Department of Social Systems and Management Discussion Paper Series

No. 1203

Structural Analysis of First Passage Times of Skip-Free Semi-Markov Processes and Related Limit Theorems

by
Ushio Sumita and Atsushi Namikawa

April 2008

STRUCTURAL ANALYSIS OF FIRST PASSAGE TIMES OF SKIP-FREE SEMI-MARKOV PROCESSES AND RELATED LIMIT THEOREMS

USHIO SUMITA AND ATSUSHI NAMIKAWA
GRADUATE SCHOOL OF SYSTEMS AND INFORMATION ENGINEERING, UNIVERSITY
OF TSUKUBA, TSUKUBA, JAPAN

Abstract

A skip-free semi-Markov process is considered, which moves through its state space $\mathcal{N}=\{0,1,2, \cdots\}$ only in a lattice continuous manner. Such processes can be considered to generalize a class of birth-death processes. Of interest, then, is to see how the first passage time structure of birth-death processes may or may not be inherited in that of skip-free semi-Markov processes. It is shown that a recursion formula satisfied by the first passage times T_{n}^{+}from n to $n+1$ for skip-free semi-Markov processes is quite similar to that for birth-death processes. While the distributional properties of the first passage times of birth-death processes are not necessarily present for skip-free semi-Markov processes, the limit theorems hold true almost in an identical form.

Keywords skip-free semi-Markov processes, first passage times, distributional properties, limit theorems.

0. Introduction

The study of semi-Markov processes dates back to the middle of 1950's represented by the original papers by Léby[11], Smith[18] and Takács[26]. Subsequently various aspects of these processes were studied in a series of papers by Pyke[13, 14], Pyke and Schaufele $[15,16]$ and Moore and Pyke[12]. Since the early 1960's, the field attracted many researchers, resulting in a collection of quite extensive results. A bibliography on semi-Markov processes in 1976 by Teugels[27] contains about 600 papers by some 300 authors. The reader is referred to two excellent survey papers by Çinlar[1, 2] for the summary of these results. To the best knowledge of the authors, however, there exists no literature specifically focusing on the first passage time structure of skip-free semi-Markov processes, which can be considered as a generalization of a class of birth-death processes.

A Markov chain in continuous time defined on $\{0,1,2, \cdots\}$ is called a birth-death process when transitions occur only in a lattice continuous manner. Because of this skip-free property, the first passage times of birth-death processes possess a variety of peculiar results as shown in Keilson $[6,8,9,10]$, Sumita[21, 25] and Sumita and Masuda[22] to name only a few. The purpose of this paper is to analyze the first passage time structure of skip-free semi-Markov processes, and to see how the first passage time structure of birth-death processes can be carried over to that of skip-free
semi-Markov processes. It is also examined whether certain limit theorems involving first passage times of birth-death processes still hold true for skip-free semi-Markov processes.

The structure of this paper is as follows. In Section 1, we formally define a semiMarkov process and summarize some well known results. Using these results, the Laplace transforms of the first passage times of skip-free semi-Markov processes are explicitly derived in Section 2. Moments, a recursion formula and its probabilistic interpretation are also discussed. Section 3 establishes a sufficient condition under which the first passage time T_{n}^{+}from n to $n+1$ of a skip-free semi-Markov process is a mixture of independent exponential random variables. Finally in Section 4, it is shown under certain conditions that $T_{n}^{+} / \mathrm{E}\left[T_{n}^{+}\right]$for skip-free semi-Markov processes converges in law to the exponential variate of mean one as $n \rightarrow \infty$, as for birth-death processes. Other related limit theorems are also discussed.

Throughout the paper, the following notation is employed. Vectors and matrices are distinguished by a single underline and double underlines respectively. For an $(N+1)$ dimensional vector \underline{a}^{T} and an $(N+1) \times(N+1)$ matrix $\underline{\underline{a}}$, subvectors and submatrices are denoted by $\underline{a}_{G}^{T}=\left[a_{i}\right]_{i \in G}, \underline{\underline{a}}_{G B}=\left[a_{i j}\right]_{i \in G, j \in B}$, etc. where $G, B \subset\{0,1, \cdots, N\}$. We also define $\underline{1}$ as a column vector having all components equal to 1 , and $\underline{\underline{0}}$ as a matrix having all components equal to zero.

1. Finite Semi-Markov Process $J(t)$ and First Passage Times

Let $\left\{\left(J_{n}, T_{n}\right): n=0,1, \cdots\right\}$ be a Markov renewal process where J_{n} is a Markov chain in discrete time on $\mathcal{N}=\{0,1, \cdots, N\}$ and T_{n} is the n-th transition epoch with $T_{0}=0$. The behavior of the Markov renewal process is governed by a semi-Markov matrix $\underline{\underline{A}}(x)=\left[A_{i j}(x)\right]$, where

$$
\begin{equation*}
A_{i j}(x)=\mathrm{P}\left[J_{n+1}=j, T_{n+1}-T_{n} \leq x \mid J_{n}=i\right] . \tag{1.1}
\end{equation*}
$$

If $\sup _{n} T_{n}=+\infty$, then the process $\{J(t): t \geq 0\}$ where $J(t)=J_{n}$ for $T_{n} \leq t \leq$ T_{n+1} is called the minimal semi-Markov process associated with the Markov renewal process $\left\{\left(J_{n}, T_{n}\right): n=0,1, \cdots\right\}$, see Çinlar $[1]$.

We assume that the stochastic matrix $\underline{\underline{A}}_{0}=\left[A_{0: i j}\right]=\underline{\underline{A}}(\infty)$ governing the embedded Markov chain $\left\{J_{n}: n=0,1, \cdots\right\}$ is ergodic, having the ergodic vector \underline{e}^{T}, i.e.

$$
\begin{equation*}
\underline{\underline{e}}^{T} \underline{\underline{A}}_{0}=\underline{\underline{e}}^{T} ; \underline{\underline{e}}^{T}>\underline{0}^{T} ; \underline{\underline{e}}^{T} \cdot \underline{1}=1 . \tag{1.2}
\end{equation*}
$$

For notational convenience, let $\delta_{i j}=1$ if $i=j$ and $\delta_{i j}=0$ if $i \neq j$, and define

$$
\begin{align*}
& \underline{\underline{A}}_{D}(x)=\left[\delta_{i j} A_{i}(x)\right] ; A_{i}(x)=\sum_{j \in \mathcal{N}} A_{i j}(x) \tag{1.3}\\
& \underline{\underline{A}}_{D}(x)=\left[\delta_{i j} \bar{A}_{i}(x)\right] ; \bar{A}_{i}(x)=1-A_{i}(x) \tag{1.4}\\
& \underline{\underline{A}}_{k}=\left[A_{k: i j}\right] ; A_{k: i j}=\int_{0}^{\infty} x^{k} d A_{i j}(x) \tag{1.5}\\
& \underline{\underline{A}}_{D: k}=\left[\delta_{i j} A_{k: i}\right] ; A_{k: i}=\int_{0}^{\infty} x^{k} d A_{i}(x), k \geq 0 . \tag{1.6}
\end{align*}
$$

We note that $A_{i}(x)=\mathrm{P}\left[T_{n+1}-T_{n} \leq x \mid J_{n}=i\right]$ is the c.d.f of the dwell time of the semi-Markov process at state i and $\bar{A}_{i}(x)$ is the corresponding survival function. Throughout the paper, we assume that $A_{k: i}<\infty$ for all $i \in \mathcal{N}$ for $0 \leq k \leq 2$. It should be noted that $\underline{\underline{A}}_{D: 0}=\underline{\underline{I}}$.

The transform of $\underline{\underline{A}}(x)$ is denoted by

$$
\begin{equation*}
\underline{\underline{\alpha}}(s)=\left[\alpha_{i j}(s)\right] ; \quad \alpha_{i j}(s)=\int_{0}^{\infty} e^{-s x} d A_{i j}(x) \tag{1.7}
\end{equation*}
$$

Laplace-Stieltjes transforms $\alpha_{i}(s), \underline{\underline{\alpha}}_{D}(s)$, etc. are defined similarly. The transition probability matrix of $J(t)$ is written by $\underline{\underline{P}}(t)$, i.e.,

$$
\begin{equation*}
\underline{\underline{P}}(t)=\left[P_{i j}(t)\right] ; \quad P_{i j}(t)=\mathrm{P}[J(t)=j \mid J(0)=i] . \tag{1.8}
\end{equation*}
$$

Correspondingly, the state probability vector $\underline{p}^{T}(t)=\left[p_{0}(t), \cdots, p_{N}(t)\right]$ at time t is given by

$$
\begin{equation*}
\underline{p}^{T}(t)=\underline{p}^{T}(0) \underline{\underline{P}}(t) \tag{1.9}
\end{equation*}
$$

The Laplace transforms of $\underline{\underline{P}}(t)$ and $\underline{p}^{T}(t)$ are denoted by

$$
\begin{equation*}
\underline{\underline{\Pi}}(s)=\int_{0}^{\infty} e^{-s t} \underline{\underline{P}}(t) d t, \quad \underline{\pi}^{T}(s)=\int_{0}^{\infty} e^{-s t} \underline{p}^{T}(t) d t \tag{1.10}
\end{equation*}
$$

From the classical renewal argument, one has (see e.g. Çinlar[1, 2])

$$
\begin{equation*}
P_{i j}(t)=\delta_{i j} \bar{A}_{i}(t)+\sum_{k \in \mathcal{N}} \int_{0}^{t} P_{k j}(t-\tau) d A_{i k}(\tau), \quad i, j \in \mathcal{N} \tag{1.11}
\end{equation*}
$$

By taking the Laplace transform on both sides of (1.11), it follows that

$$
\begin{equation*}
\underline{\underline{\Pi}}(s)=\frac{1}{s}[\underline{\underline{I}}-\underline{\underline{\alpha}}(s)]^{-1}\left[\underline{\underline{I}}-\underline{\underline{\alpha}}_{D}(s)\right] \tag{1.12}
\end{equation*}
$$

