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Abstract

We explore the inductively derived views obtained by players with partial tem-
poral (short-term) memories. A player derives his personal view of the objective
game situation from his accumulated (long-term) memories of playing, and uses it
for decision making in the objective situation. A salient feature that distinguishes
this paper from others on inductive game theory is partiality of a memory function
of a player. This creates multiplicity of possibly derived views. Although this is
a difficulty for a player in various senses, it is an essential problem of induction.
Faced with multiple possible views, a player may try to resolve this multiplicity
using future experiences. This creates a two-way interaction between behavior and
personal views which is another distinguishing feature of the present paper.

1. Introduction

Game theory and economics are experiential sciences about individual decisions and
behavior in social contexts. However, much of these disciplines has by-passed the expe-
riential side by taking the beliefs/knowledge of a player for granted. As far as they deal
with beliefs/knowledge on experiential worlds, we would meet the questions of where
these basic beliefs come from and of how they emerge and change with time. Inductive
game theory initiated by Kaneko-Matsui [10] and developed more systematically by
Kaneko-Kline [7], [8] and Akiyama-Ishikawa-Kaneko-Kline [1] addressed the questions
of the origin/development of a player’s basic beliefs/knowledge about the structure of
a social situation. This paper will study the interactive effects of partiality of temporal
memories on personal views and behavior.
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Figure 1.1: Various Social Situations

1.1. Inductive Game Theory

When a reader hears about a development of a new theory in game theory, he may
ask, using the standard vocabulary of game theory, what kind of equilibrium/solution
will be proposed and/or justified. However, our primary questions do not take such
forms, since we do not aim to explore foundations of the extant equilibrium and/or
solution concepts. Our primary question is how a person in a social context acquires
beliefs/knowledge and then how he uses his beliefs/knowledge in his behavior. This
requires us to rethink or to modify even very basic notions such as “information” in
game theory.

One necessary modification is to the concept of an extensive game due to von
Neumann-Morgenstern [16] and Kuhn [11]. The standard definition is given from the
objective point of view and is not suitable for a subjective use. It describes “infor-
mation” by means of information sets, but it lacks an ability to distinguish between
the symbolic expression of information and its associated meaning. The emergence of
beliefs/knowledge is a process of attaching a meaning to a symbolic expression. For
this purpose, Kaneko-Kline [8] have developed the theory of “information protocols”,
based on information pieces as primitives. Information protocols are used to express
target social situations. In Fig.1.1, each situation such as (Πo,mo) is described by an
information protocol Πo together with a profile of memory functions mo = (mo1, ...,m

o
n).

In addition, the concept of an information protocol is used to express a subjective view
of a player.

For inductive game theory, the time structure is also essential since learning about a
social structure is one of our targets. In the game theory/economics literature, there are
various approaches treating time structures such as the repeated game approach, the
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Figure 1.2: From Experimentations to Behavioral Uses

evolutionary game theory approach and behavioral economics. We do not follow these
approaches, since each by-passes our basic question or avoids it by restricting attention
to the behavioral consequences of decision-making1. We will look at interactions in
dynamics with learning, decision-making and behavior.

This paper will describe a more entire scenario, than in [7] and [8], moving from the
stage of experimentations to that of behavioral uses of a personal view, and again to
experimentations. In Fig.1.2, the scenario of these stages is illustrated. Although we
touched on the stage of behavioral uses in [7], we avoided the multiplicity problem of
personal views by choosing the perfect-recall memory function for a player. The focus
of [8] was the introduction of an information protocol while restricting attention to the
above two stages. Akiyama et al [1] focussed on the stage of experimentations and
studied how much can be learned within a reasonable time span. This paper studies
the second and third stages more extensively with emphasis on the interactions between
views and behavior.

1.2. Interactions between Individual Views and Behavior

Our target is an ordinary recurrent social situation such as family affairs, business
affairs, commuting, etc. The entire social system is depicted in Fig.1.1, but we focus
on a particular situation, say, (Πo,mo). An ordinary person involved, whom we call a

1 In ex ante game theory, behavior results from sophisticated decision-making based on a granted
view of the game itself. The repeated game approach (cf. Hart [5]) effectively follows this idea, though
the interpretation associated with it may differ. In evolutionary game theory (cf., Weibull [15]) and be-
havioral economics (cf. Camerer, [3]), behavior is described by a specified (stochastic or non-stochastic)
process within the game itself but without players thinking about the game, and limit behavior is
typically analyzed.
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player, spends only some of his energy and time to learn the structure of (Πo,mo). The
information protocol Πo and memory function moi will be defined in Section 2. Over
some or many occurrences of the specific social situation, he is able to accumulate some
of his experiences as long-term memories. This process of accumulation was exclusively
discussed in Akiyama et al [1] using a specific example of Mike’s bike commuting, a
variant of which is discussed presently.

After the player has accumulated enough experiences, he may analyze and recombine
these long-term memories to form a view. This process is the stage of inductive deriva-
tion of a personal view. Kaneko-Kline [7] and [8] concentrated on this stage, but by
choosing the self-scope perfect-recall memory function, they found, an effectively unique
view to describe those memories. A new problem in the present paper comes from the
multiplicity of personal views that a player might find. When his memory function is
partial, we confront a new frontier to a large untouched area involving multiplicity.

It is assumed in our theory that the player has two types of memories: (1) short-term
(temporal, local) memory occurring at a point of time and lasting only for some short
length of time; and (2) long-term memory lasting for a long time and serving as the
source for an inductive construction of a personal view. The first type of a memory, given
by a memory function moi , typically occurs spontaneously without conscious efforts. We
regard this as a physiological functioning. Here, the player has only a worm’s-eye view.
In some occasions where, say, one short-term memory is repeated several times within
a period of some length, it changes into a long-term memory. After he accumulates
enough long-term memories, he may combine them consciously to construct his view,
which becomes a bird’s-eye view.

Summarizing the above argument,

(i): short-term memories given by memory function moi are of a local and temporal
nature;

(ii): long-term memories are more lasting and can be used consciously for construction
of his personal view on the situation (Πo,mo).

In fact, after (ii), he can use his view consciously to complement for the partiality of his
memory function moi in the objective situation, as we will see in Section 6. Conversely,
he may check the validity of his view with his new experiences.

The above distinction between physiological unconscious memories and long-term
conscious memories becomes important when the memory function moi for player i in-
volves some partiality. We postulate that physiological constraints on short-term mem-
ories can be captured by the notion of memory-modules. A memory-module is a unit
consisting of elements and their connections. A simplest (nontrivial) memory-module
consists of the immediate preceding information and the current information, with which
we will define the recall-1 memory function. In general, we will have the recall-k mem-
ory function, which is based on larger memory modules. Long-term memories are a
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Figure 1.3: Mike’s Bike Commuting

collection of memory-modules.
By the partiality of the memory function, we capture more essential problems of

induction than in [7] and [8]. We may compare induction with the process of putting
pieces together in a jigsaw puzzle. With the self-scope perfect-recall memory function
in [7] and [8], induction was, more or less, a simple algorithm. Now, with the partial
memory functions, induction is neither a simple algorithm, nor generates a unique out-
come. It allows multiple views since there may be several or many ways of combining
the set of modules in his long-term memories2.

Let us see the above notions in one variant of “Mike’s Bike Commuting” from
Akiyama et al [1]. This example will be used throughout the paper to illustrate various
notions we meet in inductive game theory.

Mike’s Bike Commuting: Mike moved to the new town and started commuting
from his apartment to his office by bike. The town has the lattice structure depicted in
Fig.1.3.A. At each lattice point, he receives an information piece, S, W, N, E, M, SW,
SE, NW , or NE. He has two possible actions “e” and “n” at SW, S, W and M . At
NW and N , he must choose e, and at SE and E, he must choose n. NE is the unique
endpiece. He regularly takes the route indicated by the bold arrows, which his colleague
suggested to him. This forms the regular path. Occasionally, he may deviate to some
other behavior and find some other path.

An objective description of this situation is given by listing all sequences from SW
2This is closer to the induction by Bacon [2] than that of Hume [6] based on similarity. Also, biology

has a similar aspect of induction. A book review by A. C. Love on Hall [4] describes it as an analogy
to a jigsaw puzzle: “The completion of a jigsaw puzzle brings tremendous satisfaction; however, a few
missing pieces lead to considerable frustration. Having the intended picture of a puzzle on the container
contributes to the satisfaction (or the frustration). How do you know if you have all the pieces? ... Such
is the lot of biologists attempting to explain key evolutionary transitions in the history of life” (Science
317, 17, Sept.2007).

5



to each lattice point with actions e or n. From the player’s point of view, he may
receive only the information piece at each lattice point, and one possible form of his
local memory is that he recalls only the previous piece and the action taken there in
addition to the current piece he is receiving. For example, at the southwest M, if he
comes from the west S, his local memory is just h(S, n),Mi. This is a memory-module
of recall-1, and describes partiality in his memory.

After he has commuted many times, he may accumulate several of those small mem-
ory modules as long-term memories. His problem of induction is to combine those small
modules to one picture. Even if he collects all such memory modules from commuting,
he may induce an incorrect view of the town such as Fig.1.B which is larger than the
correct view. The possibility of an incorrect view is a result of partiality in his memory.
He might find a correct one, but there are many other possibilities that cannot be easily
rejected.

In the case of the self-scope perfect-recall memory function adopted in [7], [8] and [1],
Mike received the memory thread consisting of all his past received pieces and actions
taken, e.g., if he reaches the southwestM from the west S, then his current local memory
was h(SW, e), (S, n),Mi. In this case, it would be easy to construct the correct map
simply by combining all his memory threads accumulated over many trips. Since we
allow for more limited and partial memory in the present paper, we must consider a
variety of alternative views a player might construct from the same set of accumulated
memories.

After constructing a personal view, the stage of experimentations becomes important
for a player again. He may test his adopted view by noting whether or not his future ex-
periences in the objective situation correspond to his expectations based on his adopted
view. If he finds some incoherency between his view and his new experiences, he may
modify his view. Thus, the repetition of the cycle depicted in Fig.1.2 comes within the
purview of this paper. When Mike brings his adopted view of Fig.1.3.B to his future
commuting, he may notice some incoherency with his new experiences, and think about
modifying his view or choosing some alternative.

In some cases, multiplicity in views can be resolved by considering only the smallest
view. In other cases, however, there may be several minimal views, and a player may
need to reconsider the connections between his views and experiences in order to dis-
criminate between views. In the Mike’s bike example with recall-1 given above, there
are several minimal views, and in fact, each one is smaller than the correct map. Thus,
focusing on minimal views might not be sufficient to find a correct one. In his journey
and consideration of alternative views, he may seek out other sources of information
such as the lattice structure of the town. These are the messages we will obtain in
Sections 3-6.

The paper is written as follows: In Section 2, we provide the definition of information
protocols, memory functions, personal views and behavior, while describing the basic
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objective situation. In Section 3, we give the definition of an i.d.view (inductively
derived view), and provide several basic results such as the general existence theorem
and a condition for the existence of a smallest view. In Section 4, we will restrict our
attention to the memory function of recall-k. We show in Section 5 that the smallest
view exists uniquely under the assumption of Kuhn’s [11] distinguishability3. In Section
6, we study behavioral consequences of a view and behavioral revisions of a view. Section
7 gives concluding remarks.

