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1 Introduction

Let us consider n non-preemptable jobs to be scheduled on a single machine. Each
job j has a processing time pj and weight wj . The machine can handle no more
than one job at a time, and it is continuously available from time zero onwards only.
All jobs have a common and unrestrictive due date d. For a schedule S, let CS

j be
the completion time of job j. A job j is early if CS

j ≤ d, and it is tardy otherwise.
The tardiness of a tardy job is defined as CS

j − d. The aim of this problem is to find
a schedule S that minimizes the total weighted tardiness:

T (S) =
n∑

j=1

wj(CS
j − d)+,

where (a)+ stands for max{a, 0}. It is assumed that all pj and wj are positive
integers and that P =

∑n
i=1 pj and W =

∑n
i=1 wj .

It is known that this problem is NP-hard [7]. An O(n2d) pseudopolynomial
dynamic programming algorithm was developed for solving this problem by Lawler–
Moore [4]. Some approximation algorithms have been investigated. Let S∗ be an op-
timal schedule. For a worst-case ratio bound α, an α-approximation algorithm finds a
schedule S such that T (S) ≤ αT (S∗). When α is given by 1+ε, an α-approximation
algorithm is called a fully polynomial-time approximation scheme (FPTAS) if its run-
ning time is bounded by a polynomial with respect to the length of the problem input
and 1/ε. Fathi–Nuttle [1] developed a 2-approximation algorithm with a running
time of O(n2). Recently, the first FPTAS was proposed by Kellerer–Strusevich [2].
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It is obtained by converting an especially designed dynamic programming algorithm
and runs in O((n6/ε3) log n log W ) time. This leaves an open question an FPTAS
with a running time that is only polynomial in n and 1/ε. This paper gives a
positive answer to this question. We shall show two slight modifications of Kellerer–
Strusevich’s FPTAS. The first one runs in O((n5/ε3) log PW log P log W ) time, and
the second one runs in O((n7/ε3) log n log(n/ε)) time.

The remainder of this paper is as follows: Section 2 describes some properties
of the problem and Kellerer–Strusevich’s FPTAS. Sections 3 and 4 propose our
modified versions.

2 Previous Work

Without loss of generality, we assume that 0 < ε < 1. If ε ≥ 1, then a 2-
approximation algortihm can be taken as a (1 + ε)-approximation algorithm.

Job j on a schedule is said to be straddling if it is scheduled as the first tardy
job. The subsequent tardy jobs are said to be late. We can see that there is an
optimal schedule where (i) the first job starts at time zero, (ii) jobs are processed
without intermediate idle time, and (iii) late jobs are ordered by non-increasing
Smith’s ratio pj/wj [6], while early jobs are processed in any order. In Kellerer–
Strusevich’s FPTAS [2], each job in turn is set as the straddling job, and a schedule
almost minimizing the total weighted tardiness is determined. The one that has the
minimum total weighted tardiness T (S) among found ones is then output. When a
straddling job is fixed, the problem is reduced to simply apportioning jobs into early
and late, which can be represented by 0-1 variables:

xj =

{
1 if job j is late,
0 if job j is early.

Suppose that job s is set as the straddling job. We index the remaining jobs in
accordance with Smith’s order so that

p1

w1
≤ p2

w2
≤ · · · ≤ pn′

wn′
,

where n′ = n− 1. From a 0-1 vector x = (x1, x2, . . . , xn′), we make a corresponding
schedule S(x) whose processing order is given as follows: first, jobs j with xj = 0
are processed according to Smith’s order; second, job s is processed; finally, jobs j

with xj = 1 are processed according to Smith’s order. From conditions (i) and (ii),
we assume that the first job in S(x) starts at time zero and there are no idle times
in S(x). Note that job s is straddling in S(x) if and only if

∑n′
j=1 pj(1−xj) ≤ d and
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∑n′
j=1 pj(1− xj) + ps > d. Let

(SPs) minimize{Zs(x) |
n′∑

j=1

pj(1− xj) ≤ d, x ∈ {0, 1}n′},

where Zs(x) =
∑n′

j=1 wj

(∑j
i=1 pixi + (

∑n′
i=1 pi(1− xi) + ps − d)+

)
xj+ws(

∑n′
i=1 pi(1−

xi)+ps−d)+. If a feasible solution x of (SPs) satisfies
∑n′

j=1 pj(1−xj)+ps > d, the
completion time of late job j is given by

∑j
i=1 pixi + (

∑n′
i=1 pi(1 − xi) + ps − d)+.

Thus, Zs(x) is equal to the total weighted tardiness of the corresponding schedule,
T (S(x)). Otherwise, i.e., if

∑n′
j=1 pj(1 − xj) + ps < d holds, Zs(x) is the weighted

tardiness of a schedule with the same processing order as S(x) and with idle time
between job s and the first late job. Therefore, we can evaluate T (S(x)) ≤ Zs(x).
Moreover, in this case, since s is not the straddling job in S(x), this schedule is also
a feasible solution for another straddling job.