It has been shown in Keilson[7] that

$$
\begin{equation*}
\underline{\underline{\alpha}}(s)[\underline{\underline{I}}-\underline{\underline{\alpha}}(s)]^{-1}=\frac{1}{s} \underline{\underline{H}}_{1}+\underline{\underline{H}}_{0}+\underline{\underline{o}}(1) \text { as } s \rightarrow 0+ \tag{1.13}
\end{equation*}
$$

where the two matrices $\underline{\underline{H}}_{1}$ and $\underline{\underline{H}}_{0}$ are given by

$$
\begin{equation*}
\underline{\underline{H}}_{1}=\frac{1}{m} \underline{\underline{J}} ; \underline{\underline{J}}=\underline{1} \cdot \underline{\check{e}}^{T} ; m=\underline{\check{e}}^{T} \underline{\underline{A}}_{1} \underline{1} \tag{1.14}
\end{equation*}
$$

with \underline{e}^{T} as given in (1.2) and

$$
\begin{equation*}
\underline{\underline{H}}_{0}=\underline{\underline{H}}_{1}\left(-\underline{\underline{A}}_{1}+\frac{1}{2} \underline{\underline{A}}_{2} \underline{\underline{H}}_{1}\right)+\left(\underline{\underline{Z}}-\underline{\underline{H}}_{1} \underline{\underline{A}}_{1} \underline{\underline{Z}}\right)\left(\underline{\underline{A}}_{0}-\underline{\underline{A}}_{1} \underline{\underline{H}}_{1}\right) . \tag{1.15}
\end{equation*}
$$

Here, $\underline{\underline{Z}}$ is the fundamental matrix associated with $\underline{\underline{A}}_{0}$ defined by

$$
\begin{equation*}
\underline{\underline{Z}}=\left[\underline{\underline{I}}-\underline{\underline{A}}_{0}+\underline{\underline{J}}\right]^{-1} \tag{1.16}
\end{equation*}
$$

Since $[\underline{\underline{I}}-\underline{\underline{\alpha}}(s)]^{-1}=\underline{\underline{I}}+\underline{\underline{\alpha}}(s)[\underline{\underline{I}}-\underline{\underline{\alpha}}(s)]^{-1}$ and $\underline{\underline{I}}-\underline{\underline{\alpha}}_{D}(s)=s_{\underline{\underline{A}}}^{D: 1}$ $+\underline{\underline{o}}(s)$, it can be readily seen from (1.12) and (1.13) that

$$
\begin{equation*}
\underline{\underline{\Pi}}(s)=\frac{1}{s} \underline{\underline{H}}_{1} \cdot \underline{\underline{A}}_{D: 1}+\underline{\underline{A}}_{D: 1}+\underline{\underline{o}}(1) \text { as } s \rightarrow 0+ \tag{1.17}
\end{equation*}
$$

It then follows from (1.14) that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \underline{\underline{P}}(t)=\lim _{s \rightarrow 0} s \underline{\underline{\Pi}}(s)=\underline{\underline{H}}_{1} \cdot \underline{\underline{A}}_{D: 1}=\frac{1}{m} \underline{1} \cdot \underline{\underline{e}}^{T} \underline{\underline{A}}_{D: 1} . \tag{1.18}
\end{equation*}
$$

Accordingly, $J(t)$ is ergodic and the ergodic probability vector \underline{e}^{T} of $J(t)$ can be written as

$$
\begin{equation*}
\underline{e}^{T}=\frac{1}{m} \underline{e}^{T} \underline{\underline{A}}_{D: 1}=\left[\frac{\check{e}_{0} A_{1: 0}}{\sum_{i \in \mathcal{N}} \check{e}_{i} A_{1: i}}, \cdots, \frac{\check{e}_{N} A_{1: N}}{\sum_{i \in \mathcal{N}} \check{e}_{i} A_{1: i}}\right] . \tag{1.19}
\end{equation*}
$$

From an application point of view, it may be useful to decompose the state space \mathcal{N} into two subsets G and B where the good set G is the set of desirable states and the bad set B is the set of undesirable states. Then of interest is the first passage time of $J(t)$ from $i \in G$ to the bad set B. More formally, let this first passage time be denoted by $T_{i B}$ so that

$$
\begin{equation*}
T_{i B}=\inf \{t: J(t) \in B \mid J(0)=i \in G\} \tag{1.20}
\end{equation*}
$$

When the bad set B is a singleton set, the Laplace transform $\sigma_{i B}(s)=\mathrm{E}\left[e^{-s T_{i B}}\right]$ is given in (5.17) of Çinlar[2]. A more general result has been obtained by Sumita and Masuda[21] and we follow their proof here so as to facilitate further discussions.

For the study of the first passage time $T_{i B}$ of $J(t)$ from $i \in G$ to any state in B, we consider the absorbing process $\tilde{J}(t)$ obtained from the original process by making all states in B absorbing. Let $\underline{\tilde{p}}^{T}(t)=\left[\tilde{p}_{0}(t), \cdots, \tilde{p}_{N}(t)\right]$ where $\tilde{p}_{j}(t)=\mathrm{P}[\tilde{J}(t)=$ $j \mid \tilde{J}(0)=i]$ with the Laplace transform $\underline{\tilde{\pi}}^{T}(s)$. It should be noted that $\tilde{p}_{j}(t)$ for $j \in B$ is the probability that the process $J(t)$ hits the bad set B at $j \in B$ for the first time in $[0, t)$. Without loss of generality, we assume that $G=\{0,1, \cdots, K\}$ and $B=\{K+1, \cdots, N\}$. It is easy to see that

$$
\begin{equation*}
\mathrm{P}\left[T_{i B} \leq t\right]=\tilde{\tilde{p}}_{B}^{T}(t) \underline{1}_{B} \tag{1.21}
\end{equation*}
$$

Let
$\left(1.22 \underline{\underline{\tilde{\alpha}}}(s)=\left[\tilde{\alpha}_{i j}(s)\right]=\left[\begin{array}{cc}\underline{\underline{\alpha}}_{G G}(s) & \underline{\underline{\alpha}}_{G B}(s) \\ \underline{\underline{\theta}}_{B G} & \underline{\underline{B}}_{B B}\end{array}\right] ; \quad \underline{\underline{\tilde{\alpha}}}_{D}(s)=\left[\delta_{i j} \sum_{k \in \mathcal{N}} \tilde{\alpha}_{i k}(s)\right]\right.$.

If we denote the i-th unit vector by \underline{u}_{i}, it can be seen from (1.10), with $\underline{\underline{\Pi}}(s), \underline{\underline{\alpha}}(s)$ and $\underline{\underline{\alpha}}_{D}(s)$ replaced by $\underline{\underline{\underline{\Pi}}}(s), \underline{\underline{\tilde{\alpha}}}(s)$ and $\underline{\underline{\alpha}}_{D}(s)$ respectively, that

$$
\begin{equation*}
\underline{\tilde{\pi}}_{G}^{T}(s)=\frac{1}{s} \underline{u}_{i: G}^{T}\left[\underline{\underline{I}}_{G G}-\underline{\underline{\alpha}}_{G G}(s)\right]^{-1}\left[\underline{\underline{I}}_{G G}-\underline{\underline{\alpha}}_{D: G G}(s)\right] \tag{1.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{\tilde{\pi}}_{B}^{T}(s)=\underline{\tilde{\pi}}_{G}^{T}(s)\left[\underline{\underline{I}}_{G G}-\underline{\underline{\alpha}}_{D: G G}(s)\right]^{-1} \underline{\underline{\alpha}}_{G B}(s) \tag{1.24}
\end{equation*}
$$

Substituting (1.23) into (1.24), one finally has

$$
\begin{equation*}
\underline{\tilde{\pi}}_{B}^{T}(s)=\frac{1}{s} \underline{u}_{i: G}^{T}\left[\underline{\underline{I}}_{G G}-\underline{\underline{\alpha}}_{G G}(s)\right]^{-1} \underline{\underline{\alpha}}_{G B}(s) \tag{1.25}
\end{equation*}
$$

From (1.21), one easily sees that $\sigma_{i B}(s)=s \underline{\tilde{\pi}}_{B}^{T}(s) \underline{1}_{B}$. The following theorem then holds true from (1.25).

Theorem 1.1 (Theorem 4.1 of Sumita and Masuda[23])
Let $\sigma_{i B}(s)=\mathrm{E}\left[e^{-s T_{i B}}\right]$ and define $\underline{\sigma}_{G}(s)=\left[\sigma_{i B}(s)\right]_{i \in G}$. Then

$$
\begin{equation*}
\underline{\sigma}_{G}(s)=\left[\underline{\underline{I}}_{G G}-\underline{\underline{\alpha}}_{G G}(s)\right]^{-1} \underline{\underline{\alpha}}_{G B}(s) \underline{1}_{B} \tag{1.26}
\end{equation*}
$$

By differentiating $\underline{\sigma}_{G}(s)$ in Theorem 1.1 with respect to s at $s=0$, the next corollary is immediate.

Corollary 1.2 (Sumita and Masuda[23])
Let $\mathrm{E}\left[\underline{T}_{G}^{k}\right]=\left[\mathrm{E}\left[T_{i B}^{k}\right]\right]_{i \in G}$. Then for $k=1,2, \cdots$

$$
\mathrm{E}\left[\underline{T}_{G}^{k}\right]=\left[\underline{\underline{I}}_{G G}-\underline{\underline{A}}_{0: G G}\right]^{-1}\left[\underline{\underline{A}}_{k: G B} \underline{\underline{1}}_{B}+\sum_{l=1}^{k}\binom{k}{l} \underline{\underline{A}}_{l: G G} \mathrm{E}\left[\underline{T}_{G}^{k-l}\right]\right]
$$

2. First Passage Time Structure of Skip-Free Semi-Markov Processes

In this section, we focus on the first passage time structure of skip-free semiMarkov processes, and examine to what extent the basic properties of the first passage time structure of birth-death processes can be carried over. A semi-Markov process $J(t)$ on $\mathcal{N}=\{0,1, \cdots\}$ governed by a semi-Markov matrix $\underline{\underline{A}}(x)=\left[A_{i j}(x)\right]$ is said to be skip-free if

$$
A_{i j}(x)=\left\{\begin{array}{lll}
q_{i} A_{i}^{-}(x) & j=i-1, & i \geq 1 \tag{2.1}\\
r_{i} A_{i}^{0}(x) & j=i, & i \geq 0 \\
p_{i} A_{i}^{+}(x) & j=i+1, & i \geq 0 \\
0 & \text { else } &
\end{array}\right.
$$

where $q_{i}, r_{i}, p_{i} \geq 0, r_{0}+p_{0}=1$ and $q_{i}+r_{i}+p_{i}=1, i \geq 1$. Here, $A_{i}^{-}(x), A_{i}^{0}(x)$ and $A_{i}^{+}(x)$ are probability distribution functions having Laplace-Stieltjes transforms $\alpha_{i}^{-}(s)=\int_{0}^{\infty} e^{-s x} d A_{i}^{-}(x), \alpha_{i}^{0}(s)=\int_{0}^{\infty} e^{-s x} d A_{i}^{0}(x)$ and $\alpha_{i}^{+}(s)=\int_{0}^{\infty} e^{-s x} d A_{i}^{+}(x)$
respectively. For notational convenience, we define $q_{0}=0$. Then, the dwell time of $J(t)$ in state i is given by

$$
\begin{equation*}
A_{i}(x)=q_{i} A_{i}^{-}(x)+r_{i} A_{i}^{0}(x)+p_{i} A_{i}^{+}(x), i \geq 0, \tag{2.2}
\end{equation*}
$$

and the corresponding Laplace transform is denoted by $\alpha_{i}(s)=\int_{0}^{\infty} e^{-s x} d A_{i}(x)$. The semi-Markov process $J(t)$ is skip-free in that it moves only in a lattice continuous manner in either direction.