2. Information Protocols, Memory, Views, and Behavior

In Section 2.1, we describe information protocols and the axioms for them, introduced
in Kaneko-Kline [8]. They showed that these correspond to various forms of weakened
extensive games. Section 2.2 introduces the concept of a memory function for a player,
which is the interface from objective experiences to his perceptions in his mind. Then,
we define an objective description (Πo,mo) and a personal view (Πi,mi) of player i. In
Section 2.3, we give a definition of a behavior pattern (strategy configuration) for the
players, and also describe a domain of accumulation for memories and finally a memory
kit.

2.1. Information Protocols and Axioms

The concept of an information protocol was developed by Kaneko-Kline[8] as an al-
ternative to extensive games4 due to Kuhn [11]. It deals with information pieces and
actions as very basic concepts and connects a history to a new information piece and
action. An information protocol is given as a quintuple Π = (W,A,≺, (π, N), (h)i∈N∗),
where

IP1: W is a finite nonempty set of information pieces;

IP2: A is a finite nonempty set of actions;

IP3: ≺ is a causality relation; formally, it is a finite nonempty subset of
S∞
m=0((W ×

A)m ×W ), where any w ∈W and any a ∈ A occur in some sequence in ≺.
A sequence in ≺ is called a feasible sequence. We say that w ∈W is a decision piece iff w
occurs in [(w1, a1), ..., (wm, am)] for some feasible sequence h(w1, a1), ..., (wm, am), wm+1i
in ≺. We denote the set of all decision pieces byWD.We defineWE =W −WD, where

3This is a reformulation of Kuhn’s [11] “perfect recall” condition in terms of information pieces in an
information protocol. Since the memory capability is expressed by a memory function in our approach,
Kuhn’s condition is not interpreted as expressing “memory”. Thus, we use a different term for it.

4One difficulty with using extensive games, is that various forms of weakenings of extensive games
are required from the viewpoint of a player having only partial experiences. In information protocols,
these weakenings are characterized and classified by some axioms.
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each piece in WE is called an endpiece. Using those notions, we describe the fourth and
fifth components of a protocol.

IP4 (player assignment): N = {1, ..., n} is a finite set of players, and π : W → 2N is
the player assignment, where |π(w)| = 1 for all w ∈WD and π(w) = N for all w ∈WE;

IP5 (payoff assignment): hi :WE → R for all i ∈ N∗ where N∗ ⊆ N .
We start with two sets W and A of tangible elements listed in IP1 and IP2. Each

information piece w ∈W may be interpreted as a pure symbolic expression like a gesture,
a sentence in an ordinary language, or a formula in the sense of mathematical logic. In
the example of Mike’s bike commuting, W = {SE,W,N,E,M,SW,SE,NW,NE} and
A = {e, n}. The set ≺ given in IP3 describes the feasible sequences of these elements
occurring in some play of the game. A feasible sequence h(w1, a1), ..., (wm, am), wi is
interpreted as meaning that in one occurrence of the protocol Π, a player first received
piece w1 and took action a1, then sometime later another player received w2 and took
action a2, so on, and now, a player receives w. It is not yet assumed that this sequence
is an exhaustive history up to w. An exhaustive history will be defined presently.

We sometimes write [(w1, a1), ..., (wm, am)] ≺ w for h(w1, a1), ..., (wm, am), wi ∈ ≺.
We will use hξ, wi to denote a generic element of

S∞
m=0((W × A)m × W ). The set

(W × A)0 ×W is stipulated to be W and we sometimes write ≺ w for hwi ∈ ≺. The
set ≺ is the union of a unary relation on (W × A)0 ×W = W , a binary relation on
(W ×A)1 ×W , a trinary relation on (W ×A)2 ×W ,..., etc. In this paper, however, we
are interested only in finite information protocols, i.e., W,A and ≺ are all finite sets.
Throughout the paper, we assume W ∩A = ∅ to avoid unnecessary complications.

An information protocol is completed by adding the player assignment and the
payoff assignment. The player assignment π in IP4 assigns a single player to each
decision piece, and the set of all players N to each endpiece. In IP5, the payoff function
hi is specified for each player i in the set N∗ ⊆ N . We allow N∗ to differ from N to
describe a view where only some players payoffs are known to the player. In the present
paper, we consider the case of either N∗ = N or N∗ = {i}.We have left the more general
requirement of N∗ ⊆ N for our research on social roles (Kaneko-Kline [9]), where players
may learn some other players’ payoffs by role playing.

We assume for simplicity that each piece w ∈ W contains a minimal amount of
information. Explicitly, each player i should be able to read the following information
from looking at w:

M1: the full set Aw = {a ∈ A : [(w, a)] ≺ u for some u ∈ W} of available actions at w
if w is a decision piece;

M2: the value π(w) of the player assignment π if w is a decision piece;
M3: his own payoff hi(w) (as a numerical value) if w is an endpiece.

In M1, the full set of available actions is written at each decision piece. Condition M2
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requires w to include the information of who moves at w. Here, player i may receive (or
to observe) a decision piece w at which another player j moves, but every player who
observes a decision piece w agrees about who moves there. Finally, in M3, each player
can read his own payoff from each endpiece.

In Mike’s bike, ASW = AS = AW = AM = {e, n}, ANW = AN = {e}, ASE = AE =
{n} and ANE = ∅. Condition M2 and M3 are rather trivial in this example5, since it is
a 1-person problem and since the endpiece is only NE. In this example, one possible
feasible sequence is a route from SW to NE. The route determined by the bold arrows
is expressed as

h(SW,n), (W,n), (W,n), (NW, e), (N, e), (N, e), NEi. (2.1)

We have a total of
¡6
3

¢
= 20 routes from SW to NE.

We use information protocols to describe both the objective situation and a personal
view. The distinction between them is made by a choice of axioms they should satisfy.
A protocol for the objective description should satisfy two basic axioms and three non-
basic axioms. A protocol for a personal view will be required to satisfy only the two
basic axioms. We give the full set of basic and non-basic axioms now.

The first basic axiom is contraction (subsequence-closed), which states that any
subsequence of a feasible sequence is also feasible. For this axiom, we need a concept of
a subsequence of a feasible sequence. It is defined by regarding each (vt, at) or vk+1 as a
component of h(v1, a1), ..., (vm, am), vm+1i. For example, h(u1, b1), uk+1i and h(u2, b2), ...,
(uk−1, bk−1), uk+1i are subsequences of h(u1, b1), ..., (uk, bk), uk+1i, and so is huk+1i6. A
supersequence is defined in the dual manner.

Axiom B1 (Contraction): If hξ, vi ∈ ≺ and hξ0, v0i is a subsequence of hξ, vi, then
hξ0, v0i ∈ ≺.

The second basic axiom states that the decision pieces can be distinguished from
the endpieces.

Axiom B2 (Weak Extension): If ξ ≺ w and w ∈ WD, then there are a ∈ A and
v ∈W such that [ξ, (w, a)] ≺ v.

Any protocol Π that satisfies Axioms B1 and B2 is called a basic protocol. So far, a
feasible sequence may not be an exhaustive history. For the other three axioms, we need
an exhaustive history. We say that a feasible sequence hξ, vi is maximal iff ≺ contains
no proper feasible supersequence hη0, v0i of hη, vi. A position hξ, wi is defined to be an

5In this example, we do not treat payoffs. However, if we want to treat payoffs (or preferences) in
Mike’s Bike, then we should include payoffs depending upon the path to NE. In this case, NE should
be divided into several pieces including payoffs.

6Formally, we say that h(u1, b1), ..., (uk, bk), uk+1i is a subsequence of h(v1, a1), ..., (vm, am), vk+1i iff
[(u1, b1), ..., (uk, bk), (uk+1, b)] is a subsequence of [(v1, a1), ..., (vm, am), (vm+1, a)] for some a and b.
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initial segment of some maximal feasible sequence hη, vi, where an initial segment of
h(w1, a1), ...., (wm, am), wm+1i is given as h(w1, a1), ..., (wk, ak), wk+1i for some k ≤ m.
Each position is an exhaustive history up to v in Π. We denote the set of all positions
by Ξ.

We now list the three non-basic axioms.

Axiom N1 (Root): There is a distinguished element w0 ∈ W such that hw0i is an
initial segment of every position.

This axiom means that all positions start with w0. Without this axiom, the protocol
may have various starts. The next axiom states that an exhaustive history determines
a unique information piece.

Axiom N2 (Determination): Let hξ, ui and hη, vi be positions. If ξ = η and it is
nonempty, then u = v.

The last axiom states that the set of available actions at an information piece is
independent of a history.

Axiom N3 (History-Independent Extension): If hξ, wi is a position and [(w, a)] ≺
u, then there is a v ∈W such that hξ, (w, a), vi is a position.

This axiom implies that the set of available actions at any position hξ, wi is given
as the set Aw = {a ∈ A : [(w, a)] ≺ u for some u ∈ W}. If N3 is violated, the set of
available actions differ at two positions ending with the same information piece.

When an information protocol Π satisfies Axioms B1, B2, N1, N2, and N3, we call
it a full protocol. A full protocol will be used to describe an objective situation: An
objective description is a full protocol Π = (W,A,≺, (π, N), (hi)i∈N∗) satisfying Axioms
B1, B2, N1, N2, N3 and N∗ = N .

For a personal view, we require only the basic Axioms B1 and B2, and also, the payoff
assignment for only the player in question. A subjective protocol is a basic protocol
Π = (W,A ≺, (π, N), (hi)i∈N∗) satisfying Axioms B1, B2 and N∗ = {i}.

In Kaneko-Kline [8], it was shown that a full protocol is equivalent to an extensive
game in Kuhn’s [11] sense with the replacement of information sets by information
pieces. Also, it is shown that the deletion of each of the non-basic Axioms N1, N2
and N3 corresponds to some weakening of the definitions for an extensive game. It was
also shown that such weakenings are arising naturally as inductively derived views. In
Sections 3, 5 and 6, we will encounter several examples violating some of the nonbasic
Axioms N1-N3.

It is complicated to write down the causality relation ≺ even in a small example of
a basic protocol, since it is subsequence-closed by Axiom B1. In fact, it is enough to
list the positions with endpositions rather than the entire causality relation ≺. To see

10



this, we partition the set of all positions Ξ into the sets:

ΞD = {hξ, wi ∈ Ξ : w ∈WD} and ΞE = {hξ, wi ∈ Ξ : w ∈WE}. (2.2)

We call hξ, wi ∈ ΞD a decision position and hξ, wi ∈ ΞE an endposition.
In Mike’s bike, we have 20 endpositions. The number of decision positions is 51.

Fig.1.3.A is a simpler representation than the set of endpositions ΞE, but this is only
possible in some examples.

For any set of sequences Y ⊆
S∞
m=0((W ×A)m ×W ), we define the operator ∆ by

∆Y = {hξ, vi : hξ, vi is a subsequence of some sequence hη, wi ∈ Y }. (2.3)

Then, we have the following lemma, which states that the endpositions represent all
feasible sequences ≺.
Lemma 2.1. Let Π = (W,A,≺, (π, N), (hi)i∈N∗) be a basic protocol. The set of feasible
sequences ≺ coincides with the set ∆ΞE.
Proof. Let hξ, wi be any sequence in ≺. Then there is a maximal feasible sequence
hζ, vi in ≺ such that it is a supersequence of hξ, wi. By Axiom B2, v ∈ WE. Hence,
hζ, vi ∈ ΞE. By Axiom B1, we have hξ, wi ∈ ∆ΞE. We obtain the converse by tracing
this argument back.

We use this lemma to consider an example of an information protocol, which will be
referred in the subsequent sections.

