact that (A − B)δ(γ) = 0 for every γ ∈ Γ, d ≥ 0 and
the construction (3.2) of g′. ¤

Take a pair of nodes (i, j) ∈ N+ and (k, l) ∈ N− and let Π((i, j)(k, l)) be the set of all
directed paths connecting (i, j) to (k, l), i.e., starting at (i, j) and ending at (k, l). Let g′′
be the vector of components

(3.3) g′′(i,j)(k,l) :=





∑

π∈Π((i,j)(k,l))

f(π) when (i, j) ∈ N+ and (k, l) ∈ N−

0 otherwise.
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Figure 1 shows the node set N and some path-flows and a cycle-flow. The broad arrow
from (i, j) to (k, l) shows g′′(i,j)(k,l).

N+

N-
N0

f(π)

f(γ)

(i,j)

(k,l)

Figure 1. Reduction procedure

Lemma 3.4. If g is a feasible solution of (R), the following statements hold.
(1) g′′ is a feasible solution of (R),
(2) g′′(k,l)(i,j) = 0 for all (i, j) ∈ N+ and (k, l) ∈ N,
(3) g′′(i,j)(k,l) = g′′(k,l)(i,j) = 0 for all (i, j) ∈ N0 and (k, l) ∈ N,
(4) g′′(i,j)(k,l) = 0 for all (i, j) ∈ N− and (k, l) ∈ N, and
(5) dg′′ ≤ dg′.

Proof. The first four claims are readily seen by Corollary 3.2 (2) and the construction
(3.3) of g′′. Let s(π) and t(π) denote the starting node and the terminal node of path π,
respectively. The last claim is seen as follows.

dg′ =
∑

(i,j)∈N

∑

(k,l)∈N
d(i,j)(k,l)g

′
(i,j)(k,l)

=
∑

(i,j)∈N

∑

(k,l)∈N
d(i,j)(k,l)

∑

π:((i,j)(k,l))∈π∈Π

f(π)

=
∑

π∈Π

f(π)
∑

((i,j)(k,l))∈π

d(i,j)(k,l)

≥
∑

π∈Π

f(π)ds(π) t(π)

=
∑

(i,j)∈N

∑

(k,l)∈N
d(i,j)(k,l)

∑

π∈Π((i,j)(k,l))

f(π)

=
∑

(i,j)∈N

∑

(k,l)∈N
d(i,j)(k,l)g

′′
(i,j)(k,l)

= dg′′,

where the inequality is due to the triangle inequality of distance d(i,j)(k,l). ¤
By the above lemma and the equality constraint of (R)

∑

(k,l)∈N
g(i,j)(k,l) −

∑

(k,l)∈N
g(k,l)(i,j) = p(i,j) − q(i,j)
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we see ∑

(k,l)∈N
g′′(i,j)(k,l) = p(i,j) − q(i,j) for (i, j) ∈ N+(3.4)

∑

(k,l)∈N
g′′(i,j)(k,l) =

∑

(k,l)∈N
g′′(k,l)(i,j) = 0 for (i, j) ∈ N0(3.5)

∑

(k,l)∈N
g′′(k,l)(i,j) = −p(i,j) + q(i,j) for (i, j) ∈ N−.(3.6)

Finally add q(i,j) flow to g′′(i,j)(i,j) for (i, j) ∈ N+, p(i,j) flow to g′′(i,j)(i,j) for (i, j) ∈ N−, and
p(i,j) = q(i,j) flow to g′′(i,j)(i,j) for (i, j) ∈ N0 to make g′′′. Since d(i,j)(i,j) = 0, we obtain the
following lemma.

Lemma 3.5. If g is a feasible solution of (R), the following statements hold.
(1) g′′′ is a feasible solution of (EMD),
(2) dg′′′ = dg′′.

Combining the above lemmas, we have the following inequality.

Lemma 3.6.
v(EMD) ≤ v(R).

By Lemma 2.1 and 3.6 we see that problem (R) yields the same optimal objective
function value as problem (EMD) does.

Theorem 3.7.
v(EMD) = v(R).

Note that this equality holds no matter what distance d(i,j)(k,l) is postulated on N.

4. Problem Reduction based on Homogeneous Neighborhood Structure

Suppose we are given a connected undirected graph, denoted by G, with node set N
and edge set E without a self-loop. The edge connecting nodes (i, j) and (k, l) is denoted
by [(i, j)(k, l)] and is assigned a positive value `[(i,j)(k,l)] called length.