Let T_{n}^{+}be the first passage time of $J(t)$ from n to $n+1$. In what follows, we establish some structural properties of $\sigma_{n}^{+}(s)=\mathrm{E}\left[e^{-s T_{n}^{+}}\right]$based on Theorem 1.1. The following matrix is frequently employed in this study.

$$
\underline{\underline{\alpha}}_{n}(s)=\left[\begin{array}{cccc}
r_{0} \alpha_{0}^{0}(s) & p_{0} \alpha_{0}^{+}(s) & & \underline{\underline{0}} \tag{2.3}\\
q_{1} \alpha_{1}^{-}(s) & r_{1} \alpha_{1}^{0}(s) & p_{1} \alpha_{1}^{+}(s) & \\
\ddots & \ddots & \ddots & \\
& q_{n-1} \alpha_{n-1}^{-}(s) & r_{n-1} \alpha_{n-1}^{0}(s) & p_{n-1} \alpha_{1}^{+}(s) \\
\underline{\underline{0}} & & q_{n} \alpha_{n}^{-}(s) & r_{n} \alpha_{n}^{0}(s)
\end{array}\right] .
$$

For convenience, we define $\underline{\underline{\alpha}}_{n}(s)=\underline{\underline{0}}$ for $n<0$. Our first theorem describes $\sigma_{n}^{+}(s)$ in terms of determinants of matrices of the form specified in (2.3).

Theorem 2.1

$$
\sigma_{n}^{+}(s)=p_{n} \alpha_{n}^{+}(s) \frac{\operatorname{det}\left(\underline{\underline{I}}-\underline{\underline{\alpha}}_{n-1}(s)\right)}{\operatorname{det}\left(\underline{\underline{I}}-\underline{\underline{\alpha}}_{n}(s)\right)}, n \geq 0 .
$$

Proof. Let $G=\{0,1,2, \cdots, n\}$ and $B=\{n+1, n+2, \cdots\}$. Since $J(t)$ is skip-free, an entry into B is possible only through $n+1$. Hence we can redefine B as a singleton set $B=\{n+1\}$. Let $T_{j, n+1}$ be the first passage time of $J(t)$ from j to $n+1$, and define $\underline{\sigma}_{G}^{T}(s)=\left[\sigma_{0, n+1}(s), \cdots, \sigma_{n, n+1}(s)\right]$ where $\sigma_{j, n+1}(s)=\mathrm{E}\left[e^{-s T_{j, n+1}}\right]$. We note that $\sigma_{n}^{+}(s)=\sigma_{n, n+1}(s)$. From Theorem 1.1, one sees that

$$
\left[\underline{\underline{I}}-\underline{\underline{\alpha}}_{n}(s)\right] \underline{\sigma}_{G}(s)=\left(\begin{array}{c}
0 \tag{2.4}\\
\vdots \\
0 \\
p_{n} \alpha_{n}^{+}(s)
\end{array}\right) .
$$

Since $\sigma_{n}^{+}(s)$ is the last element in $\underline{\sigma}_{G}(s)$, the theorem follows from (2.3) by applying Cramer's rule to (2.4).

Theorem 2.1 then leads to the following recursion formula for $\sigma_{n}^{+}(s)$.

Theorem 2.2

$$
\sigma_{n}^{+}(s)=\frac{p_{n} \alpha_{n}^{+}(s)}{1-r_{n} \alpha_{n}^{0}(s)-q_{n} \alpha_{n}^{-}(s) \sigma_{n-1}^{+}(s)}, n \geq 0
$$

where $\alpha_{n}^{-}(s)=\sigma_{n}^{+}(s)=0$ for $n<0$.
Proof. From (2.3), it can be readily seen that

$$
\begin{align*}
\operatorname{det}\left(\underline{\underline{I}}-\underline{\underline{\alpha}}_{n}(s)\right)=\left(1-r_{n} \alpha_{n}^{0}(s)\right) \operatorname{det} & \left({\left.\underline{\underline{I}}-\underline{\underline{\alpha}}_{n-1}(s)\right)} \begin{array}{rl}
& q_{n} \alpha_{n}^{-}(s) p_{n-1} \alpha_{n-1}^{+}(s) \operatorname{det}\left(\underline{\underline{I}}-\underline{\underline{\alpha}}_{n-2}(s)\right)
\end{array} .\right. \tag{2.5}
\end{align*}
$$

Substituting (2.5) into Theorem 2.1, and then dividing both numerator and denominator by $\operatorname{det}\left(\underline{\underline{I}}-\underline{\underline{\alpha}}_{n-1}(s)\right)$, the theorem follows.

The recursion formula given in Theorem 2.2 can be rewritten as

$$
\begin{equation*}
\sigma_{n}^{+}(s)=p_{n} \alpha_{n}^{+}(s)+r_{n} \alpha_{n}^{0}(s) \sigma_{n}^{+}(s)+q_{n} \alpha_{n}^{-}(s) \sigma_{n-1}^{+}(s) \sigma_{n}^{+}(s) \tag{2.6}
\end{equation*}
$$

The probabilistic interpretation of (2.6) is now clear. Namely, suppose that the process $J(t)$ has entered state n at time $t=0$. It goes to state $n+1$ directly with probability p_{n}. In this case the first passage time from n to $n+1$ is given by the dwell time of $J(t)$ at state n given that the upward transition occurs before any selfor downward transition, characterized by $\alpha_{n}^{+}(s)$. The first transition of $J(t)$ is a self-transition with probability r_{n}. The time required to reach $n+1$ is then the sum of the dwell time of $J(t)$ given that the self-transition occurs before any downward or upward transition, having the Laplace transform $\alpha_{n}^{0}(s)$, and the first passage time from n to $n+1$. If $J(t)$ goes down to $n-1$ first, which occurs with probability q_{n}, the dwell time of $J(t)$ given that the downward transition occurs before any self- or upward transition, characterized by the Laplace transform $\alpha_{n}^{-}(s)$, has to be added to the first passage time from $n-1$ to n and that from n to $n+1$.

We next derive the mean and variance of T_{n}^{+}. For $k \geq 0$, let $\mu_{n: k}^{-}, \mu_{n: k}^{0}, \mu_{n: k}^{+}$and $\mu_{n: k}$ be defined by

$$
\left\{\begin{array}{l}
\mu_{n: k}^{-}=\int_{0}^{\infty} x^{k} d A_{n}^{-}(x) ; \tag{2.7}\\
\mu_{n: k}^{0}=\int_{0}^{\infty} x^{k} d A_{n}^{0}(x) ; \\
\mu_{n: k}^{+}=\int_{0}^{\infty} x^{k} d A_{n}^{+}(x) ; \\
\mu_{n: k}^{+}=\int_{0}^{\infty} x^{k} d A_{n}(x)=q_{n} \mu_{n: k}^{-}+r_{n} \mu_{n: k}^{0}+p_{n} \mu_{n k}^{+}
\end{array}\right.
$$

Theorem 2.3

(a) $\mathrm{E}\left[T_{n}^{+}\right]=\frac{1}{p_{n}}\left\{\mu_{n: 1}+q_{n} \mathrm{E}\left[T_{n-1}^{+}\right]\right\}, n \geq 0$,
where $\mathrm{E}\left[T_{n}^{+}\right]=0$ for $n<0$.
(b) $\quad \operatorname{Var}\left[T_{n}^{+}\right]=\frac{q_{n}}{p_{n}} \operatorname{Var}\left[T_{n-1}^{+}\right]+\frac{q_{n}}{p_{n}} \mathrm{E}^{2}\left[T_{n-1}^{+}\right]+\mathrm{E}^{2}\left[T_{n}^{+}\right]$

$$
+\frac{1}{p_{n}}\left\{\mu_{n: 2}-2 \mu_{n: 1} \mu_{n: 1}^{+}+2 q_{n}\left(\mu_{n: 1}^{-}-\mu_{n: 1}^{+}\right) \mathrm{E}\left[T_{n-1}^{+}\right]\right\}, n \geq 0
$$

where $\operatorname{Var}\left[T_{n}^{+}\right]=0$ for $n<0$.

Proof. Let

$$
\begin{equation*}
D_{n}(s)=1-r_{n} \alpha_{n}^{0}(s)-q_{n} \alpha_{n}^{-}(s) \sigma_{n-1}^{+}(s), \tag{2.8}
\end{equation*}
$$

so that $\sigma_{n}^{+}(s)=p_{n} \alpha_{n}^{+}(s) / D_{n}(s)$. We easily see that

$$
\begin{align*}
D_{n}(0) & =p_{n} \tag{2.9}\\
\left.\frac{d}{d s} D_{n}(s)\right|_{s=0} & =\mu_{n: 1}-p_{n} \mu_{n: 1}^{+}+q_{n} \mathrm{E}\left[T_{n-1}^{+}\right] \tag{2.10}
\end{align*}
$$

and
$\left.(2.11)\left(\frac{d}{d s}\right)^{2} D_{n}(s)\right|_{s=0}=p_{n} \mu_{n: 2}^{+}-\left(\mu_{n: 2}+2 q_{n} \mu_{n: 1}^{-} \mathrm{E}\left[T_{n-1}^{+}\right]+q_{n} \mathrm{E}\left[T_{n-1}^{+}{ }^{2}\right]\right)$.
The theorem follows by differentiating $\log \sigma_{n}^{+}(s)=\log p_{n}+\log \alpha_{n}^{+}(s)-\log D_{n}(s)$ twice at $s=0$.