Example 2.1. Consider the following 1-person situation in Fig.2.1. Player 1 chooses
an action twice successively. At any endnode, he receives the information piece which,
we presume, is equivalent to this payoff, i.e., h1(0) = 0, and h1(5) = 5.

5 0 0 5
-a ↑b ↑a %b

w w
-a %b

w0

Fig.2.1

To describe this as an information protocol, we take W = {w0, w, 5, 0} and A = {a, b}.
The set of feasible sequences ≺ is quite large, but by Lemma 2.1 it suffices to list
only the endpositions ΞE = {h(w0, a), (w, a), 5i, h(w0, a), (w, b), 0i, h(w0, b), (w, a), 0i,
h(w0, b), (w, b), 5i}. This protocol is full and thus it could be interpreted as an objective
situation.

Fig.2.1 may also be regarded as describing player 1’s view of a 2-player interactive
situation, where player 1 moves at w, and player 2 moves at w0. The payoff to player
1 is as in Example 2.1, and since it is his personal view, the payoff of player 2 is not
listed.
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2.2. Memory Functions and Views

A main problem of inductive game theory is to consider an derivation of a personal view
from memories accumulated in a player’s mind. The source for an inductive derivation
is his memories from experiences. Therefore, a certain interface from individual experi-
ences to memories is required. Here, we give the concept of a memory function as the
description of such an interface.

A memory function describes a personal memory capability within one play of an
information protocol. In other words, it describes short-term (local, temporal) mem-
ories within one play of the game. Transition from short-term memories to long-term
memories needs another superstructure, which is discussed in Akiyama et al [1], and
will be briefly described in Section 2.3.

Now, let Π be a basic information protocol, and let Ξ be the set of positions in
Π. Let Yi a subset of Ξ including the set Ξi := {hξ, wi ∈ Ξ : i ∈ π(w)} of player i’s
positions, i.e., Ξi ⊆ Yi ⊆ Ξ.
Definition 2.2 (Memory Functions): A memory function mi of player i assigns, to
each hξ, wi ∈ Yi, a finite sequence hζ, vi = h(v1, b1), ..., (vm, bm), vi satisfying:

v = w; (2.4)

m ≥ 0 and vt ∈W, bt ∈ Avt for all t = 1, ...,m. (2.5)

We call the value of a memory function mihξ, wi = hζ, vi a memory thread and
each component (vt, bt) in the thread a memory knot. A memory thread represents
a player’s short-term (local) memory about the past moves up to the position hξ, wi
within one play of Π. Condition (2.4) means that the latest piece is the one received at
the current position. Except for this requirement, enough flexibility is allowed in (2.5)
so as to capture forgetfulness and incorrect memories. Here, we note that the domain Yi
may contain other players’ positions, in which case player i receives some other player’s
information piece.

A meaningful example with a small memory-module is the recall-1 memory function,
as stated in Mike’s bike. In this case, the memory module is the pair of the present
information piece and the previously received piece and taken action. We will consider a
slightly more general class of memory functions, called “recall-k”. By “recall-k”, player i
can recall back to the k latest memory knots within Yi; this is a limitation on the length
of a memory thread (not a duration of a short-term memory). For this definition, we
need the definition of the Yi-part of a position in Yi.

Let hξ, wi = h(w1, a1), ..., (wm, am), wm+1i be any position in Yi. We define the Yi-
part hξ, wii of hξ, wi to be the maximal subsequence h(v1, b1), ..., (vs, bs), vs+1i of hξ, wi so
that that for each l = 1, ..., s+1, the initial segment of hξ, wi up to vl belongs to Yi. For
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example, when hξ, wi = h(w1, a1), (w2, a2), w3i ∈ Yi, hw1i ∈ Yi but h(w1, a1), w2i /∈ Yi,
we have hξ, wii = h(w1, a1), w3i.

To define the recall-k memory function, we define: for hξ, wii = h(v1, b1), ..., (vs, bs),
vs+1i and a non-negative integer k,

hξ, wiki =
½

h(vs−k+1, bs−k+1), ..., (vs, bs), vs+1i if k ≤ s.
hξ, wii if k > s

(2.6)

It takes the last k part of hξ, wii, but when k is larger than s, it takes the entire hξ, wii.
Also, when k = 0, we stipulate that hξ, wii = hvs+1i = hwi. In the position hξ,NEi of
(2.1), hξ, NEi01 = hNEi, hξ, NEi11 = h(N, e), NEi and hξ, NEi61 = hξ, NEi.

The recall-k memory function is formulated as:

mRki hξ, wi = hξ, wiki for each hξ, wi ∈ Yi. (2.7)

When the memory bound k is zero, i.e., player i has no recall ability in short-term
memories, it is called the Markov memory function mR0i . It holds that m

R0
i hξ, wi = hwi

for each hξ, wi ∈ Yi. This is of importance only as a reference point of our analysis.
In Mike’s bike, the memory function mR1i of recall 1 assigns mR1i hξ,Mi = h(S, n),Mi

to position hξ,Mi = h(SW, e), (S, n),Mi and mR1i hξ0,Mi = h(S, n),Mi to position
hξ,Mi = h(SW, e), (S, e), (S, n),Mi. Hence, he finds no difference in his short-term
memory at the positions of these different histories.

When k is longer than the maximum depth of the protocol, the memory bound is no
longer a bound. In this case, we call mRki the perfect-recall memory-function7, denoted
by mPRi . It is formulated as:

mPRi hξ, vi = hξ, vii for each hξ, vi ∈ Yi. (2.8)

With the memory function mPRi , player i recalls all the information pieces and actions
previously observed by himself. With this function, we will define the PR-view, which
will play an important role in Sections 4 and 6.

Two extreme cases should be emphasized. When Yi coincides with the set Ξ of all
positions, the memory function defined by (2.8) is called the perfect-information memory
function and is denoted by mPIi . In this case, m

PI
i hξ, vi = hξ, vi for each hξ, vi ∈ Yi = Ξ.

With this memory function, player i recalls the complete history within a play of Π
even including the other players’ pieces and actions. Another extreme case is given by
Yi = Ξi, where the memory function mPRi is called the self-scope perfect-recall memory
function and is denoted by mSPRi . In this case, the player only has memories of his
own information pieces and actions. This memory function was exclusively used in
Kaneko-Kline [7] and [8].

7This differs considerably from Kuhn’s [11], which will be discussed in Section 5.
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The recall-k memory functions may include partiality and forgetfulness, but the
memories are correct in the sense each memory thread is a subsequence of the truth.
Having described an information protocol and memory functions, we now have the basic
ingredients for objective descriptions and subjective personal views.

(Objective Description): A pair (Πo,mo) is called an objective description iff Πo =
(W o, Ao,≺o,πo, ho) is an objective protocol, i.e., it is a full protocol, andmo = (mo1, ...,mon)
is an n-tuple of memory functions in Πo.

We use the superscript o to denote the objective description. We put a superscript
i to denote a personal view of player i. Just as payoffs are viewed as personal, so is the
subjective memory function reconstructed by a player. Thus, a personal view of player
i includes only his subjective payoff hi and his subjective memory function mi.

(Personal View): A pair (Πi,mi) is a personal view for player i iff Πi = (W i, Ai,≺i
,πi, hi) is a subjective protocol, i.e., it is a basic protocol, with a specification of player
i’s payoff function hi, and mi is a memory function for player i in Πi.

2.3. Behavior Patterns, Closed Domains, and Memory Kits

We suppose that the game situation given by the objective description (Πo,mo) is played
repeatedly. Behavior of each player is described by the concept of a behavior pattern.
Recall that ΞoDi is the set of decision positions for player i. A function σi on ΞoDi is a
behavior pattern (strategy) of player i iff it satisfies: for all hξ, wi, hη, vi ∈ ΞoDi ,

σihξ, wi ∈ Aov; (2.9)

moi hξ, wi = moi hη, vi implies σihξ, wi = σihη, vi. (2.10)

Condition (2.9) means that a behavior pattern σi prescribes an available action to
each decision position. Condition (2.10) means that a strategy depends upon the local
memory of the player moving there. We denote, by Σoi , the set of all behavior patterns
for player i in (Πo,mo). We say that an n-tuple of strategies σ = (σ1, ...,σn) is a profile
of behavior patterns.

Although a behavior pattern is defined as a complete contingent plan, we do not
require that the player be fully aware of this complete plan. Rather he should be
able to take an action whenever he is called upon to move. The minimal information
condition M1 ensures that a player can see the available actions, and pick one, maybe, a
default action, whenever one of his decision pieces is reached. We use the term behavior
pattern to express the idea that the behavior of a player may initially have no strategic
considerations. Once a player has gathered enough information about the game, his
behavior may become strategic.
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We presume that the players follow some regular behavior patterns σo = (σo1, ...,σ
o
n).

Sometimes, however, some players may deviate from these behavior patterns, which
leads to new experiences and short-term memories for them. These short-term memories
remain for some periods of time, but after these periods, they would disappear, except
when they have occurred frequently enough to reinforce the short-term memories as
lasting in his mind. When such a case occurs, a short-term memory becomes a long-
term memory, and remains for longer periods. It is important to assume that objects of a
short-term or long-term memory are memory threads, but not a sequence of occurrences
of those memory threads.

Since there are many aspects involved in such an evolving process, there would be
many possible formulations of the dynamics. Also, since the relevant time structure
must be finite, limit theorems are not of interest to us at all. Therefore, we think that a
computer simulation is an appropriate method to study the dynamics of accumulation
of long-term memories. One simple version is given in Akiyama et al [1]. In the present
paper, we do not give a formulation of a dynamics itself. Instead, we give a general
definition of possible results of such a dynamic accumulation process, which we call a
memory kit.

The memory kit is described in terms of some domain of accumulation. For this
we start with a basic domain. We say that a subset Di of Yi is a cane domain iff
for some endposition hξ, wi, Di is given as the set {hζ, vi ∈ Yi : hζ, vi is an initial
segment of hξ, wi}. Thus, Di is the set of positions in Yi successively continuing to the
endposition hξ, wi. The regular cane domain is obtained when every player follows his
regular behavior pattern σoi with no deviations. A subset Di of Yi is said to be a closed
domain of accumulation iff it is expressed as the union of some cane domains8. We
focus largely on closed domains in this paper.

The memory kit TDi for domain Di is defined by

TDi = {moi hξ, wi : hξ, wi ∈ Di}. (2.11)

The memory kit TDi is determined by both the domain of accumulation Di and the
objective memory function moi of player i. It will be the source for an inductive con-
struction of a personal view. The set TDi of memory threads is used to construct a
skeleton of the personal view.

In Mike’s bike with the memory function mR11 of recall-1, if D1 is the cane domain
determined by the bold arrows, his memory kit TD1 consists of 7 memory threads:

hSEi, h(SE, n),W i, h(W,n),W i, h(W,n), NW i, h(NW, e), Ni, h(N, e), Ni, h(N, e), NEi
(2.12)

8The active domain and unilateral domain considered in Kaneko-Kline [7] and [8] are both closed
domains.
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If D1 is the full domain, the memory kit TD1 consists of 19 memory threads, where he
has the same memory threads at some lattice points. This partiality generates a smaller
view than Fig.1.A even in the case of the full domain, which will be discussed in Section
4.

In the case of a personal view (Πi,mi) of player i, a strategy τ i is defined in the same
manner as that in the objective protocol except that, since Axiom N3 may be violated,
(2.9) is replaced by: for any position hξ, vi ∈ ΞiDj ,

sjhξ, vi ∈ {a : hξ, (v, a), ui is a position for some u}. (2.13)

We denote the set of all strategies for player i by Σi. One question is whether a strategy
chosen in (Πi,mi) can be brought to the objective situation (Πo,mo). This will be
discussed in Section 6.