For each pair of nodes (i, j) and (k, l) let d`
(i,j)(k,l) be the shortest length of paths between

the pair. It is known and easily seen that d`
(i,j)(k,l) provides a distance defined on N.

For each node (i, j) ∈ N we define

(4.1) NG(i, j) := { (k, l) ∈ N | [(i, j)(k, l)] ∈ E },
and refer to NG(i, j) as node (i, j)’s neighborhood on G.

Definition 4.1. Let H be a finite subset of integer grid pints of R2 without (0, 0) and
`H(i′,j′) be a positive number for (i′, j′) ∈ H. Graph G = (N , E , `) is said to have the
homogeneous neighborhood structure of (H, `H) when

(1) NG(i, j) = N ∩ { (i + i′, j + j′) | (i′, j′) ∈ H} for all (i, j) ∈ N, and
(2) `[(i,j)(k,l)] = `H(k−i,l−j) for all (k, l) ∈ NG(i, j) and (i, j) ∈ N.

Two graphs together with corresponding homogeneous neighborhood structures are
shown in Figure 2. The distance d` defined by the upper graph G, Manhattan graph,
with the neighborhood structure H = {(−1, 0), (0,−1), (0, 1), (1, 0)} and `H(i′,j′) = 1 for all
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neighborhood structure

for L1

neighborhood structure

for an in-between of

L1 and L2

Figure 2. Graph and neighborhood structure defining a distance on N

(i′, j′) ∈ H is the L1 distance on N, while the other graph, Union Jack graph, defines an
in-between of L1 and L2.

Suppose the ground distance d(i,j)(k,l) among locations of N is given as the distance
d`

(i,j)(k,l) for a graph G with a homogeneous neighborhood structure. Then for two distinct
locations (i, j) and (k, l) there is an undirected path of edges [(i0, j0)(i1, j1)], [(i1, j1)(i2, j2)],
. . . , [(in−1, jn−1)(in, jn)] such that (i0, j0) = (i, j), (in, jn) = (k, l),

(ir+1, jr+1) ∈ NG(ir, jr) for r = 0, . . . , n− 1

and

(4.2) d(i,j)(k,l) =
n−1∑

r=0

d(ir,jr)(ir+1,jr+1) =
n−1∑

r=0

`H(ir+1−ir,jr+1−jr).
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Add the constraints

g(i,j)(k,l) = 0 for all (i, j) ∈ N and (k, l) /∈ NG(i, j)
to problem (R) and denote it by (R̄), i.e.,

(R̄)

∣∣∣∣∣∣∣∣

minimize dg
subject to (A−B)g = p− q

g ≥ 0
g(i,j)(k,l) = 0 for all (i, j) ∈ N and (k, l) /∈ NG(i, j),

or equivalently

(R̄)

∣∣∣∣∣∣∣∣∣∣∣∣

minimize
∑

(i,j)∈N

∑

(k,l)∈NG(i,j)

`H(k−i,l−j)g(i,j)(k,l)

subject to
∑

(k,l)∈NG(i,j)

g(i,j)(k,l) −
∑

(k,l)∈NG(i,j)

g(k,l)(i,j) = p(i,j) − q(i,j)

for all (i, j) ∈ N
g(i,j)(k,l) ≥ 0 for all (i, j) ∈ N, (k, l) ∈ NG(i, j).

We see that problem (R̄) is equivalent to problem (R).

Lemma 4.2. Suppose that the graph G has the homogeneous neighborhood structure (H, `H)
and the ground distance d(i,j)(k,l) is given as the shortest length of paths in G. Then every
optimal solution of problem (R̄) is an optimal solution of problem (R), and

v(R̄) = v(R).

Proof. Let ((i, j)(k, l)) be an arc of D. Since the ground distance is given as the short-
est length of paths in G, there is a series of arcs ((i0, j0)(i1, j1)), ((i1, j1)(i2, j2)), . . . ,
((in−1, jn−1)(in, jn)) such that (i0, j0) = (i, j), (in, jn) = (k, l), (ir+1, jr+1) ∈ NG(ir, jr)
for r = 0, 1, . . . , n− 1, and also the equality (4.2) holds.