Remark 2.4

We note that, with $\nu_{n}=\lambda_{n}+\mu_{n}, r_{0}=0, p_{n}=\lambda_{n} / \nu_{n}, q_{n}=\mu_{n} / \nu_{n}$ and $\alpha_{n}(s)=\alpha_{n}^{+}(s)=\alpha_{n}^{-}(s)=\nu_{n} /\left(s+\nu_{n}\right)$, the semi-Markov process $J(t)$ is reduced to a birth-death process governed by upward transition rates $\lambda_{n}(n \geq 0)$ and downward transition rates $\mu_{n}(n \geq 1)$. Theorems 2.2 and 2.3 are then rewritten as

$$
\begin{align*}
& \sigma_{n}^{+}(s)=\frac{\lambda_{n}}{s+\nu_{n}-\mu_{n} \sigma_{n-1}^{+}(s)}, \tag{2.12}\\
& \mathrm{E}\left[T_{n}^{+}\right]=\frac{1}{\lambda_{n}}\left\{1+\mu_{n} \mathrm{E}\left[T_{n-1}^{+}\right]\right\}, n \geq 0 \tag{2.13}
\end{align*}
$$

where $\mathrm{E}\left[T_{n}^{+}\right]=0$ for $n<0$, and

$$
\begin{equation*}
\operatorname{Var}\left[T_{n}^{+}\right]=\frac{\mu_{n}}{\lambda_{n}} \operatorname{Var}\left[T_{n-1}^{+}\right]+\frac{\mu_{n}}{\lambda_{n}} \mathrm{E}^{2}\left[T_{n-1}^{+}\right]+\mathrm{E}^{2}\left[T_{n}^{+}\right], n \geq 0 \tag{2.14}
\end{equation*}
$$

where $\operatorname{Var}\left[T_{n}^{+}\right]=0$ for $n<0$. While (2.12) and (2.13) are more or less similar to the counterparts of the semi-Markov process, the variance formula of (2.14) is simpler than Theorem 2.3 (b) where the last term in Theorem 2.3 (b) vanishes.

One sees that the first passage time of $J(t)$ from 0 to n, denoted by $T_{0, n}$, can be expressed as the sum of T_{j}^{+}for $j=0, \cdots, n-1$, i.e.

$$
\begin{equation*}
T_{0, n} \stackrel{\text { def }}{=} \sum_{j=0}^{n-1} T_{j}^{+} \tag{2.15}
\end{equation*}
$$

Let $s_{0, n}(\tau)$ be the p.d.f. of $T_{0, n}$ with $\sigma_{0, n}(s)=\int_{0}^{\infty} \mathrm{e}^{-s \tau} s_{0, n}(\tau) d \tau$. From (2.15), it follows that

$$
\begin{equation*}
\sigma_{0, n}(s)=\prod_{j=0}^{n-1} \sigma_{j}^{+}(s), n \geq 1 \tag{2.16}
\end{equation*}
$$

It is obvious that the expectation and the variance of $T_{0, n}$ would be the sums of those of T_{j}^{+}for $j=0, \cdots, n-1$. Namely, one has

$$
\begin{equation*}
\mathrm{E}\left[T_{0, n}\right]=\sum_{j=0}^{n-1} \mathrm{E}\left[T_{j}^{+}\right], \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}\left[T_{0, n}\right]=\sum_{j=0}^{n-1} \operatorname{Var}\left[T_{j}^{+}\right] \tag{2.18}
\end{equation*}
$$

3. Distributional Properties of First Passage Times of Skip-Free Semi-Markov Processes

For any birth-death process on $\{0,1, \cdots\}$, Keilson $[8,9]$ shows that the first passage time T_{n}^{+}from n to $n+1$ is always a mixture of $n+1$ independent exponential random variables and the first passage time $T_{0, n+1}$ from 0 to $n+1$ is always a sum of $n+1$ independent exponential random variables. It has been also shown in Keilson[10], Rösler[17], and Sumita and Masuda[24] that the p.d.f. of the first passage time $T_{m, n}$ from state m to state n is always unimodal. For skip-free semiMarkov processes, however, since $\sigma_{n}^{-}(s), \sigma_{n}^{0}(s)$ and $\sigma_{n}^{+}(s)$ can be Laplace transforms of arbitrary p.d.f.'s, it is virtually impossible to establish general structural properties concerning zeros of $\operatorname{det}\left(\underline{\underline{I}}-\underline{\underline{\alpha}}_{n}(s)\right)$ in (2.3). Consequently, the study of distributional properties of first passage times of skip-free semi-Markov processes is quite difficult. In order to demonstrate this difficulty, we report here some results under rather restrictive conditions.

Let $C M$ be the class of completely monotone p.d.f.'s on $[0, \infty)$ defined by

Definition 3.1

$C M=\left\{f \mid f(x) \geq 0, \int_{0}^{\infty} f(x) d x=1,(-1)^{k}\left(\frac{d}{d x}\right)^{k} f(x) \geq 0, k=0,1, \cdots\right\}$.
Of related interest is a class of p.d.f.'s each of which is a finite mixture of exponential densities. Formally, we define
$C M_{n}=\left\{f \mid f(x)=\sum_{i=1}^{n} p_{i} \theta_{i} \mathrm{e}^{-\theta_{i} x}, 0<n<\infty, \theta_{i}, p_{i}>0, \sum_{i=1}^{n} p_{i}=1, \theta_{i} \neq \theta_{j}\right.$, for $\left.i \neq j\right\}$.
The union of $C M_{n}$ is denoted by

$$
\begin{equation*}
C M^{*}=\bigcup_{n=0}^{\infty} C M_{n} \tag{3.1}
\end{equation*}
$$

This class is contained in the class $C M$ as a subset. Following Sumita and Masuda[24], we also introduce $S C M$ defined by

$$
\begin{equation*}
S C M=\left\{f \mid f=f_{1} * f_{2} * \cdots * f_{n}, f_{i} \in C M_{m_{i}}, m_{i}>0,1 \leq i \leq n\right\} \tag{3.2}
\end{equation*}
$$

where the asterisk denotes convolution, i.e. $f * g(x)=\int_{0}^{x} f(x-y) g(y) d y$. The next proposition is well known, see e.g. Lemma 2.12.1 of Steutel [19].

Proposition 3.2

$$
\left[f \in C M_{n}\right] \Leftrightarrow\left[\phi_{f}(s)=\frac{\prod_{i=1}^{n-1}\left(1+s / \eta_{i}\right)}{\prod_{j=1}^{n}\left(1+s / \theta_{i}\right)}, 0<\theta_{1}<\eta_{1}<\theta_{2}<\eta_{2}<\cdots<\eta_{n-1}<\theta_{n}\right]
$$

One sees from Theorem 2.2 that

$$
\begin{equation*}
\sigma_{0}^{+}(s)=\frac{p_{0} \alpha_{0}^{+}(s)}{1-r_{0} \alpha_{0}^{0}(s)} \tag{3.3}
\end{equation*}
$$

The next theorem then directly follows from Theorem 3.2 of Sumita and Masuda[24]. The p.d.f. of T_{n}^{+}is denoted by $s_{n}^{+}(\tau)$ so that $\sigma_{n}^{+}(s)=\int_{0}^{\infty} \mathrm{e}^{-s \tau} s_{n}^{+}(\tau) d \tau$.

Theorem 3.3

Let $a_{0}^{+} \in C M_{n}$ and $a_{0}^{0} \in C M_{m}$. Let $\rho(s)=\left(1-r_{0} \alpha_{0}^{0}(s)\right)^{-1}$. Then $s_{0}^{+} \in C M_{r}$ for some r with $0<r<m+n$ if and only if $\left[\rho(s) \leq 0 \Rightarrow \alpha_{0}^{+}(s) \geq 0\right]$.

It may be worth noting that even when both a_{0}^{+}and a_{0}^{0} are exponential, the p.d.f. s_{0}^{+}still may not be a mixture of exponential p.d.f.'s. As an example, let

$$
\begin{equation*}
\alpha_{0}^{+}(s)=\frac{\lambda}{s+\lambda} ; \alpha_{0}^{0}(s)=\frac{\mu}{s+\mu}, \lambda \neq \mu \tag{3.4}
\end{equation*}
$$

One then easily sees that

$$
\begin{equation*}
\sigma_{0}^{+}(s)=\frac{p_{0}(\lambda-\mu)}{\lambda-p_{0} \mu} \cdot \frac{\lambda}{s+\lambda}+\frac{\lambda\left(1-p_{0}\right)}{\lambda-p_{0} \mu} \cdot \frac{p_{0} \mu}{s+p_{0} \mu} \tag{3.5}
\end{equation*}
$$

Hence $s_{0}^{+}(\tau)$ is a mixture of exponential p.d.f.'s if and only if $\lambda>\mu$.
In general, sufficient conditions under which $s_{n}^{+}(\tau)$ is a mixture of exponential p.d.f.'s are hard to come by. We therefore consider skip-free semi-Markov processes with a special structure where the dwell times of the process at any state j ($0 \leq j \leq$ n) do not depend on the next destination. This is equivalent to saying that

$$
\left\{\begin{array}{l}
a_{0}(\tau)=a_{0}^{0}(\tau)=a_{0}^{+}(\tau) \tag{3.6}\\
a_{j}(\tau)=a_{j}^{-}(\tau)=a_{j}^{0}(\tau)=a_{j}^{+}(\tau), 1 \leq j \leq n
\end{array}\right.
$$

We next show that, under the conditions of (3.6), if $a_{j}(\tau)$ are finite mixtures of exponential p.d.f.'s for $0 \leq j \leq n$, so are the first passage time p.d.f.'s $s_{j}^{+}(\tau)$ for $0 \leq j \leq n$.