3. Inductive Derivations

We now start the main part of the paper. It is about the inductive construction of a
personal view from a memory kit TDi of a player. Kaneko-Kline [7] and [8] adopted the
self-scope perfect-recall memory function, so that a given memory kit TDi determines,
more or less, a unique personal view. In this paper, the partiality in a player’s memory
forces us to consider multiple views for the same memory kit, which opens the theory to
new types of induction. In Section 3.1, we prove the existence of an inductively derived
view for each memory kit on a closed domain (Theorem 3.1). In Section 3.2, a notion
of smallness is introduced as one criteiron to a view.

3.1. Inductively Derived Views

We relax the definition of an inductively derived view given in Kaneko-Kline [7] and [8].
In the following, we fix the objective description (Πo,mo). The full set of requirements
for an i.d.view are as follows.

Definition 3.1 (Inductively Derived View). A personal view (Πi,mi) = ((W i, Ai,
≺i,πi, hi),mi) for player i is an inductively derived view from a memory kit TDi iff

ID1(Information Pieces): W i = {w ∈W o : w occurs in some sequence in TDi}; W iD ⊆
W oD and W iE ⊆W oE;

ID2(Actions): Aiw ⊆ Aow for each w ∈W i;

ID3(Feasible Sequences): ∆TDi ⊆ ≺i;
ID4(Player Assignment):

πi(w) =

⎧⎨⎩
πo(w) if w ∈W iD

N i if w ∈W iE,
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where N i := {j ∈ No : j ∈ πi(w) for some w ∈W iD};
ID5(Payoff Assignment): hi(w) = hoi (w) for all w ∈W iE;

ID6(Memory Function): mi is the perfect-information memory function mPI of player
i for Πi.

Note that since (Πi,mi) is a personal view, it is required to satisfy the basic Axioms
B1 and B2. The above definition is the same as the one in [8] except condition ID3. In
[8], the corresponding condition requires equality, i.e., ∆TDi = ≺i. The same type of
requirement was made in [7] for the extensive game version of an i.d.view. Nevertheless,
we should discuss all of ID1 - ID6. These connect the candidate i.d.view to the original
game Γo by making use of the minimum information conditions stated in M1, M2, and
M3. Condition ID3 will be discussed after the others.

First of all, ID1 requires that the player uses only information pieces he finds in
his memory kit. It follows from M1 and M3 that he distinguishes between the decision
pieces and endpieces in his memory kit; thus, W iD ⊆W oD and W iE ⊆W oE . Condition
ID2 requires that only an objectively available action at w is available at w in the
player’s view. This is regarded as a consequence of M1, which requires that each player
can find the full set of available actions at any of his decision pieces in his memory. In
the formulations in [7] and [8], this condition is implied by some others.

Conditions ID4 and ID5 make use of M2 and M3 respectively to connect the player
assignment at decision pieces and payoffs at endpieces in Πi to those found in the
objective protocol Πo. Condition ID6 requires that the personal memory function mi

is simply the perfect-information memory function mPI for player i in Πi. We assume
this condition since the view is in the mind of player i.

Once a personal view is specified with ID1, ID2 and ID3, the conditions ID4, ID5
and ID6 uniquely determine the player assignment, payoff and memory function. Hence,
all questions about an i.d.view for a given memory kit can be answered by checking ID1
- ID3.

Now, consider condition ID3. A simple example shows the need for the weaker form
of ID3 when memory is partial. Consider the recall-1 memory function in the 1-player
(Πo,mo) of Fig.3.1:

w0 →
a

w1 →
a

w2 w0 →
a

w1 →
a

w2 →
a

w3

Fig.3.1 Fig.3.2

Recall-1 gives him the following memories: mR11 hw0i = hw0i, mR11 h(w0, a), w1i = h(w0, a),
w1i, and mR11 h(w0, a), (w1, a), w2i = h(w1, a), w2i. In this protocol, the only closed
domain is the full domain D1 = Ξo. On this domain, his memory kit is

TD1 = {hw0i, h(w0, a), w1i, h(w1, a), w2i}.
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While the reconstruction of a view from this memory kit might look straightforward,
there is no i.d.view satisfying ≺i = ∆TDi . We have a difficulty with Axiom B2. Indeed,
if there was an i.d.view with ≺i = ∆TDi , then w1 would be a decision piece in ≺i, but
no feasible sequence in ∆TD1 is an extension of h(w0, a), w1i, a violation of Axiom B2.
To avoid this difficulty, the equivalence ≺i = ∆TDi is weakened into ∆TDi ⊆ ≺i in ID3.

It is easy to construct an i.d.view for this example. We simply extend the thread
h(w0, a), w1i by adding endpiece w2 via action a to obtain the thread h(w0, a), (w1, a), w2i.
Adding this thread and its subsequences to ∆TD1 , we have an i.d.view satisfying Axiom
B2 and Axiom B1, which turns out to be the objective protocol Πo. This procedure can
be directly applied to the general case, which gives a simple proof of the existence of an
i.d.view.

Theorem 3.1 (Existence of an i.d.view): There exists an i.d.view for each memory
kit TDi obtained from any memory function on any closed domain Di.

Proof. Define F = {hξ, vi ∈ TDi : hξ, vi is a maximal thread in TDi and v ∈ W oD}. If
F is empty, the following argument becomes trivial. For each hξ, vi ∈ F , we choose an
action ahξ,vi ∈ Aov. Define AF = {a : a = ahξ,vi for some hξ, vi ∈ F}. Since Di is closed,
we have at least one we ∈W oE in some thread in TDi . We extend TDi to T

0
Di
as follows:

T 0Di = TDi ∪ {hξ, (v, ahξ,vi), wei : hξ, vi ∈ F}. (3.1)

This set T 0Di is constructed so that every maximal feasible sequence ends with the
endpiece we, i.e.,

if hξ, vi is a maximal feasible sequence in T 0Di , then v ∈W
oE. (3.2)

When F = ∅, we have T 0Di = TDi and (3.2) holds.
We define the protocol Πi = (W i, Ai,≺i) as follows: W i = {w ∈ W 0 : w occurs in

some sequence in TDi}; Ai = {a ∈ A0 : a occurs in some sequence in TDi}
S
AF ; and

≺i = ∆T 0Di . We use the information pieces occurring in TDi , the actions in TDi and
newly added actions, and the set of the extended memory threads T 0Di . Observe that
by these definitions we ensure that ID1, ID2 and ID3 are satisfied. As remarked above,
the player assignment, payoffs, and memory function are uniquely determined by ID4,
ID5, and ID6.

It remains to show that this protocol is basic. By using ≺i = ∆T 0Di , we have B1.
Now consider Axiom B2. Let hξ, wi ∈ ≺i and w ∈ W iD ⊆ W oD. Then, if hξ, wi is
maximal in ∆TDi , it would be extended by (3.1) since W

iD ⊆ W oD, so Axiom B2 is
satisfied. Suppose that it is not maximal in ∆TDi . Then, hξ, wi is a proper subsequence
of some sequence hη, vi in ∆TDi with v = w or v 6= w. In the first case, we can extend
it by (3.1). In the second case, by B1 for ∆T 0Di , we have some extension hξ, (w, a), vi in
T 0Di . Hence, there is some hη, (w, a), vi ∈ T 0Di = ≺

i .
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The closedness of the domain of accumulation Di was used in the proof of existence
only to ensure that there is an endpiece we in the memory kit. It is essential for the
existence result that the domain Di contains at least one endpiece.

The method used in the above proof gives a quite parsimonious view. As we shall see
shortly, this is just one among a great number of possible reconstructions. Consider the
objective protocol of Fig.3.2 with the recall-1 memory function. The procedure in the
proof constructs the protocol depicted in Fig.3.3, which violates Axiom N1 as it has two
roots. The original protocol of Fig.3.2 is also an i.d.view and it can be obtained quite
easily by concatenating memory threads. The multiplicity of i.d.views is an inevitable
consequence of our weakening of ID3 to ∆TDi ⊆ ≺i.

w0 →
a

w1 →
a

w3

w1 →
a

w2 →
a

w3

Fig.3.3

The multiplicity comes from various different ways of cutting and extending the
memory threads in his memory kit. In fact, for each memory kit there are a countably
infinite number of i.d.views. This can be seen by observing that once we have con-
structed one i.d.view, we can construct another by adding the same decision piece to
the front of each maximal sequence in the view. This implies that great many supersets
of ∆TDi will constitute i.d.views. Our next task is to find precisely what shapes they
they possibly take.

We say that a superset9 F of ∆TDi is conservative iff for each h(w1, a1), ..., (wm, am),
wm+1i ∈ F, w1, ..., wm+1 occur in ∆TDi and at ∈ Aowt for t = 1, ...,m. We have the
following fact by ID1 and ID2 that ≺i must be a conservative superset of ∆TDi .
Remark 3.1. If (Πi,mi) is an i.d.view from TDi , then ≺i is a conservative superset of
∆TDi .

Then, we have the following additional result.

Lemma 3.2. Let F be a conservative superset of ∆TDi . Then, there is at most one
i.d.view from TDi with ≺i = F .
Proof. Suppose that (Πi,mi) = ((W i, Ai,≺i,πi, hi),mi) and (Π0i,m0i) = ((W 0i, A0i,≺0i,
π0i, hi

0
), m0i) are both i.d.views from TDi with ≺i= ≺0i= F . By IP3, W i = W 0i and

Ai = A0i. Since, (W 0i, A0i,≺0i) = (W i, Ai,≺i), conditions ID4, ID5, and ID6 imply that
(πi, hi,mi) = (π0i, h0i,m0i).

9Strictly speaking, this set F need only to consist of the same sets of information pieces and actions
as Πo. It may contain longer feasible sequences than Πo.
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This result is in sharp contrast with Kaneko-Kline [7], where an i.d.view is defined
in terms of an extensive game. There, we would meet another types of multiplicity
caused by the hypothetical elements of nodes and branches. The use of an information
protocol enables us to avoid this problem. The next theorem gives a necessary and
sufficient condition for a conservative superset of ∆TDi to be an i.d.view. Essentially,
condition (i) corresponds to Axiom B1 and condition (ii) to Axiom B2.

Theorem 3.3.(Conditions for an i.d.view): Let F be a conservative superset of
∆TDi . Then, there is an i.d.view (Π

i,mi) = ((W i, Ai,≺i,πi, hi),mi) from TDi with ≺i
= F if and only if

(i): F = ∆F ;

(ii): v ∈W oE for any maximal thread hξ, vi ∈ F .
Proof. (Only-if): Let (Πi,mi) = ((W i, Ai,≺i,πi, hi),mi) be an i.d.view from TDi with
≺i= F . Then (i) holds by Axiom B1. Consider (ii). Let hξ, vi be a maximal thread
in F = ≺i. Since this is a basic protocol, hξ, vi must be an endposition in Πi. Hence
v ∈W iE and by ID1, v ∈W oE.

(If): Suppose that (i) and (ii) hold. Then we define the set of information pieces
W i = {w ∈ W o : w occurs in F}, the action set Ai = {a ∈ Ao : a occurs in F}, and
then ≺i= F .