Now suppose we are given a feasible flow g of problem (R). The above observation
implies that replacing the arc flow of g(i,j)(k,l) on arc ((i, j)(k, l)) by the path-flow along
((i0, j0)(i1, j1)), ((i1, j1)(i2, j2)), . . . , ((in−1, jn−1)(in, jn)) does not change the objective func-
tion value. Repeating this procedure if necessary, we will obtain a feasible flow satisfying
the additional equality constraints

g(i,j)(k,l) = 0 for all (i, j) ∈ N and (k, l) /∈ NG(i, j)
of (R̄) without changing the objective function value. This completes the proof. ¤

Theorem 4.3. When the graph G has the homogeneous neighborhood structure (H, `H)
and problem (EMD) employs the shortest length of paths in G as the ground distance.
Then

v(R̄) = v(EMD).

Proof. Straightforward from Theorem 3.7 and Lemma 4.2. ¤

Let h denote the size of H, which is four for the Manhattan graph and eight for the
Union Jack graph. Then comparing (R̄) with (EMD), the number of variables reduces
from m2 to mh. This will greatly lighten the computational burden.
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5. non-negative Matrix Factorization

Given a non-negative matrix M ∈ Rm×n and a positive integer: the number of basis
r less than min{m,n}, non-negative matrix factorization (NMF in short) is to make two
non-negative matrices: the basis matrix U ∈ Rm×r and the weight matrix W ∈ Rr×n such
that UW approximates M . The problem is

(NMF)
∣∣∣∣

minimize ‖M − UW‖
subject to U ∈ Rm×r

+ , W ∈ Rr×n
+ ,

where + denotes the non-negativity of matrices. As the measure ‖ · ‖ of the dissimilarity
between M and UW , Frobenius norm, Kullback-Leibler divergence and the like are com-
monly used. Look at the jth column mj of M , and this reduces to mj ≈

∑r
k=1 wkjuk,

i.e., the linear combination of columns uk’s of U by non-negative coefficients wk,j ’s ap-
proximates mj .

The concern with NMF has been growing since it was used in Lee and Seung [5]. It is
a method for feature extraction and identification, and has a wide range of applications
such as image retrieval, text mining and so on. NMF is characterized by non-negativity
constraints which enable an only additive combination of the parts in contrast to other
methods such as principal component analysis. The NMF algorithms mostly use alternat-
ing minimization by fixing U or W , and can be divided into three classes: multiplicative
update algorithms, gradient descent algorithms, and alternating least squares algorithms
(Berry et al. [2]). The toolbox NMFLAB (Cichocki and Zdunek [3]) of MATLAB consist-
ing of various NMF algorithms is available. Besides, in relation to EDM, Guillamet and
Vitrià [4] show in the experimental evaluation that EMD improves the recognition rates.
This result stimulates us to apply our formulation to the NMF.

Suppose that we are given U and want to optimize W with respect to the Frobenius
norm. Then the problem reduces to the following n problems to determine the jth column
wj of W so that Uwj approximates the jth column mj of M :

∣∣∣∣
minimize ‖mj − Uwj‖2

subject to wj ∈ Rr
+

for j = 1, 2, . . . , n, where ‖ · ‖2 is the Euclidean norm. We propose to use the earth
mover’s distance to measure the dissimilarity of Uwj to mj . The ground distance vector
d is generally determined from the physical feature of the row indices of M . Then the
problem is written as

∣∣∣∣∣∣∣∣

minimize df
subject to Af = mj

Bf = Uwj

f ,wj ≥ 0.

We have shown that this problem reduces to
∣∣∣∣∣∣

minimize df
subject to (A−B)f = mj − Uwj

f ,wj ≥ 0.
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A noteworthy point is that this is a tractable linear optimization problem, for which
efficient algorithms such as the interior point algorithm have been developed and a variety
of commercial software is available.

6. Conclusion

We have proved that the earth mover’s distance problem reduces to a problem with
half the number of constraints regardless of the ground distance. Furthermore, we have
proposed a further reduced formulation when the ground distance comes from a graph
with a homogeneous neighborhood structure. This generalizes EMD-L1 in [6], and will
help compute the earth mover’s distance efficiently. In this paper we have assumed that
the location has two coordinates such as (i, j), however, it can be generalized to a higher
dimensional coordinate system without a slightest modification. We have also proposed
to apply our formulation to the non-negative matrix factorization. Results of the compu-
tational experiment will be reported shortly.
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