Theorem 3.4

Under the conditions of (3.6), let $a_{j}(\tau) \in C M^{*}$ for $0 \leq j \leq n$. Then $s_{j}^{+}(\tau) \in C M^{*}$ for $0 \leq j \leq n$.

Proof. We prove the theorem by induction. For $j=0$, one sees from (3.3) that $\sigma_{0}^{+}(s)=p_{0} \alpha_{0}(s) /\left\{1-r_{0} \alpha_{0}(s)\right\}$. Hence from Theorem 3.3, $s_{0}^{+}(\tau) \in C M^{*}$. Suppose $s_{j-1}^{+}(\tau) \in C M^{*}$ for $j \leq n$ and consider s_{j}^{+}. We note from Theorem 2.2 that

$$
\begin{equation*}
\sigma_{j}^{+}(s)=p_{j} \alpha_{j}^{+}(s) / D_{j}(s) \tag{3.7}
\end{equation*}
$$

where $D_{j}(s)$ is defined in (2.8). One easily sees that
(3.8) $\frac{d}{d s} D_{j}(s)=-\left[r_{j} \frac{d}{d s} \alpha_{j}(s)+q_{j}\left\{\sigma_{j-1}^{+}(s) \frac{d}{d s} \alpha_{j}(s)+\alpha_{j}(s) \frac{d}{d s} \sigma_{j-1}^{+}(s)\right\}\right]$.

It then follows from (3.7) and (3.8) that

$$
\begin{equation*}
\frac{d}{d s} \sigma_{j}^{+}(s)=\frac{p_{j}}{D_{j}(s)^{2}}\left[\frac{d}{d s} \alpha_{j}(s)+q_{j} \alpha_{j}^{2}(s) \frac{d}{d s} \sigma_{j-1}^{+}(s)\right] \tag{3.9}
\end{equation*}
$$

By the assumption, for $0 \leq j \leq n$, one has $a_{j} \in C M^{*}$ so that $\frac{d}{d s} \alpha_{j}(s)<0$ for real s apart from singularities. For $j \leq n$, the induction hypothesis assures that $s_{j-1}^{+} \in C M^{*}$ and hence $\frac{d}{d s} \sigma_{j-1}^{+}(s)<0$ for real s apart from singularities. Consequently $\frac{d}{d s} \sigma_{j}^{+}(s)<0$ for real s apart from singularities. This means that $\sigma_{j}^{+}(s)$ is strictly decreasing in real s apart from singularities.

Since both $a_{j}(\tau)$ and $s_{j-1}^{+}(\tau)$ belong to $C M^{*}$, from Proposition 3.2 there exist polynomials $f_{j: K-1}, f_{j: K}$ and $g_{j-1: L-1}, g_{j-1: L}$ such that

$$
\begin{equation*}
\alpha_{j}(s)=\frac{f_{j: K-1}(s)}{f_{j: K}(s)} ; \sigma_{j-1}^{+}(s)=\frac{g_{j-1: L-1}(s)}{g_{j-1: L}(s)} . \tag{3.10}
\end{equation*}
$$

Here K and L denote the order of polynomials. All of the four polynomials have only zeros of multiplicity one on the negative real axis. Furthermore zeros of $f_{j: K}(s)\left(g_{j-1: L}(s)\right)$ interleave those of $f_{j: K-1}(s)\left(g_{j-1: L-1}(s)\right)$. From (3.7), it can be readily seen that

$$
\begin{equation*}
\sigma_{j}^{+}(s)=\frac{p_{j} \frac{f_{j: K-1}(s)}{f_{j: K}(s)}}{1-r_{j} \frac{f_{j: K-1}(s)}{f_{j: K}(s)}-q_{j} \frac{f_{j: K-1}(s) g_{j-1: L-1}(s)}{f_{j: K}(s) g_{j-1: L}(s)}} . \tag{3.11}
\end{equation*}
$$

Any common factors between $f_{j: K-1}(s)$ and $g_{j-1: L}(s)$ should be cancelled in the last term of the denominator. Let l be the number of common factors which the two polynomials share where $0 \leq l \leq \min \{K-1, L\}$. Then the last term of the denominator can be rewritten as

$$
\frac{f_{j: K-1}(s) g_{j-1: L-1}(s)}{f_{j: K}(s) g_{j-1: L}(s)}=\frac{\tilde{f}_{j: K-1-l}(s) g_{j-1: L-1}(s)}{f_{j: K}(s) \tilde{g}_{j-1: L-l}(s)} .
$$

Multiplying both the numerator and the denominator of (3.11) by $f_{j: K}(s) \tilde{g}_{j-1: L-l}(s)$, one finds that

$$
\begin{equation*}
\sigma_{j}^{+}(s)=\frac{g_{j: M-1}(s)}{g_{j: M}(s)} \tag{3.12}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{j: M-1}(s)=p_{j} f_{j: K-1}(s) \tilde{g}_{j-1: L-l}(s) \tag{3.13}
\end{equation*}
$$

and

$$
\begin{align*}
& g_{j: M}(s)=f_{j: K}(s) \tilde{g}_{j-1: L-l}(s) \tag{3.14}\\
& \quad-r_{j} f_{j: K-1}(s) \tilde{g}_{j-1: L-l}(s)-q_{j} \tilde{f}_{j: K-1-l}(s) g_{j-1: L-1}(s) .
\end{align*}
$$

We note that $M=K+L-l$ and $\sigma_{j}^{+}(s)$ has exactly $M-1$ zeros of multiplicity one, all of which are located on the negative real axis. We have seen that $\frac{d}{d s} \sigma_{j}^{+}(s)<0$ for real s apart from singularities. Hence as a real function of $s, \sigma_{j}^{+}(s)$ is strictly decreasing between singularities. Furthermore from Theorem 1.1 of Sumita and Masuda[24], $\sigma_{j}^{+}(s)$ cannot have a singular point in the positive right half plane. Hence $g_{j: M}(s)$ has M distinct zeros on the negative real axis which interleave zeros of $g_{j: M-1}(s)$. The theorem then follows from Proposition 3.2.

The next corollary follows immediately from Theorem 3.4 and the definition of $S C M$ in (3.2).

Corollary 3.5

Under the conditions of (3.6), let the p.d.f. $s_{j}^{+}(\tau)$ of T_{j}^{+}for $0 \leq j \leq n$ be as in Theorem 3.4. Then the p.d.f. $s_{0, n+1}(\tau)$ of $T_{0, n+1}$ satisfies $s_{0, n+1} \in S C M$.

Proof. Since $T_{0, n+1}$ is defined by $T_{0, n+1}=T_{0}^{+}+T_{1}^{+}+\cdots T_{n}^{+}$, the p.d.f. $s_{0, n+1}(\tau)$ of $T_{0, n+1}$ is given by $s_{0, n+1}(\tau)=s_{0}^{+} * s_{1}^{+} * \cdots * s_{n}^{+}(\tau)$, where the asterisk denotes convolution. From Theorem 3.4, for each $j, 0 \leq j \leq n$, there exists $m(j)$ such that $s_{j}^{+} \in C M_{m(j)}$. Hence $s_{0, n+1}(\tau) \in S C M$ from (3.2), completing the proof.

The discussions in this section reveal that the distributional properties of first passage times for birth-death processes are not necessarily inherited in those for skip-free semi-Markov processes. Their limiting behaviors, however, seem to be quite similar as we show in the next section.

4. Limiting Behavior of First Passage Times for Skip-Free Semi-Markov Processes

Let $N(t)$ be a birth-death process governed by upward transition rates $\lambda_{n}>$ $0, n \geq 0$ and downward transition rates $\mu_{n}>0, n \geq 1$ satisfying $\lambda_{n} \rightarrow \lambda>0$ and $\mu_{n} \rightarrow \mu>0$. When $\rho=\lambda / \mu<1, N(t)$ is ergodic. In this case, Keilson[9] has shown the following limit theorems concerning the first passage times T_{n}^{+}and $T_{0, n}$.

Theorem 4.1 (Theorem 8.2B of Keilson[9])
If $0<\rho<1$, then
(a) $\frac{T_{0, n}}{\mathrm{E}\left[T_{0, n}\right]} \xrightarrow{\mathrm{d}} E$ as $n \rightarrow \infty$, where $\mathrm{P}[E>x]=\mathrm{e}^{-x}$;
(b) $\frac{T_{n}^{+}}{\mathrm{E}\left[T_{n}^{+}\right]} \xrightarrow{\mathrm{d}} X$ as $n \rightarrow \infty$, where $\mathrm{P}[X>x]=(1-\rho) \mathrm{e}^{-(1-\rho) x}$.

It should be noted that the random variable X has a mass ρ at $X=0$, describing the jitter effect. This means that, when n is large, the sum of the ergodic probabilities from state 0 up to state n is very close to 1 and $\mathrm{E}\left[T_{0, n+1}\right]$ becomes very large. If the process enters the state n, one observes clustering of the epochs at which the process crosses from n to $n+1$ within a time interval much smaller compared to $\mathrm{E}\left[T_{0, n+1}\right]$. As this scaling factor $\mathrm{E}\left[T_{0, n+1}\right]$ goes to infinity as $n \rightarrow \infty$, these multiple crossings amount to the mass ρ of the limiting distribution at $X=0$.

When $\rho>1, N(t)$ is not ergodic. For this non-ergodic case, Sumita[25] has proven that the following limit theorems hold true.

Theorem 4.2 (Theorem 0.1 (2) of Sumita[25])
If $\rho>1$, then
(a) $\quad T_{n}^{+} \xrightarrow{\mathrm{d}} T_{B P(\mu, \lambda)}$;
(b) $\frac{T_{0, n}}{\mathrm{E}\left[T_{0, n}\right]} \rightarrow 1$ with probability 1 as $n \rightarrow \infty$.

Here, $T_{B P(\mu, \lambda)}$ is the server busy period of $M / M / 1$ queueing system with Poisson arrivals of intensity μ and the exponential service rate λ.