First, we show Axioms B1 and B2 for (W i, Ai,≺i). By (i), we have Axiom B1.
Consider Axiom B2. Let hξ, vi ∈ ≺i with v ∈ W iD. Since F is conservative upon

TDi , we have v ∈ W oD. Thus, by (ii), there can be no maximal sequence in ≺i= F
ending with v. Hence, ≺i has a feasible sequence hη, (v, c), wi for some c and w so that
this is a supersequence of hξ, (v, c), wi. By Axiom B1, hξ, (v, c), wi is a feasible sequence.
Thus, we have Axiom B2 for Πi.

Next, we show that the conditions ID1 to ID5 are satisfied. The first part of ID1
follows from the supposition that F is conservative upon TDi . It follows from (ii) and
B2 that W iD ⊆ W oD and W iE ⊆ W oE. Condition ID2 follows from conservativeness.
Condition ID3 follows from F ⊇ ∆TDi .

Since ID1, ID2 and ID3 are satisfied, the remaining parts πi, hi, and mi are uniquely
determined by ID4, ID5, and ID6.

By the above theorem, we have a direct way to check whether or not a conservative
superset F of TDi will form an i.d.view.

As a final result for this section, we show that the general existence result can be
extended, under some relatively weak additional condition, to obtain an i.d.view that
satisfies Axioms N1, N2 and N3. The additional condition is that the domain Di has
at least one decision position with at least two actions. In the theorem, we weaken the
closedness condition to the condition of the domain containing at least one endpiece
which we already remarked is a sufficient condition for existence of an i.d.view. The
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theorem will be proved in the Appendix.

Theorem 3.4 (Existence of a Full I.D.view): Let Di be a domain of accumulation
satisfying that Di ∩ ΞoE 6= ∅ and |Aov| ≥ 2 for some hξ, vi ∈ Di ∩ ΞoD. There is an
i.d.view from TDi that satisfies Axioms N1, N2 and N3.

The next example exemplifies Theorems 3.1 and 3.4.

Example 3.1. Consider the 1-person protocol of Example 2.1 with the recall-1 memory
function mo1 = mR11 . The protocol of Fig.2.1 itself is an i.d.view. A protocol obtained
by the procedure of the proof of Theorem 3.1 is depicted in Fig.3.4, which lists up all
the endpositions in Ξ1E. This satisfies neither of Axioms N1, N2 and N3.

0 5 5 0
↑a ↑a ↑b ↑b
w w w w
↑a ↑b
w0 w0

0 5 5 0
-a ↑b ↑a %b

w w
-a %b

w0

Fig.3.4 Fig.3.5

Fig.3.5 is obtained from Fig.3.4 by connecting the third and fourth w with w0 via actions
a and b, respectively. This is an i.d.view with Axioms B1-B2 and N1-N3, but it differs
from the objective situation of Fig.3.1, which is itself another i.d.view satisfying all the
axioms.

3.2. Minimal and Smallest Views

Theorem 3.1 claims the existence of an i.d.view for any given memory kit TDi . Never-
theless, our definition of an i.d.view allows us to have a countably infinite number of
i.d.views. A player often has a different source of information in addition to TDi which
he may use to discriminate between views. One source is his criterion of the economy
of thought, i.e., to choose a small view. Here, we consider “smallness” of i.d.views. In
Section 6, we will consider some other sources for discriminating between views.

We say that the i.d.view (Πi,mi) is smaller than the i.d.view (Π0i,m0i) iff ≺i ⊆ ≺0i.
This notion is based on the idea of not using more sequences than what are needed.
An i.d.view (Πi,mi) is minimal iff no i.d.view (Π0i,m0i) is strictly smaller than (Πi,mi).
Since an i.d.view is finite, it follows from Theorem 3.1 that there exists a minimal
i.d.view for any given memory kit TDi . An i.d.view (Πi,mi) is the smallest iff it is
smaller than every i.d.view. If the smallest view exists, it is unique, but as we shall see,
the smallest view may not exist.

There are some clear-cut cases when we will have a smallest i.d.view. One is when
we get an i.d.view where the set of feasible sequences ≺i = ∆TDi . We state this fact as
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the next lemma.

Lemma 3.5. Let TDi be a memory kit, and (Π
i,mi) = ((W i, Ai,≺i,πi, hi),mi) an

i.d.view from TDi . If ≺i = ∆TDi , then (Πi,mi) is the smallest i.d.view for TDi .
A necessary and sufficient condition for the existence of such an i.d.view is given in

the following corollary.

Corollary 3.6. Let TDi be a memory kit. There is an i.d.view for TDi with ≺i = ∆TDi
if and only if for any maximal thread hξ, vi in TDi , the piece v appears in W oE.

Proof. This follows from Theorem 3.3. Indeed, if there is an i.d.view for TDi with ≺i
= ∆TDi , then condition (ii) of Theorem 3.3 is the latter statement. Conversely, if the
latter holds, then by taking F = ∆TDi for Theorem 3.3, we have an i.d.view for TDi
with ≺i = ∆TDi .

As mentioned earlier, Kaneko-Kline [7] and [8] focused on the self-scope perfect-
recall memory function and used the strict definition ≺i = ∆TDi for an i.d.view. In the
present context, a perfect-recall memory function, which may have others in his scope,
determines the smallest i.d.view.

Corollary 3.7. Let TDi be the memory kit of player i obtained from a perfect-recall
memory function on a closed domain Di. There is a smallest i.d.view from TDi and it
satisfies ≺i = ∆TDi .
Proof. It suffices to show the if-part of Corollary 3.6 holds. Since the domain is closed,
for each endposition hξ, vi in Πo, the value moi hξ, vi = hη, wi satisfies w = v. Also, since
moi is perfect-recall, any memory thread in TDi is a subsequence of the value of m

o
i at

some endposition hξ, vi. Hence, for any maximal hη, wi ∈ TDi , w ∈W oE.

Now we turn to examples where no view exists satisfying ≺i = ∆TDi . One is the
example of one player objective view of Fig.3.1 with the recall-1 memory function. As
we saw, in this example there is no i.d.view satisfying ≺i = ∆TDi . While there are
a countably infinite number of other views for this memory kit, the view of Fig.3.1
is indeed the smallest one. On the other hand, the smallest view from the objective
situation of Fig.3.1 with recall-1 is given as Fig.3.3.

When we consider partiality in memory in slightly more complicated examples, we
would typically find multiple minimal views. These views themselves are small, but the
problem is that a player might not be sure about which one to choose. Recall the recall-
1 memory function on the objective protocol of Example 2.1. In this case, Fig.3.4 is a
minimal view. However, we have another minimal i.d.view by changing the connection
between w0 and w, e.g., the first connection is replaced with the third one. Thus, the
notion of smallness does not always resolve the multiplicity problem.
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4. Reconstruction of a View from a Recall-k Memory Function

In this section, we explore the recall-k memory function of a player and the associated
i.d.views. With this memory function, a player can recall only the last k information
pieces and actions taken. If his memory ability is very weak, e.g., k = 0 or k = 1, then
we might expect a great multiplicity of minimal i.d.views. However, as his ability gets
stronger, the number of minimal i.d.views decreases. For large enough k, we know from
Corollary 3.6 that there is a unique smallest view. First, we give some basic results for
recall-k memory functions and focus on a particular i.d.view called the PR-view. Then,
we exemplify the present considerations with the example of “Mike’s Bike Commuting”
of Akiyama et.al [1].

Recall that the memory function of a player has a domain Yi of positions including
player i’s positions Ξoi = {hξ, vi ∈ Ξo : i ∈ πo(v)}. We now fix the domain Yi of a player
i and also his domain of accumulation Di. We are interested in how the i.d.views change
when the player’s memory function increases from recall-k to higher levels of recall. We
have the following result that as a player’s recall ability rises, the number of views he
might derive declines.

Theorem 4.1 (Higher Recall Reduces Possibilities): Let Di be a closed domain
for player i and let TDi and T

0
Di
denote the memory kits obtained from the recall k

and recall k0 memory functions respectively. If k > k0, then every i.d.view for TDi is an
i.d.view for T 0Di .

Proof. Let (Πi,mi) be an i.d.view for TDi . We show that (Π
i,mi) is also an i.d.view

for T 0Di . Since ≺
i ⊇ ∆TDi by ID3 for TDi and ∆TDi ⊇ ∆T 0Di by k > k

0, we have ≺i ⊇
∆T 0Di , i.e., ID3 for T

0
Di
. Since Di is closed, the set {w ∈W o : w occurs in TDi} coincides

with the set {w ∈ W o : w occurs in T 0Di}. Thus, ID1,ID2, ID4, ID5, and ID6 for T
0
Di

follow directly from the corresponding conditions for TDi .

The converse may not hold. Indeed, for the recall-1 memory function defined on the
protocol of Fig.2.1, the protocols of Fig.3.4 is a minimal view and also there are some
others. However, for the recall-2 memory function, the view given by Fig.2.1 itself is
the smallest one.

The smallest i.d.view for a perfect-recall memory function was given in Corollary
3.7. By Theorem 4.1, this view is also a view for any level of recall. To state this fact
formally, we refer to this i.d.view as the PR-view for Di denoted by (ΠRR,mPI), where
it is defined by the set of feasible sequences ∆{hξ, vii : hξ, vi ∈ Di}.
Corollary 4.2 (PR-View is an i.d.view for any Recall-k Memory Function):
Let the objective memory function moi be the recall-k memory function m

Rk
i (k ≥ 0) on

a closed domain Di for player i. The PR- view (ΠRP ,mPI) for Di is an i.d.view for TDi .

This guarantees that the PR-view for Di is an i.d.view for any recall-k memory
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Figure 4.1: Various I.D.Views for Mike’s Bike

function. It is one candidate view that we might concentrate on for a player with recall-
k memory. However, the PR-view may not be a minimal view as we have seen for the
case of Fig.2.1 with the recall-1 memory.

Mike’s Bike Commuting: Let us return to the example of Mike’s Bike with the full
domain. Here, we consider the possible i.d.views when he has the memory function of
recall-k for small k. Suppose that Mike has recall-1. First, the true map (Fig.1.3.A)
and the larger one (Fig.1.3.B) are possible i.d.views. Now, there are several minimal
views, which are obtained by the procedure given in the proof of Theorem 3.1: One is
depicted in Fig.4.1.A. Each of these consists of 16 maximal sequences of length 3 to the
endpiece NE. The differences are in attached actions at S,W, and M to NE. Each
minimal view violates the non-basic axioms N1 and N3.

If we allow him a stronger memory, say recall-k but k ≤ 4, then there is still a
minimal i.d.view smaller than Fig.1.3.A. If he has memory function of recall-5 or higher
(perfect-recall), then his smallest view is Fig.1.3.A.

Now, return to the case with recall-1. Let us restrict our attention to minimal views
that satisfy N1-N3. Even with this restriction, we find that Fig.1.3.A is not yet a
minimal one, since Fig.4.1.B is a strictly smaller view satisfying N1-N3, where one M
is missing. In this case, however, recall-2 is enough to guarantee that Fig.1.3.A is the
smallest view.

Thus we see that additional requirements (or information) often help the player
obtain a better view. In this example, the root condition N1 looks natural for a player
since he always starts form the root SW as his home.
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5. Kuhn’s Distinguishability Condition

In the theory of extensive games, Kuhn [11] gave a mathematical condition on infor-
mation sets interpreted as “perfect recall”. In our context, his interpretation is of a
memory function, but his mathematical condition is an attribute of information pieces.
The condition is formulated as follows: We say that an information protocol Π satisfies
the distinguishability condition for player i iff for any hξ, vi, hη, wi ∈ Yi,

hξ, vii 6= hη, wii implies v 6= w. (5.1)

That is, when two positions have different personal histories up to Yi, some difference
must be expressed in the current pieces10. This means that the player can distinguish
between the pieces. It does not mean that by looking at a current piece, he would be
able to articulate the difference in the history, nor does it mean that he has perfect
recall about what he has observed in the past.

Since the above is an important point in inductive game theory, we give one example
showing how the condition might be satisfied, and then we will comment on why (5.1)
should not be regarded as expressing “perfect recall”.

Consider the example of Mike’s Bike with recall-1. Here, (5.1) is violated, since
he receives the same piece at several lattice points. Let us change the example so
that in addition to each information piece such as SW, S, W , etc., he receives the
information of the distance from his home - - his bike has now the distance meter. In
fact, we need to assume that the town is slightly skewed: For example, each horizontal
block has evenly 1, 000m, and the length of each of the 3 vertical blocks, from the
west end, is 1, 000m, 1, 001m, 1, 004m and 1, 013m (hence the total length from SW
to NW is 3, 000m but that from SE to NE is 3, 039m). At the northeast M through
the history h(SW, e), (S, n), (M, e), (M,n),Mi, the distance meter indicates 4, 005m (=
1, 000m+ 1, 001m+ 1, 000m+ 1, 004m), that is, he receives the new information piece:

M ∧ (d = 4, 005). (5.2)

If he chooses a different path to the same lattice point, he now receives a different
information piece. Thus, this example satisfies (5.1).

His memory of recall-k with k ≥ 1 gives him some hints to the past history. In
Fig.1.3.A, without a distance meter, the information M is too coarse and the hints
in his recall-1 memory do not allow him to construct the true map as a smallest one.
On the other hand, if his information pieces are distinguishable, then those hints in
10A reader may find some analogy between this idea and the Eve-hypothesis in the recent biological

antholopology. That hypothesis is based on the assumption that some different antholopological histories
inherited through women can be distinguished by some differences in their current mitochondoria. See
Mithen [12].
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his recall-1 memory are enough. The fact holds generally up to the PR-view, which is
stated in Theorem 5.1 and proved in the end of this section.

Theorem 5.1 (Smallest Under the Distinguishability Condition): Let Πo satisfy
the distinguishability condition for player i, and moi = m

Rk
i for k ≥ 1. Let Di be a closed

domain of accumulation for player i. The PR-view (ΠPR,mPI) is the smallest i.d.view
for TDi among the class of i.d.views that satisfy the distinguishability condition for
player i.

In Mike’s Bike, if he collects his memories including the information from the distance
meter over the whole town, then he may succeed to connect the links (or hints) in his
recall-1 memory modules to construct a unique smallest map which is the actual map!

Now, we should consider condition (5.1) from the viewpoint of Kuhn’s interpretation
of “perfect recall”. The example by (5.2) implies that (5.1) does not necessarily represent
Kuhn’s interpretation. Then, consider the following example: In Mike’s Bike, we replace
the information piece at each lattice point by the piece describing the complete history
to it; for example, if Mike reaches the northeast M via his choices e at SW, n at the
west S, e at the southwest M and n at the southeast M, then his new piece is

(SW, e) ∧ (S, n) ∧ (M,e) ∧ (M,n) ∧M. (5.3)

In this case, each piece contains all information about his previous moves, and this
describes Kuhn’s interpretation of “perfect recall”.

Although (5.2) and (5.3) satisfy (5.1), they are entirely different. A faithful inter-
pretation of (5.2) does not contain “perfect recall” at all, which implies that (5.1) does
not have the specific meaning of “perfect recall”. The Example of (5.3) is only a possi-
bility for (5.1). Strictly speaking, in Kuhn’s theory of extensive games, the information
partitions induced by (5.2) and (5.3) are identical, i.e., (5.2) and (5.3) cannot be distin-
guished11. This indistinguishability may explain why “perfect recall” has remained the
dominant interpretation of Kuhn’s mathematical condition.

From our theoretical point of view, we regard (5.3) as an unnatural description in
that a memory capability is not separated from information received: If one wants to
describe “perfect recall” in our theory, it should be described by a memory function.

Before proving this theorem, we consider one more example to show how small-
ness is used in the theorem. Consider the 2-player protocol of Fig.5.1 which is a
slight variant on the 1-player protocol of Fig.2.1. In the new objective description,
player 1 moves at w1 and w2 and player 2 moves at the root piece w0. Also the pay-
offs are changed to satisfy distinguishability. Player 1 has the perfect-recall memory
11One relevant remark is that when we talk about the equivalence between an information protocol

and an extensive game such as in Kaneko-Kline [8], we should not forget the qualification for “equivalence
up to the induced information partitions”: Otherwise, these theories are different.

26



function on his domain of accumulation D1 = Y1 = Ξ
o
1. Player 1’s memory kit is

TD1 = {h(w1, a), 5i, h(w1, b), 0i, h(w2, a), 1i, h(w2, b), 2i}.

5 0 1 2
-a ↑b ↑a %b

w1 : PL1 w2: PL1
-a %b

w0 : PL2

Fig.5.1

5 0 1 2
-a ↑b ↑a %b

w1 w2

1 2
↑a %b

5 0 w2
-a ↑b%b

w1

Fig.5.2 Fig.5.3

The PR-view is described in Fig.5.2. By Theorem 5.1, this view is the smallest
among the class of i.d.views with distinguishability. Moreover, this view is the smallest
even among the class with and without distinguishability. The personal view of Fig.5.3
is also an i.d.view for the same memory kit that satisfies Kuhn’s distinguishability
condition, but it is larger than the PR-view.

We will use the following lemmas in the proof of Theorem 5.1.

Lemma 5.2. Let (Γo,mo) be an objective situation, let Di be a domain of player i,
and let ΠPR be the PR- view for Di. If Πo satisfies the distinguishability condition for
player i, then so does ΠPR.

Proof. Let hξ, vi, hη, wi ∈ Ξd with hξ, vi 6= hη, wi. Since this is the PR- view, there
must be two positions in the objective view hξ, vio,hη, uio ∈ Ξo such that hξ, vioi = hξ, vi
and hη, uioi = hη, ui. By distinguishability on Πo and hξ, vioi 6= hη, wioi , we have u 6= v.
Lemma 5.3. Let (Γo,mo) be an objective situation, let Di be a domain of player i,
and (Πi,mi) a personal view of player i. Suppose the distinguishability condition on the
set of all positions in Πi. The function ϕ defined by ϕhξ, vi = v for all hξ, vi ∈ Ξi is a
bijection to W i.

Proof. By IP3 for Πi, ϕ is a surjection. Let hξ, vi, hη, wi ∈ Ξi with hξ, vi 6= hη, wi. By
the distinguishability condition, we have v 6= w.
Proof of Theorem 5.1. Recall that Di be a closed domain and moi = m

Rk
i for k ≥ 1.
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By Theorem4.1, (ΠPR,mPI) is an i.d.view for TDi , and by Lemma 5.2, Π
PR satisfies

the distinguishability condition.
Consider any i.d.view (Πi,mi) for TDi satisfying the distinguishability condition. We

will show that Πd is smaller than Πi.
Since Πi and ΠPR both are i.d.views for TDi , it follows from condition ID1 that

W i = WPR. By Lemma 5.3, there is exactly one position for each information piece.
Now, we show by induction on the length of positions that each position hξ, vi ∈ ΞPR
is a subsequence of a position hη, vi ∈ Ξi for the same current piece v. From this and
Lemma 2.1, it follows that ≺d= ∆ΞPR ⊆ ∆Ξi = ≺i.

For the base case, let hξ, vi = hvi ∈ ΞPR, i.e., it is a position of length 1 in ΞPR.
Since W i = WPR is the set of pieces occurring in TDi , v occurs in ≺i . There is one
maximal sequence in Πi including v. Then the initial segment hη, vi of it is a position
in Πi.

Next, let hξ, vi ∈ ΞPR be a position of length m > 1, and suppose that any position
from ΞPR of length less than m is a subsequence of some position in Ξi. We will show
that hξ, vi is a subsequence of a position hη, vi ∈ Ξi.

Let hξ, vi = h(w1, a1), ...., (wm−1, am−1), vi. Then by hypothesis, h(w1, a1), ...., (wm−2,
am−2), wm−1i is a subsequence of a position hηm−1, wm−1i in Ξi. Since player i has
recall-k (k ≥ 1) on a closed domain Di, h(wm−1, am−1), vi ∈ ∆TDi ⊆ ≺i. By Lemma
5.3, hηm−1, (wm−1, am−1), vi must be a subsequence of hη, vi. Since hξ, vi is a sub-
sequence of hηm−1, (wm−1, am−1), vi, we have that hξ, vi is a subsequence of hη, vi as
desired.

6. Behavioral Uses of I.D.Views

After a player derives an i.d.view from his long-term memories, he uses the view for
decision making. Kaneko-Kline [7] discussed behavioral uses of an i.d.view, while fo-
cussing on the self-scope perfect-recall memory function and small restricted domains
of accumulation. These restrictions enabled the player to obtain a unique i.d.view and
to succeed in making a subjective decision in his i.d.view. There were neither technical
nor conceptual difficulties with these behavioral uses, though Nash equilibrium needed
to be redefined in a more restricted manner. On the contrary, when memory involves
partiality, we would meet some new difficult but essential problems in induction. These
are disccussed in this section.

6.1. Multiplicity of I.D.Views and its Possible Resolution

When the memory function is partial, there may be multiple i.d.views for a player even
if he focuses on minimal i.d.views. Multiplicity of i.d.views could be a serious problem
if they suggest different behavior. In this case, he may start looking for more clues
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to discriminate between those views. Here, we consider how he might use his new
experiences to reject or accept some views.

We assume that he keeps his regular behavior and makes new trials within the do-
main Di of accumulation. His memory is now aided and expanded by his view Πi: At a
position hξ, wi in (Πo,mo), he experiences his temporal memory moi hξ, wi and considers
its relation to his view Πi. He tries to identify each of his experiences with a position in
his subjective view Πi. Also, he checks successive positions in Πi with successive expe-
riences. In this process of successive checking, he may find some incoherency between
his view Πi and experiences. If no such incoherency exists between them, he continues
to keep (Πi,mi).

To describe this idea of successive checking, we define immediate successorship rela-
tions in Πo and Πi. We define the relation hξ, wi <oIa hη, vi in Πo iff hη, vi is an immediate
successor of hξ, wi in Di with the choice of action a at w. Likewise, hξ0, w0i <iIa hη0, v0i
is defined in Πi, in which case, hξ0, w0i is, directly, the immediate predecessor position
of hη0, v0i with the choice a at hξ0, w0i.

We say that player i cannot falsify (Πi,mi) with his experiences iff there is a function
ψ from Di to the set of positions Ξi in Πi such that

F0: ψ is a surjection;
F1: for any hξ, wi in Di, if ψhξ, wi = hη, ui, then w = u;
F2: for any hξ, wi, hζ, vi in Di, hξ, wi <oIa hζ, vi if and only if ψhξ, wi <iIa ψhζ, vi.

The existence of the function ψ is required from the objective point of view, since
player i does not know the structure of Di. Nevertheless, conditions F0, F1 and F2
describe the stability of an i.d.view against player i having the ability of effectively
falsifying Πi by his experiences. If F0 is violated, then he could realize after some
time that some position in Πi never occurs. Condition F1 means that he identifies his
currently received piece u with some position ending with u in Πi. Condition F2 is the
requirement of player i’s successive checking of his current and next positions in the
objective Πo and in his view Πi.