The purpose of this section is to show that the limit theorems in Theorem 4.1 and Theorem 4.2 for birth-death processes can be more or less carried over to skip-free semi-Markov processes. Throughout this section, we assume that, for $n \in \mathcal{N}=\{0,1,2, \cdots\}$,

$$
\begin{gather*}
p_{n}>0, \lim _{n \rightarrow \infty} p_{n}=p>0, q_{n}>0, \lim _{n \rightarrow \infty} q_{n}=q>0 ; \text { and } \tag{4.1}\\
\lim _{n \rightarrow \infty} \alpha_{n}^{-}(s)=\alpha^{-}(s), \lim _{n \rightarrow \infty} \alpha_{n}^{0}(s)=\alpha^{0}(s), \lim _{n \rightarrow \infty} \alpha_{n}^{+}(s)=\alpha^{+}(s) .
\end{gather*}
$$

For notational convenience, we also define

$$
\begin{equation*}
\hat{\rho} \stackrel{\text { def }}{=} \frac{p}{q} \tag{4.2}
\end{equation*}
$$

We first show that the counterpart of Theorem 4.1 for skip-free semi-Markov processes is present under the ergodic condition $0<\hat{\rho}<1$.

Theorem 4.3

Let $T_{0, n}$ be the first passage time of a skip-free semi-Markov process from 0 to n satisfying (4.1). If $0<\hat{\rho}<1$, then

$$
\frac{T_{0, n}}{\mathrm{E}\left[T_{0, n}\right]} \xrightarrow{\mathrm{d}} E \text { as } n \rightarrow \infty \text {, where } \mathrm{P}[E>x]=\mathrm{e}^{-x} .
$$

Proof. We consider the regenerative process representing the return of the underlying skip-free semi-Markov process from state 0 to state 0 . Let $\underline{V}_{k}=\left[Y_{k}, Z_{k}\right]$ where Z_{k} is the length of the k-th regenerative cycle and Y_{k} is the largest state visited within this regenerative cycle. It should be noted that Y_{k} and Z_{k} are correlated but $\underline{V}_{k}(k=$

$1,2,3, \cdots)$ constitute a sequence of independently and identically distributed (i.i.d.)

 random vectors.Let the domain of \underline{V}_{k} be decomposed into $\mathcal{N} \times R^{+}=G(n) \bigcup B(n)$ where $G(n)=$ $\{(m, x): 0 \leq m<n, x \geq 0\}$ and $B(n)=\{(m, x): n \leq m, x \geq 0\}$. We now consider the following experiment. If $\underline{V}_{k} \in G(n)$, then the experiment continues and \underline{V}_{k+1} is chosen. The experiment stops when a random vector falls in $B(n)$. In other words, the experiment stops with probability $\eta_{n}=\mathrm{P}\left[\underline{V}_{k} \in B(n)\right]$. It should be noted that the first passage time $T_{0, n}$ from state 0 to state n is the sum of Z_{k} 's until the experiment stops, and η_{n} is the probability that the state n is visited before returning to state 0 within a regenerative cycle. We next show that $\eta_{n} \rightarrow 0$ as $n \rightarrow \infty$ under the conditions of (4.1). The limit theorem then follows by Theorem 1.A4 of Shanthikumar and Sumita[20].

Let $\xi_{m, n}$ be the probability that the process $J(t)$ reaches state n before state 0 , given that $J(0)=m, 1 \leq m<n$. One then easily sees that

$$
\left\{\begin{align*}
\xi_{1, n} & =r_{1} \xi_{1, n}+p_{1} \xi_{2, n} \tag{4.3}\\
\xi_{m, n} & =q_{m} \xi_{m-1, n}+r_{m} \xi_{m, n}+p_{m} \xi_{m+1, n}, \quad 2 \leq m \leq n-2 \\
\xi_{n-1, n} & =q_{n-1} \xi_{n-2, n}+r_{n-1} \xi_{n-1, n}+p_{n-1}
\end{align*}\right.
$$

Let $\Delta \xi_{m, n+1} \stackrel{\text { def }}{=} \xi_{m, n+1}-\xi_{m-1, n+1}$ and define $\hat{\rho}_{j} \stackrel{\text { def }}{=} p_{j} / q_{j}$. Substituting $r_{m}=$ $1-q_{m}-p_{m}$ for $1 \leq m<n$ into (4.3), it follows that

$$
\left\{\begin{array}{rl}
\xi_{1, n} & =\hat{\rho}_{1} \Delta \xi_{2, n} \tag{4.4}\\
\Delta \xi_{m, n} & =\hat{\rho}_{m} \Delta \xi_{m+1, n}, \\
\Delta \xi_{n-1, n} & =\hat{\rho}_{n-1}\left(1-\xi_{n-1, n}\right)
\end{array} \quad 2 \leq m \leq n-2\right.
$$

which in turn leads to

$$
\begin{equation*}
\xi_{1, n}=\left(1-\xi_{n-1, n}\right) \prod_{j=1}^{n-1} \hat{\rho}_{j} \tag{4.5}
\end{equation*}
$$

From (4.1), for arbitrarily small $\varepsilon>0$, there exists $M(\varepsilon)$ such that $\left|q_{n}-q\right|<\varepsilon$ and $\left|p_{n}-p\right|<\varepsilon$ for $n>M(\varepsilon)$. One then sees from (4.5) that, for $n>M(\varepsilon)+1$,
(4.6) $\left(\prod_{j=1}^{M(\varepsilon)} \hat{\rho}_{j}\right)\left(\frac{p-\varepsilon}{q+\varepsilon}\right)^{n-M(\varepsilon)-2}<\prod_{j=1}^{n-1} \hat{\rho}_{j}<\left(\prod_{j=1}^{M(\varepsilon)} \hat{\rho}_{j}\right)\left(\frac{p+\varepsilon}{q-\varepsilon}\right)^{n-M(\varepsilon)-2}$.

Under the assumption that $0<\hat{\rho}<1$, one sees for sufficiently small $\varepsilon>0$ that $(p-\varepsilon) /(q+\varepsilon)<1$ and $(p+\varepsilon) /(q-\varepsilon)<1$, so that $\xi_{1, n} \rightarrow 0$ as $n \rightarrow \infty$ from (4.5) and (4.6). Since $\eta_{n}=r_{0} \eta_{n}+p_{0} \xi_{1, n}$ and therefore $\eta_{n}=p_{0} \xi_{1, n} /\left(1-r_{0}\right)$, one concludes that $\eta_{n} \rightarrow 0$ as $n \rightarrow \infty$, completing the proof.

We next turn our attention to the exponential limit theorem of Theorem 4.1 (b) with the jitter effect. As for birth-death processes, this limit theorem still holds true for skip-free semi-Markov processes. A preliminary lemma is needed.

Lemma 4.4

Let T_{n}^{+}be the first passage time of a skip-free semi-Markov process from n to $n+1$ satisfying (4.1). If $0<\hat{\rho}<1$, then
(a) $\frac{\mathrm{E}\left[T_{n-1}^{+}\right]}{\mathrm{E}\left[T_{n}^{+}\right]} \rightarrow \hat{\rho}$ as $n \rightarrow \infty ;$
(b) $\frac{\mathrm{E}\left[T_{n}^{+}\right]}{\mathrm{E}\left[T_{0, n+1}\right]} \rightarrow 1-\hat{\rho}$ as $n \rightarrow \infty$.

Proof. From the recursion formula in Theorem 2.3 (a), one sees for $n \geq 1$ that

$$
\begin{equation*}
\frac{\mathrm{E}\left[T_{n-1}^{+}\right]}{\mathrm{E}\left[T_{n}^{+}\right]}=\frac{p_{n}}{q_{n}}-\frac{\mu_{n: 1}}{q_{n} \mathrm{E}\left[T_{n}^{+}\right]} \leq \hat{\rho}_{n} \tag{4.7}
\end{equation*}
$$

We next show that $\frac{\mu_{n: 1}}{q_{n} \mathrm{E}\left[T_{n}^{+}\right]}$vanishes as $n \rightarrow \infty$. To do so, we write

$$
\frac{\mu_{n: 1}}{q_{n} \mathrm{E}\left[T_{n}^{+}\right]}=\frac{\mu_{n: 1}}{q_{n} \mathrm{E}\left[T_{0}^{+}\right]} \cdot \frac{\mathrm{E}\left[T_{0}^{+}\right]}{\mathrm{E}\left[T_{1}^{+}\right]} \cdot \frac{\mathrm{E}\left[T_{1}^{+}\right]}{\mathrm{E}\left[T_{2}^{+}\right]} \cdots \frac{\mathrm{E}\left[T_{n-2}^{+}\right]}{\mathrm{E}\left[T_{n-1}^{+}\right]} \cdot \frac{\mathrm{E}\left[T_{n-1}^{+}\right]}{\mathrm{E}\left[T_{n}^{+}\right]} .
$$

From (4.7), this leads to

$$
\begin{equation*}
\frac{\mu_{n: 1}}{q_{n} \mathrm{E}\left[T_{n}^{+}\right]} \leq \frac{p_{n} \mu_{n: 1}}{q_{n} \mathrm{E}\left[T_{0}^{+}\right]} \cdot \prod_{j=1}^{n} \hat{\rho}_{j} \tag{4.8}
\end{equation*}
$$

For arbitrarily small $\varepsilon>0$, let $M(\varepsilon)$ be as in the proof of Theorem 4.3. From (4.6) and (4.7), it then follows that $\mu_{n: 1} / q_{n} \mathrm{E}\left[T_{n}^{+}\right] \rightarrow 0$ as $n \rightarrow \infty$. This in turn implies from (4.7) that $\mathrm{E}\left[T_{n-1}^{+}\right] / \mathrm{E}\left[T_{n}^{+}\right] \rightarrow \hat{\rho}$ as $n \rightarrow \infty$, proving (a). For (b), it can be seen from (2.17) that

$$
\frac{\mathrm{E}\left[T_{0, n+1}\right]}{\mathrm{E}\left[T_{n}^{+}\right]}=\frac{\sum_{j=0}^{n} \mathrm{E}\left[T_{j}^{+}\right]}{\mathrm{E}\left[T_{n}^{+}\right]}=1+\sum_{j=0}^{n-1} \frac{\mathrm{E}\left[T_{j}^{+}\right]}{\mathrm{E}\left[T_{n}^{+}\right]}=1+\sum_{k=1}^{n} \prod_{j=k}^{n} \frac{\mathrm{E}\left[T_{j-1}^{+}\right]}{\mathrm{E}\left[T_{j}^{+}\right]} .
$$

From (a), one has $\mathrm{E}\left[T_{j-1}^{+}\right] / \mathrm{E}\left[T_{j}^{+}\right] \rightarrow \hat{\rho}$ as $j \rightarrow \infty$. From Lemma 8.3B of Keilson[9], it then follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\mathrm{E}\left[T_{0, n+1}\right]}{\mathrm{E}\left[T_{n}^{+}\right]}=1+\frac{\hat{\rho}}{1-\hat{\rho}}=\frac{1}{1-\hat{\rho}}, \tag{4.9}
\end{equation*}
$$

completing the proof
We are now in a position to prove the exponential limit theorem with the jitter effect for skip-free semi-Markov processes.