The process of successive checking might go as follows. When he receives the first
piece w in Πo, he finds the minimal position hwi in Πi. When he receives the next
piece v after action a at w, he finds the immediate successor h(w, a), vi of hwi in Πi. He
continues this process, and if F0-F2 are satisfied, he finds no difficulties, and otherwise,
he would find something wrong with his present view.

In Mike’s bike without the distance meter he might construct the minimal view
of Fig.4.1.A from his recall-1 memory on the full domain of Fig.1.3.A. Suppose that
he follows his regular behavior and checks his view using his his new local memo-
ries in the objective situation. At the start SW , he has the local objective memory
thread mo1hSW i = hSW i. He checks his view of Fig.4.1.A and finds the correspond-
ing position in his view. He then follows his regular behavior of heading north “n”.
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Next, he receives the information piece W and the local memory mo
1h(SW,n),W i =

h(SW,n),W i. He successfuly finds the corresponding position in his view as an ex-
tension of his previous position. Following his regular behavior, he next obtains the
memory mo

1h(SW,n), (W,n),W i = h(W,n),W i. Now, he cannot find the corresponding
position in his view that is an extension of his previous position. His view suggest that
he should be at NE now, but he finds himself at W . Thus he doubts his view and move
on to another one.

The next theorem states that under the assumption of Yi-correctness on the memory
function, the PR- view is the only i.d.view that cannot be falsified, which will be proved
in the end of this subsection.

Theorem 6.1 (Falsification and the PR-View). Let Di be a closed domain and
let moi be a Yi-correct memory function, i.e., m

o
i hξ, wi is a subsequence of hξ, wii for all

hξ, wi ∈ Di. Let (Πi,mi) be an i.d.view from a memory kit TDi . Then (Π
i,mi) cannot

be falsified with experiences if and only if (Πi,mi) is the PR-view.

We now consider one important implication of the above theorem. Suppose that
player i considers his possible i.d.views from his memory kit and proceeds in the following
way:

P1: Player i enumerates his i.d.views (Πi1,mi1), (Πi2,mi2), ....;12

P2: If he brings the i.d.view (Πik,mik) with him to the objective situation and finds
some incoherency in it with experiences, then he brings the next view (Πi,k+1,mi,k+1).

If F0-F2 are able to be applied without errors, it would be a consequence of Theorem
6.1 that the above process will always terminate with the PR-view. Nevertheless, the
process of falsification may have some difficulties and may fail.

As far as (Πi,mi) is an i.d.view from the memory kid TDi , we can find a function ψ
satisfying the requirement F1. Hence, we restrict our attention to a function ψ satisfying
F1. Thus, falsification itself is characterized by the negation of F0 or F2. Although the
checking of each of F0 and F2 may take long time, the violation of F2 is clear-cut: While
he has received two successive memory threads moi hξ, wi and moi hζ, vi with action a at
w, ψhξ, wi and ψhζ, vi do not successively occur in Πi. Falsification of F0 is uncertain
and needs a decision as he may not be sure if he has waited long enough.

Trial-error has stochastic components, as described in Akiyama et al [1]. Therefore,
after many repetitions of the situation, it is not completely certain for player i that
some position in Πik will never happen. Here, he needs to make a doxastic decision (cf.
Plato [13]) or a statistical decision to reject the present view (Πik,mik). There may be
two types of errors as in statistical inference (cf., Rohatig [14], p.708). A Type I error
12Note that he does not need to enumerate all of these views before this process. Instead, he needs

only some algorithm to have a “next” candidate from the present one. Here, he is also successively
checking each view.
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occurs when player i waits for every position in Πik to occur and incorrectly does not
reject the present (incorrect) view, and a Type II error occurs if he does not wait long
enough for some position in (Πik,mik) and incorrectly rejects the (correct) PR-view.

In Mike’s bike, it will be almost immediate to reject Fig.1.3.A. But when Fig.1.3.B
becomes a candidate in his mind, it would take quite some time to find that one M is
missing. On the other hand, even when the true one (Fig.1.3.A) comes to his mind, he
may reject it because some point may not occur to him and he cannot wait any longer.

Proof of Theorem 6.1. (If ): Let (Πi,mi) be the PR- view. Then, it is generated
by the perfect-recall memory function moi = m

PR
i over the closed domain Di. Then ≺i

is given as ∆{hξ, wii : hξ, wi ∈ Di}, equivalently, the set of positions in Πi is Ξi =
{hξ, wii : hξ, wi ∈ Di}. We define ψ by

ψhξ, wi = hξ, wii for all hξ, wi ∈ Di. (6.1)

Then, ψ is a surjection, which is F0. Since moi hξ, wi = mPRi hξ, wi = hξ, wii, we have
condition F1. Finally, consider F2. Suppose that hξ, wi, hη, vi inDi and hξ, wi <oIa hη, vi.
Then, hξ, wii, hη, vii are positions in Πi and ψhξ, wi = hξ, wii <oia hη, vii = ψhη, vi. The
converse can be seen by tracing back this argument.

(Only-If ): It is enough to show (6.1). We prove this assertion from the minimal se-
quences in Di.

Let hξ, wi be a minimal position in Di, i.e., Di has no proper initial segment of
hξ, wi. Then, hξ, wii = hwi since Di is closed (specifically, downward closedness). Thus,
moi hξ, wi = hwi by Yi-correctness. By F1, ψhξ, wi = h(w1, a1), ..., (wm, am), ui satisfies
u = w. Now, suppose that m ≥ 1, i.e., ψhξ, wi 6= hwi. Since ψ is a surjection from Di
to the set of all positions Ξi of Πi by F0, there is a hη, vi in Di such that ψhη, vi =
h(w1, a1), ..., (wm−1, am−1), wmi. Then, ψhη, vi <iIam ψhξ, wi. Hence, by F2, we have
hη, vi <oIam hξ, wi, which contradicts the assumption that hξ, wi is a minimal position in
Di. Hence, we have ψhξ, wi = hwi = hξ, wii.

Now, we suppose the inductive hypothesis that ψhξ, wi = hξ, wii. Let hη, vi be
the next position in Di with action a at w. Thus, hξ, wi <oIa hη, vi. By F2, we have
ψhξ, wi <iIa ψhη, vi. By the inductive hypothesis ψhξ, wi = hξ, wii and F1, we have
ψhη, vi = hξi, (w, a), vi = hη, vii, where ξi is the first part of hξ, wii.

6.2. Violations of N1-N3 and their Effects on Decision Making with a View

It is an implication from the discussion of Section 6.1 that it could take a long time to
reach the PR-view or a player may even fail to reach it. If player i makes a doxastic
decision that his PR-view is not falsified, it would be stable. Nevertheless, the PR-
view or the one he settles on may neither be a full information protocol nor help his
decision-making. In this section, we discuss these problems.
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Now, suppose that player i finds an i.d.view (Πi,mi) by some method and decides
to use it for his decision making. Then, this subjective view Πi may violate Axioms
N1-N3 even if it is the PR-view. We consider the problems arising from each violation:

Violation of N1(Root): The view has several trees;
Violation of N2(Determination): An exhaustive history does not determine a
unique present information piece;

Violation of N3(History-Independent Extension): Some available actions stated
in a piece are not in the view.

Since the violations are caused for different reasons, we should connect difficulties in
decision making with the original situations causing the violations.

The violation of N1 may be caused by partial memory and the ignorance of another
player. The violations in Fig.3.3 and Fig.3.4 are caused by partial memory, and that in
Fig.5.2 is caused by the ignorance of player 2.

The violation of Axiom N2 comes also from the ignorance of another player. For
example, in Fig.5.1, if w1 = w2 = w, then a protocol of Fig.6.1 is the smallest view for
player 1 and it violates Axiom N2. In this case, this protocol is also the PR-view.

5 1 0 2
-a ↑a ↑b %b

w

Fig.6.1

Finally, consider the causes of the violation of N3. The main reason is the partiality
of the domainDi and one extreme example is thatDi is the cane domain while each piece
states the availability of multiple actions. The partiality of Di was extensively discussed
in Kaneko-Kline [7]. Note that the violation of N3 may also come from partiality in
memory as in Fig.3.4.

Now, let us turn to the potential difficulty with his decision making by his view.
The simplest case is the violation of N3: Even though an information piece tells him
some actions are available, his view does not give consequences of those actions. In this
case, the player should ignore those actions, and does not meet a serious problem with
his decision making.

The violation of N2 is more serious as seen in Fig.6.1. Player 1 has a difficulty to
make a choice of a or b.While the violation of N1 may appear to be of a similar nature,
the analysis below will show that a violation of N1 creates no serious problem with
decision making .

Recall that a strategy sj in a personal protocol (Πi,mi) is defined by (2.13) and
(2.10). Since (Πi,mi) is a subjective view, we use a different letter to denote a strategy.
Let N i be the player set of Πi. Now, we denote a profile of strategies for N i by s =

32



(sj)j∈Ni . Then, we say that a position hξ, (vk, ak), ..., (vm, am), vm+1i is s-compatible
with a position hξ, vki iff

sjhξ, (vk, ak), ..., (vt−1, at−1), vti = at for all t = k, ...,m with πi(vt) = j. (6.2)

Axiom N2 guarantees that for each position hξ, vki and each profile s, there is a unique
s-compatible endposition.

Lemma 6.2 (Strategy-Determinancy). Let (Πi,mi) be an i.d.view satisfying Ax-
iom N2, and s = (sj)j∈Ni a strategy profile. Then, any given position hξ, vki uniquely
determines an endposition which is s-compatible with hξ, vki.
Proof. It holds by Axiom N2 that for any t = k, ...,m, hξ, (vk, ak), ..., (vt−1, at−1), vti
and at determine the unique vt+1. For t = m, this statement determines the unique
endposition.

For a position hξ, vi and strategy profile s = (sj)j∈Ni , we define the conditional
payoff Hi,hξ,vi(s) to be the set of payoffs for player i given at the endpositions that are
s-compatible with hξ, vi. In the example of Fig.6.1, s1(w) = a gives H1,hwi(s) = {5, 1},
and s01(w) = b gives H1,hwi(s

0) = {0, 2}.
Suppose that s−i is fixed. We say that a strategy si is unambiguously optimal at a

position hξ, vi iff for any strategy s0i for player i,

α ∈ Hi,hξ,vi(si, s−i) and α0 ∈ Hi,hξ,vi(s0i, s−i) imply α ≥ α0. (6.3)

We say that si is unambiguously optimal iff it is unambiguously optimal at all decision
positions hξ, vi for player i in Πi. These are relative concepts to the given s−i. In other
words, at any decision position of player i, the worst payoff from his given strategy is at
least as good as the best from any alternative. In the example of Fig.6.1, no strategy is
unambiguously optimal. Nevertheless, we have a guarantee that such a strategy exists
in any i.d.view (Πi,mi) with Axiom N2.

Theorem 6.3 (Unambiguous Optimality with Axiom N2). Let (Πi,mi) be an
i.d.view that satisfies Axiom N2, and let s−i be a profile of other players’ strategies.
Then, there is an unambiguously optimal strategy si for player i.

Proof. First, we construct a strategy si = {sihξ, vi : hξ, vi ∈ ΞiDi } by backward induc-
tion over the positions for player i. Then we prove that it is unambiguously optimal at
each decision position hξ, vi for him.

For the base case, let hξ, vi ∈ ΞiDi and suppose that there is no hξ0, v0i ∈ ΞiDi such
that hξ, vi is a proper initial segment of hξ0, v0i. By Lemma 6.2, the conditional payoff
Hi,hξ,vi(s

0
i, s−i) is a singleton for any strategy s

0
i. Hence, we can find an action sihξ, vi

that is locally optimal at hξ, vi. Since mi is the perfect information memory function
mPI in Πi, the action sihξ, vi at hξ, vi can be taken without any restriction by an action
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at any other hξ0, v0i ∈ ΞiDi . Hence, we can choose sihξ, vi to be unambiguously optimal
at hξ, vi ∈ ΞiDi .

Next, for the inductive step, consider any hξ, vi ∈ ΞiDi . Let hξ1, v1i, ..., hξk, vki ∈ ΞiDi
be the positions so that hξ, vi is an immediate initial segment of each of them. Suppose
that for each t = 1, ..., k, {sihξ00, v00i : hξt, vti is an initial segment of hξ00, v00i ∈ ΞiDi } is
unambiguously optimal at hξt, vti. We then show that there is an action sihξ, vi such
that

{sihξ, vi} ∪
S
t
{sihξ00, v00i : hξt, vti is an initial segment of hξ00, v00i ∈ ΞiDi }

is unambiguously optimal at hξ, vi. If hξt, vti is reached, the payoff is uniquely deter-
mined. Hence, we choose one action sihξ, vi leading such a hξt, vti. The set is unam-
biguously optimal at hξ, vi.

The above inductive construction tells us that the constructive si = {sihξ, vi :
hξ, vi ∈ ΞiDi } is unambiguously optimal over all hξ, vi in ΞiDi .

We remark that the theorem uses the fact that the subjective memory function
mi is the perfect-information memory function. As mentioned earlier, since the player
has this view in his mind, the perfect-information memory function makes sense. The
violation of Axiom N2 still presents potential problems in this case.

If the player has a difficulty in decision making with his subjective view violating
Axiom N2, he may try to overcome it in various ways. He might modify his view (such
as in Theorem 3.4). Alternatively, he might use a weaker optimality criterion such as
maximin optimality, i.e., he compares the worst payoffs compatible with each strategy,
which gives always an optimal strategy even when N2 is violated. Another possibility
is that he looks outside his memory kit for some source of this indeterminacy, e.g., the
move of some other unobserved player.

We close this section by pointing out two problems when a player brings a subjec-
tively optimal strategy to the objective situation.

First, the behavior suggested by his view may not be objectively optimal. As de-
scribed in Section 6.1, once an i.d.view (Πi,mi) is adopted, player i can compare it with
his experiences. Let us see this comparison in Example 2.1 with the recall-1 memory
function moi = m

R1
i . Suppose that he adopts the i.d.view of Fig.3.5. Then, according to

this view, he should receive payoff 0 after his moves (w0, a) and (w, a), but actually, he
receives 5. Thus, an incorrect view may suggest an objectively non-optimal strategy as
an optimal strategy.

Second, it may be necessary to bring his view in addition to the optimal strategy
suggested by it. We continue with Example 2.1, but now suppose, for simplicity, that
player 1’s objective memory mo1 is the Markov memory function. Suppose that player
1 adopts the PR-view, i.e., the protocol of Fig.2.1 itself together with the perfect-
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information memory function mPI . This view has the optimal strategies σ1 and σ01 :

σ1hw0i = a, σ1h(w0, a), wi = a and σ1h(w0, b), wi = b

σ01hw0i = b, σ01h(w0, a), wi = a and σ01h(w0, b), wi = b.

The use of either strategy requires player 1 to memorize his first action in his view, since
his objective memory function mo1 does not tell him which action he chose at the piece
w. Thus, he needs to bring this view to complement the forgetfulness of his objective
memory function.

7. Conclusions

7.1. Summary

Since our discourse is long having various steps, we give an overall summary by high-
lighting the main findings.

Highlight 1 : In the definition in Kaneko-Kline [7] and [8], an inductively derived view
is effectively the same as the memory kit. This paper generalized the definition of an
inductively derived view to allow a view to have a larger set of feasible sequences than
the accumulated memory kit - - ID3. This enabled us to consider partiality in the ob-
jective memory function moi .

Highlight 2 : The generalized definition of an i.d.view allows general existence of an
i.d.view. However, there are typically multiple i.d.views. On the one hand, multiplicity
may be regarded as a cost in that the analysis has become much more complicated. On
the other hand, multiplicity as well as generality leads us to a new frontier of inductive
game theory.

Highlight 3 : We have considered minimal/smallest i.d.views. Minimality avoids large
redundant views. However, there may be multiple minimal views. When the memory
function moi is subject to partiality, minimal views may not capture essential structures,
since they may be too small.

Highlight 4 : Even when the memory function is partial, a player may have some dif-
ferent ways to improve or correct his view. When Kuhn’s distinguishability condition
is satisfied, i.e., each information piece contains something to distinguish between dif-
ferent histories, he may reach the PR-view as the smallest view. However, Kuhn’s
distinguishability condition is a demanding requirement for an information piece, and
also the player is required to have the ability to analyze the hints hidden in each piece.
In this sense, the result is not necessarily regarded as a resolution of multiplicity.

Highlight 5 : The next step is to check an i.d.view with new experiences in the objective
situation. If he is fortunate, he may reach the PR-view and it becomes stable in the
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sense that he does not notice any incoherency between his view and his experiences.
However, it could take a long time to reach the PR-view or he might even reject it or
fail to reach it.

Highlight 6 : Even if he takes a view as stable, e.g., the PR-view, he might meet some
difficulties in his decision making. This is caused by the violations of Axioms N1-N3 for
his view. The violation of Axiom N2 is more serious than the others: As long as Axiom
N2 is satisfied, he can use his view for his payoff maximization.

This paper has intended to develop the discourse on inductive game theory on
individual experiences, inductive derivations of his views and their uses for decision-
making/improving behavior in the objective situation. We already have many results
on each step of the discourse. Nevertheless, there are still many open problems. For
example, what happens with the considerations of the latter part of this paper when the
objective memory function has more incorrect components. Some computer simulation
studies may help the consideration of checking views with experiences in the objective
situation.

7.2. Thinking of Other Players

As yet we have touched a lot of problems and difficulties with a player’s own experiences,
a view, and its use in the discourse of inductive game theory. A natural continuation is
to study a player’s thought on the activities of other players. In the literature of game
theory, the origin/source of these thoughts has never been discussed. We look for the
origin/source also in individual experiences. Since a player does not directly experience
other players’ subjective thinking and/or payoffs, he needs some way to get inside the
heads of other players. Communication may help in this regard.

A more direct method is to have the experiences of others by stepping inside their
shoes. Society has various social roles, and people take on different social roles from time
to time throughout their lives. The concept of a “player” in a game may be regarded
as a social role rather than a fixed individual. By switching roles, a player can gain
experiences of others and even their views. Then, he may combine these experiences of
different roles to obtain a better view of society including his and others’ activities and
thoughts.

This study may separate cooperative behavior from noncooperative behavior. When
players switch roles regularly and share the same experiences, they learn each other’s
behavior, available actions and payoffs. This may allow each to extend his view. These
extended views may or may not cause the players to change their behavior. In partic-
ular, if their domains are too narrow, they may find no better outcomes. However, if
the domains include each other’s deviations and the players find some beneficial joint
activities, switching roles may facilitate cooperation.
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We will discuss the above problem of experiential sources for other players’ thoughts
in a separate paper. Nevertheless, treatments of individual experiences as well as in-
dividual views discussed in this paper and in the other papers [7], [8] are basic for the
new theory of other players’ thoughts. In the present paper, we found that interactions
between a player’s view and his behavior is essential. For the experiential considera-
tion of others’ thoughts, we need to consider also interactions between various players’
views and behavior. We anticipate these explorations will lead to many new insights on
human behavior and thought in society.

8. Appendix

Proof of Theorem 3.4. Let us start with a sketch of the proof. Theorem 3.1 gives an
i.d.view (Πi,mi) from TDi . However, this i.d.view may violate Axioms N1, N2 and N3.
In Step 1 of the proof we attack both N1 and N2 by attaching a decision piece with at
least two actions at the beginning of each position. This guarantees N1, and we can
guarantee N2 by using the same decision piece over again if necessary. In Step 2, we
attack N3 by attaching an endpiece after each occurrence of a violation of N3.

Step 1 : Extending the protocol to satisfy N1 and N2. Choose v satisfying |Aov| ≥ 2 for
some hξ, vi ∈ Di∩ΞoD. Let Aov = {av1, ..., avl}. First, we enumerate the endpositions in
Πi as hξ1, v1i, ..., hξk, vki. We attach the root v before each of those positions, i.e., the
first one is h(v, av1), ξ1, v1i, and the second one is h(v, av2), ξ2, v2i. However, when k > l,
we meet a shortage of actions. Hence, at the last action avl, we attach v and continues
the same process, which is depicted in Fig.8.1.

-av1 · · ·
hξ1, v1i hξ2, v2i · · · v

-av1 ↑av2 · · · %avl

v

Fig.8.1

In general, we choose the natural number r ≥ 0 so that r(l − 1) < k ≤ r(l − 1) + l.
We repeat the above process of last-action-continuation r times. If the number of
endpositions k is not more than the number of actions in Aov, then r = 0. Extension
from v is repeated only after the last action in Aov.

We write (v, avl)t for the t times repetitions of v and the last-action (v, avl). Then,
we extend hξt, vti for s(l − 1) < t < s(l − 1) + l and s < r by

h(v, avl)s, (v, av1), ξ1, v1i, ..., h(v, avl)s, (v, av(l−1)), ξt, vti

and extend hξt, vti for r(l − 1) < t ≤ k,
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h(v, avl)r, (v, av1), ξ1, v1i, ..., h(v, avl)r, (v, av(k−r(l−1))), ξt, vti.

We denote, by Ξ, the set of all of these extended sequences.
Let Ξ be the set of endpositions obtained in this way and let F = ∆Ξ. By Lemma

3.2, there is at most one i.d.view (Π0i,m0i) from TDi with ≺0i= F with the root v. By
construction and Theorem 3.3, this set of endpositions is seen to satisfy Axioms B1
and B2. Finally, let us see that this satisfies Axiom N2. Indeed, consider two positions
hξ, ui and hξ, wi in Π0i. If ξ consists of only the new additions, then it determines the
same endposition, say, hξt, vti, i.e., u = w. If it consists of only some part of the new
additions, then u = w = v. If it is longer than the new addition, hξ, ui and hξ, wi are
the initial segment of the same endposition, i.e., u = w. Thus, Π0i satisfies N2.

Step 2 : Extending the protocol to satisfy N3. Let (Π0i,m0i) be an i.d.view for TDi
satisfying N1 and N2. Now, we can choose some hξ, wei ∈ Di∩ΞoE, since Di∩ΞoE 6= ∅.
Let Ξ00 denote the set of positions from Ξ0 that violate N3, i.e., if hξ, wi ∈ Ξ00, then
there is an action a ∈ Aow such that for no v0 ∈ W 0, hξ, (w, a), v0i is a position for in
Ξ0. We cure this problem by adding the position hξ, (w, a), wei to the set of positions
in Ξ0. Each such new position will be an endposition. Violation of N3 is cured while
preserving B1, B2 N1 and N2. Let Ξ∗i denote the set of positions obtained after this
process. Let ≺∗i= ∆Ξ∗i, W ∗i = W i and A∗i = Ai. Then, Π∗i is a full information
protocol. The player assignment, payoff assignment, and memory function function are
uniquely determined by ID4, ID5, and ID6. This personal view is an i.d.view for TDi .
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