Theorem 4.5

If $0<\hat{\rho}<1$, then

$$
\frac{T_{n}^{+}}{\mathrm{E}\left[T_{n}^{+}\right]} \xrightarrow{\mathrm{d}} X \text { as } n \rightarrow \infty, \text { where } \mathrm{P}[X>x]=(1-\hat{\rho}) \mathrm{e}^{-(1-\hat{\rho}) x}
$$

Proof. From (2.16), one has

$$
\sigma_{n}^{+}(s)=\frac{\sigma_{0, n+1}(s)}{\sigma_{0, n}(s)}
$$

so that

$$
\begin{equation*}
\sigma_{n}^{+}\left(\frac{s}{\mathrm{E}\left[T_{n}^{+}\right]}\right)=\frac{\sigma_{0, n+1}\left(\frac{s}{\mathrm{E}\left[T_{0, n+1}\right]} \frac{\mathrm{E}\left[T_{0, n+1}\right]}{\mathrm{E}\left[T_{n}^{+}\right]}\right)}{\sigma_{0, n}\left(\frac{s}{\mathrm{E}\left[T_{0, n}\right]} \frac{\mathrm{E}\left[T_{0, n}\right]}{\mathrm{E}\left[T_{n}^{+}\right]}\right)} \tag{4.10}
\end{equation*}
$$

Let E be the exponential variate of mean 1 as in Theorem 4.3.It should be noted from Lemma 4.4 that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\mathrm{E}\left[T_{0, n}\right]}{\mathrm{E}\left[T_{n}^{+}\right]}=\lim _{n \rightarrow \infty} \frac{\mathrm{E}\left[T_{0, n+1}\right]-\mathrm{E}\left[T_{n}^{+}\right]}{\mathrm{E}\left[T_{n}^{+}\right]}=\frac{1}{1-\hat{\rho}}-1=\frac{\hat{\rho}}{1-\hat{\rho}} \tag{4.11}
\end{equation*}
$$

It then follows from (4.10), Theorem 4.3, Lemma 4.4 and (4.11) that

$$
\sigma_{n}^{+}\left(\frac{s}{\mathrm{E}\left[T_{n}^{+}\right]}\right) \rightarrow \frac{\mathrm{E}\left[\mathrm{e}^{-s\left(\frac{1}{1-\hat{\rho}}\right) E}\right]}{\mathrm{E}\left[\mathrm{e}^{-s\left(\frac{\hat{\rho}}{1-\hat{\rho}}\right) E}\right]}=\frac{\left[\frac{1}{1-\hat{\rho}} s+1\right]^{-1}}{\left[\frac{\hat{\rho}}{1-\hat{\rho}} s+1\right]^{-1}}=\hat{\rho}+(1-\hat{\rho}) \frac{(1-\hat{\rho})}{s+(1-\hat{\rho})}
$$

as $n \rightarrow \infty$, completing the proof.
Unlike a birth-death process satisfying $\lambda_{n} \rightarrow \lambda>0$ and $\mu_{n} \rightarrow \mu>0$ as $n \rightarrow \infty$, a skip-free semi-Markov process satisfying (4.1), in general, cannot be related to a queueing system easily. When $\hat{\rho}>1$, the counterpart of the limit theorem of Sumita[21] in Theorem 4.2 (a) for skip-free semi-Markov processes, therefore, has to take a different form.

Theorem 4.6

If $\hat{\rho}>1$, then T_{n}^{+}converges in distribution to T^{+}where $\sigma^{+}(s)=\mathrm{E}\left[\mathrm{e}^{-s T^{+}}\right]$is given by

$$
\begin{equation*}
\sigma^{+}(s)=\frac{1-r \alpha^{0}(s)-\sqrt{\left\{1-r \alpha^{0}(s)\right\}^{2}-4 p q \alpha^{+}(s) \alpha^{-}(s)}}{2 q \alpha^{-}(s)} \tag{4.12}
\end{equation*}
$$

Proof. Let $g_{n}(x, s)$ be defined as

$$
\begin{equation*}
g_{n}(x, s) \stackrel{\text { def }}{=} \frac{p_{n} \alpha_{n}^{+}(s)}{1-r_{n} \alpha_{n}^{0}(s)-q_{n} \alpha_{n}^{-}(s) x}, 0 \leq x \leq 1 \tag{4.13}
\end{equation*}
$$

From Theorem 2.2, one sees that $\sigma_{n}^{+}(s)=g\left(\sigma_{n-1}^{+}(s), s\right)$ so that

$$
\begin{equation*}
\sigma_{n}^{+}(s)-\sigma_{n-1}^{+}(s)=\int_{\sigma_{n-2}^{+}(s)}^{\sigma_{n-1}^{+}(s)} \frac{d}{d x} g(x, s) d x \tag{4.14}
\end{equation*}
$$

By differentiating (4.13) with respect to x, one has

$$
\begin{equation*}
\frac{d}{d x} g_{n}(x, s)=\frac{p_{n} \alpha_{n}^{+}(s) q_{n} \alpha_{n}^{-}(s)}{\left\{1-r_{n} \alpha_{n}^{0}(s)-q_{n} \alpha_{n}^{-}(s) x\right\}^{2}} \tag{4.15}
\end{equation*}
$$

Since the domain of $\frac{d}{d x} g_{n}(x, s)$ is $0 \leq x \leq 1$, its range is given by

$$
\text { (4.16 } \frac{p_{n} \alpha_{n}^{+}(s) q_{n} \alpha_{n}^{-}(s)}{\left\{1-r_{n} \alpha_{n}^{0}(s)\right\}^{2}} \leq \frac{d}{d x} g_{n}(x, s) \leq \frac{p_{n} \alpha_{n}^{+}(s) q_{n} \alpha_{n}^{-}(s)}{\left\{1-r_{n} \alpha_{n}^{0}(s)-q_{n} \alpha_{n}^{-}(s)\right\}^{2}} \stackrel{\text { def }}{=} \theta_{n}(s)
$$

It can be readily seen that $\theta_{n}(s)$ is monotone decreasing for real $s>0$, and therefore $\theta_{n}(s)<\theta_{n}(0) \stackrel{\text { def }}{=} \theta_{n}$. From (4.14) it then follows that

$$
\begin{aligned}
\left|\sigma_{n}^{+}(s)-\sigma_{n-1}^{+}(s)\right| & =\left|\int_{\sigma_{n-2}^{+}(s)}^{\sigma_{n-1}^{+}(s)} \frac{d}{d x} g(x, s) d x\right| \\
& \leq \theta_{n}(s)\left|\sigma_{n-1}^{+}(s)-\sigma_{n-2}^{+}(s)\right| \\
& <\theta_{n}\left|\sigma_{n-1}^{+}(s)-\sigma_{n-2}^{+}(s)\right|
\end{aligned}
$$

Under the conditions of (4.1), one has $\theta_{n}=\theta_{n}(0)=p_{n} q_{n} /\left(1-r_{n}-q_{n}\right)^{2}=q_{n} / p_{n} \rightarrow$ $1 / \hat{\rho} \stackrel{\text { def }}{=} \theta$ as $n \rightarrow \infty$. Since $\hat{\rho}>1$, for sufficiently small $\varepsilon>0$, there exists $N(\varepsilon)$ such that $\theta-\varepsilon<\theta_{n}<\theta+\varepsilon<1$ for $n>N(\varepsilon)$. This implies, for $n>N(\varepsilon)$, that

$$
\left|\sigma_{n}^{+}(s)-\sigma_{n-1}^{+}(s)\right|<(\theta+\varepsilon)\left|\sigma_{n-1}^{+}(s)-\sigma_{n-2}^{+}(s)\right|
$$

From the contraction mapping theorem, it then follows that $\sigma_{n}^{+}(s)$ converges uniquely to a function of s denoted by $\sigma^{+}(s)$ as $n \rightarrow \infty$. It remains to show that $\sigma^{+}(s)$ satisfies (4.12).

From Theorem 2.2, the unique convergence of $\sigma_{n}^{+}(s)$ to $\sigma^{+}(s)$ implies that $\sigma^{+}(s)$ has to satisfy

$$
\sigma^{+}(s)=\frac{p \alpha^{+}(s)}{1-r \alpha^{0}(s)-q \alpha^{-}(s) \sigma^{+}(s)}
$$

which in turn leads to the following functional equation.

$$
\begin{equation*}
q \alpha^{-}(s) \sigma^{+}(s)^{2}-\left\{1-r \alpha^{0}(s)\right\} \sigma^{+}(s)+p \alpha^{+}(s)=0 \tag{4.17}
\end{equation*}
$$

This quadratic equation has two solutions given by

$$
\frac{1-r \alpha^{0}(s) \pm \sqrt{\left\{1-r \alpha^{0}(s)\right\}^{2}-4 p q \alpha^{+}(s) \alpha^{-}(s)}}{2 q \alpha^{-}(s)}
$$

Since $\sigma^{+}(0)=1$, one concludes that

$$
\sigma^{+}(s)=\frac{1-r \alpha^{0}(s)-\sqrt{\left\{1-r \alpha^{0}(s)\right\}^{2}-4 p q \alpha^{+}(s) \alpha^{-}(s)}}{2 q \alpha^{-}(s)}
$$

completing the proof.
We next derive the mean and variance of T^{+}based on Theorem 4.6. For notational convenience, we denote the limits of the first and second moments given in (2.7) as

$$
\begin{align*}
& \hat{\mu}_{k}^{-} \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} \mu_{n: k}^{-} ; \hat{\mu}_{k}^{0} \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} \mu_{n: k}^{0} ; \hat{\mu}_{k}^{+} \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} \mu_{n: k}^{+} ; \tag{4.18}\\
& \hat{\mu}_{k}=\hat{\mu}_{k}^{-}+\hat{\mu}_{k}^{0}+\hat{\mu}_{k}^{+}, \text {for } k=1,2
\end{align*}
$$

$$
\begin{equation*}
\hat{\mu}_{k}<\infty, \text { for } k=1,2 \tag{4.19}
\end{equation*}
$$

Theorem 4.7

(a) $\mathrm{E}\left[T^{+}\right]=\frac{\hat{\mu}_{1}}{p-q}$
(b) $\operatorname{Var}\left[T^{+}\right]=\frac{\hat{\mu}_{2}}{p-q}+\left\{\frac{2 p\left(q \hat{\mu}_{1}^{+}+r \hat{\mu}_{1}^{0}+p \hat{\mu}_{1}^{-}\right)}{(p-q)^{3}}-\frac{\hat{\mu}_{1}}{(p-q)^{2}}+\frac{2 \hat{\mu}_{1}^{-}}{p-q}\right\} \hat{\mu}_{1}$

Proof. Let $C(s)$ be defined as

$$
\begin{equation*}
C(s)=1-r \alpha^{0}(s)-\sqrt{\left\{1-r \alpha^{0}(s)\right\}^{2}-4 p q \alpha^{+}(s) \alpha^{-}(s)} \tag{4.22}
\end{equation*}
$$

so that $\sigma^{+}(s)=C(s) / 2 q \alpha^{-}(s)$. One easily sees that

$$
\begin{align*}
C(0) & =-2 q \tag{4.23}\\
\left.\frac{d}{d s} C(s)\right|_{s=0} & =\frac{-2 q\left(p \hat{\mu}_{1}^{+}+r \hat{\mu}_{1}^{0}+p \hat{\mu}_{1}^{-}\right)}{p-q} \tag{4.24}
\end{align*}
$$

and

$$
\begin{align*}
\left.\left(\frac{d}{d s}\right)^{2} C(s)\right|_{s=0}= & \frac{-2 q\left(p \hat{\mu}_{2}^{+}+r \hat{\mu}_{2}^{0}+p \hat{\mu}_{2}^{-}\right)}{p-q} \tag{4.25}\\
& +\frac{4 p q \hat{\mu}_{1}\left(q \hat{\mu}_{1}^{+}+r \hat{\mu}_{1}^{0}+p \hat{\mu}_{1}^{-}\right)}{(p-q)^{3}}
\end{align*}
$$

The theorem now follows by differentiating $\log \sigma^{+}(s)=\log C(s)-\log 2 q \alpha^{-}(s)$ twice at $s=0$.

In order to prove the counterpart of Theorem 4.2 (b) for skip-free semi-Markov processes, a preliminary lemma is needed.

Lemma 4.8

Under the condition of (4.19), the following statement holds true.

$$
\frac{1}{n} \mathrm{E}\left[T_{0, n}\right] \rightarrow \frac{\hat{\mu}_{1}}{p-q} \text { as } n \rightarrow \infty
$$

Proof. From Theorem 4.7 (a), for arbitrarily small $\varepsilon>0$, there exists $M(\varepsilon)$ such that $\left|\mathrm{E}\left[T_{n}^{+}\right]-\hat{\mu}_{1} /(p-q)\right|<\varepsilon$ for $n>M(\varepsilon)$. From (2.17), it can be seen that

$$
\frac{1}{n} \mathrm{E}\left[T_{0, n}\right]=\frac{1}{n} \sum_{j=0}^{n-1} \mathrm{E}\left[T_{j}^{+}\right]=\frac{1}{n} \sum_{j=0}^{M(\varepsilon)} \mathrm{E}\left[T_{j}^{+}\right]+\frac{1}{n} \sum_{j=M(\varepsilon)+1}^{n-1} \mathrm{E}\left[T_{j}^{+}\right]
$$

so that one has, for $n>M(\varepsilon)+1$,

$$
\begin{align*}
& \frac{1}{n} \sum_{j=0}^{M(\varepsilon)} \mathrm{E}\left[T_{j}^{+}\right]+\frac{n-M(\varepsilon)-2}{n}\left(\frac{\hat{\mu}_{1}}{p-q}-\varepsilon\right)<\frac{1}{n} \sum_{j=0}^{n-1} \mathrm{E}\left[T_{j}^{+}\right] \tag{4.26}\\
&< \frac{1}{n} \sum_{j=0}^{M(\varepsilon)} \mathrm{E}\left[T_{j}^{+}\right]+\frac{n-M(\varepsilon)-2}{n}\left(\frac{\hat{\mu}_{1}}{p-q}+\varepsilon\right)
\end{align*}
$$

and hence $(1 / n) \mathrm{E}\left[T_{0, n}\right] \rightarrow \hat{\mu}_{1} /(p-q)$ as $n \rightarrow \infty$, completing the proof.
The following theorem can now be proven.

Theorem 4.9

$$
\frac{T_{0, n}}{\mathrm{E}\left[T_{0, n}\right]} \rightarrow 1 \text { with probability } 1 \text { as } n \rightarrow \infty
$$

Proof. Let $X_{n} \stackrel{\text { def }}{=} T_{n}^{+}-\mathrm{E}\left[T_{n}^{+}\right]$for $n \geq 0$. Clearly X_{n} are mutually independent and $\mathrm{E}\left[X_{n}\right]=0$ so that $\mathrm{E}\left[X_{n}^{2}\right]=\operatorname{Var}\left[T_{n}^{+}\right]$for $n \geq 0$. Under the condition of (4.19), it can be seen from Theorem 4.7 (b) that $\lim _{n \rightarrow \infty} \operatorname{Var}\left[T_{n}^{+}\right]<\infty$. This then implies that

$$
\sum_{m=0}^{\infty} \frac{1}{m^{2}} \mathrm{E}\left[X_{m-1}^{2}\right]<\infty
$$

Hence from VII. 8 Theorem 3 of Feller[3], one has

$$
\frac{1}{n} \sum_{m=1}^{n} X_{m}=\frac{\mathrm{E}\left[T_{0, n}\right]}{n}\left\{\frac{T_{0, n}}{\mathrm{E}\left[T_{0, n}\right]}-1\right\} \rightarrow 0
$$

with probability 1 as $n \rightarrow \infty$. The theorem now follows from Lemma 4.8.

References

[1] E. Çinlar: Markov Renewal Theory. Adv. Appl. Prob. 1 (1969) 123-187.
[2] E. Çinlar: Markov Renewal Theory: A Survey. Management Sci. 21 (1975) 727-752
[3] W. Feller: An Introduction to Probability Theory and its Applications, II, 2nd Edition (John Wiley and Sons, N.Y. 1971).
[4] J.J. Hunter: The Moments of Markov Renewal Processes. Adv. Appl. Prob. 1 (1969) 188-210.
[5] S. Karlin and J.L. McGregor: The Classification of Birth-Death Processes. Trans. Amer. Math. Soc. 86 (1957) 366-400.
[6] J. Keilson: A limit Theorem for Passage Times in Ergodic Regenerative Processes. Ann. Math. Stat. 37 (1966) 391-398.
[7] J. Keilson, On a Matrix Renewal Functions for Markov Renewal Processes. Ann. Math. Stat. 40 (1969) 1901-1907.
[8] J. Keilson: Log-Concavity and Log-Convexity in Passage Time Densities of Diffusion and Birth-Death Process. J. Appl. Prob. 8 (1971) 391-398.
[9] J. Keilson: Markov Chain Models - Rarity and Exponentiality (Applied Mathematical Science series 28, Springer-Verlag, 1979).
[10] J. Keilson: On the Unimodality of Passage Time Densities in Birth-Death Processes. Stat. Neerlandica. 25 (1981) 49-55.
[11] P. Léby: Processus Semi-Markoviens. Proc. Int. Congress Math. (Amsterdam) 3 (1954) 416426.
[12] R.A. Moore and R. Pyke: Estimation of Transition Distributions of Markov Renewal Processes. Ann. Inst. Stat. Math. 20 (1964) 411-424.
[13] R. Pyke: Markov Renewal Processes: Definitions and Preliminary Properties. Ann. Math. Stat. 32 (1961) 1231-1242.
[14] R. Pyke: Markov Renewal Processes with Finitely Many States. Ann. Math. Stat. 32 (1961) 1243-1259.
[15] R. Pyke and R. Schaufele: Limit Theorem for Markov Renewal Processes. Ann. Math. Stat. 35 (1964) 1746-1764.
[16] R. Pyke and R. Schaufele: The Existence and Uniqueness of Stationary Measures for Markov Renewal Processes. Ann. Math. Stat. 37 (1966) 1439-1462.
[17] U. Rösler: Unimodality of Passage Time Density for One-Dimensional Strong Markov Processes. Ann. Prob. 8 (1980) 853-859.
[18] W.L. Smith: Regenerative Stochastic Processes. Proc. Roy. Soc. London Ser.A 232 (1955) 6-31.
[19] F.W. Steutel: Preservation of Infinite Divisibility under Mixing, and Related Topics (Math. Centrum, Amsterdam 1970).
[20] J.G. Shanthikumar and U. Sumita: General Shock Models Associated with Correlated Renewal Sequences. Jour. Appl. Prob. 20 (1983) 600-614.
[21] U. Sumita: On Conditional Passage Time Structure of Birth-Death Processes. Jour. Appl. Prob. 21 (1984) 10-21.
[22] U. Sumita and Y. Masuda: On First Passage Time Structure of Random Walks. Stochastic Processes and Their Applications 20 (1985) 133-147.
[23] U. Sumita and Y. Masuda: An Alternative Approach for Analysis of Finite Semi-Markov and Related Processes. Stoch. Models. 3 No. 1 (1987) 67-87.
[24] U. Sumita and Y. Masuda: Classes of Probability Density Functions Having Laplace Transforms with Negative Zeros and Poles. Adv. Appl. Prob. 19 (1987) 632-651.
[25] U. Sumita: On Limiting Behavior of Ordinary and Conditional First Passage Times for a Class of Birth-Death Processes. Jour. Appl. Prob. 24 (1987) 235-240.
[26] L. Takács: Some Investigations Concerning Recurrent Stochastic Processes of a Certain Type. Magyar Tud. Akad. Mat. Ktató Int. Közl. 3 (1954) 115-128.
[27] J.L. Teugels: A Bibliography on Semi-Markov Processes. J. Comp. and Appl. Math. 2 (1976) 125-144.