For any x ∈ {0, 1}n′ , define

PE
j (x) =

j∑

i=1

pi(1− xi), P T
j (x) =

j∑

i=1

pixi,

Wj(x) =
j∑

i=1

wixi, and Zj(x) =
j∑

i=1

wi(
i∑

l=1

plxl)xi,

where PE
j (x) and P T

j (x) are the sums of the processing times of early jobs and late
jobs, respectively, provided on a schedule of jobs 1, . . . , j according to x. On this
schedule, Wj(x) is the sum of the weights of the late jobs, and Zj(x) is the weighted
tardiness when the first late job starts in time d. These values can be reformulated
by using the following recursions: PE

j (x) = PE
j−1(x)+pj(1−xj), P T

j (x) = P T
j−1(x)+

pjxj ,Wj(x) = Wj−1(x)+wjxj , Zj(x) = Zj−1(x)+wjP
T
j (x)xj , and PE

0 (x) = P T
0 (x) =

W0(x) = Z0(x) = 0. Note that the value Zs(x) can be written as

Zs(x) = Zn′(x) + (Wn′(x) + ws)(PE
n′ (x) + ps − d)+. (1)

Kellerer–Strusevich’s FPTAS needs an upper bound ZUB and a lower bound ZLB

on the optimal value of the original problem, where ZUB/ZLB is a constant. They
use the value of ZUB calculated using a 2-approximation algorithm [1], so that ZLB

is set by ZUB/2. The algorithm prepares intervals

I1 =
[
0,

ZUB

wπ(1)

]
, Ij =

[
ZUB

wπ(j−1)
,

ZUB

wπ(j)

]
(j = 2, . . . , h),

where wπ(1) > wπ(2) > · · · > wπ(h) are the sorted distinct values among weights wj

(j = 1, . . . , n′). Additionally, each interval Ij (j = 1, . . . , h) is split into subintervals
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Ir
j with lengths less than (εZLB)/(4n′wπ(j)). Let ej be the unit vector, i.e., ej

j = 1
and ej

i = 0 for i 6= j, and 0 = (0, 0, . . . , 0). Then the following procedure is Kellerer–
Strusevich’s FPTAS for (SPs).

step 0 Set X = {0} and j = 1.

step 1 Update X by X∪{x+ej | x ∈ X}. (That is, generate two vectors by adding
0 or 1 in position j of each vector x ∈ X.) Calculate values P T

j (x), Wj(x),
and Zj(x) for each x ∈ X.

step 2 (2-1) Round up the values using

Zj(x) = dZj(x) · 4n′

εZLB
e, Wj(x) = (1 +

ε

2
)
dn′ log(1+ε/2) Wj(x)e

n′ ,

for all x ∈ X. Partition X into (X1, X2, . . . , Xk) such that, for any X l

(l = 1, . . . , k) and any pair x, x′ ∈ X l, Zj(x) = Zj(x′) and Wj(x) =
Wj(x′), and P T (x) and P T (x′) belong to the same interval Ir

j .

(2-2) Find a vector xl
min attaining min{P T

j (x) | x ∈ X l} and a vector xl
max

attaining max{P T
j (x) | x ∈ X l} for each l = 1, . . . , k. Update X by

{xl
min, x

l
max | l = 1, . . . , k}.

(2-3) If j < n′, then update j by j + 1 and go to step 1.

step 3 Compute Zs(x) using Equation (1) for each x ∈ X and return a minimum
one.

The analysis of Kellerer–Strusevich [2] can be explained simply as follows. Let
xs be an optimal solution for (SPs). The algorithm for (SPs) finds a solution x

such that Zn′(x) ≤ Zn′(xs) + εZLB
2 , P T

n′(x) ≥ P T
n′(x

s), and Wn′(x) ≤ (1 + ε
2)Wn′(xs).

Since PE
n′ (x) =

∑n′
j=1 pj − P T

n′(x) ≤ ∑n′
j=1 pj − P T

n′(x
s) = PE

n′ (x
s), we have Zs(x) ≤

Zn′(x) + (Wn′(x) + ws)(PE
n′ (x

s) + ps − d)+. If s is the straddling job in an optimal
schedule, then we obtain

Zs(x)− Zs(xs) ≤ (Zn′(x)− Zn′(xs)) + (Wn′(x)−Wn′(xs))(PE
n′ (x

s) + ps − d)+

≤ ε

2
ZLB +

ε

2
W ′

n(xs)(PE
n′ (x

s) + ps − d)+

≤ εZs(xs).

Thus, the algorithm finds a (1 + ε)-approximate solution. We next estimate the
complexity of the algorithm. The total number of subintervals is bounded by ZUB

wπ(1)
·

4n′wπ(1)

εZLB
+

∑h
j=2

(
ZUB
wπ(j)

− ZUB
wπ(j−1)

)
· 4n′wπ(j)

εZLB
= O(n2

ε ), and the total number of distinct

values of Zj(x) is bounded by dZUB · 4n′
εZLB

e = O(n
ε ). Moreover, the number of distinct

values of Wj(x) is bounded by n log(1+ε/2) W = O(n
ε log W ). Thus, the number of
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subsets of any partition in step (2-1) is bounded by O(n4

ε3 log W ). The original
paper [2] stated that step 2 can be implemented in O(n4

ε3 log W ) time. However,
we need to determine to which interval Ij each P T

j (x) belongs. Applying a binary
search, we can do it in O(log n) time for each solution x ∈ X. Therefore, step 2 is
performed in O(n4

ε3 log n log W ) time, and the total time complexity of the algorithm
is O(n6

ε3 log n log W ).

3 Simple Algorithm

Our first modification of FPTAS for (SPs) adopts the technique of Kovalyov–Kubiak
[3], which does not require any prior knowledge of the lower and upper bounds on
the optimal value.

We replace step 2 with the following procedure.

step 2’ (2’-1) Compute

qz(x) = d log Zj(x)
log(1 + ε

2n)
e, qp(x) = d log P T

j (x)
log(1 + ε

2n)
e, qw(x) = d log Wj(x)

log(1 + ε
2n)

e,

for all x ∈ X. Partition X into (X1, X2, . . . , Xk) with respect to the
same triple , (qz(x), qp(x), qw(x)).

(2’-2) Find a vector xl attaining min{PE
j (x) | x ∈ X l} for each l = 1, . . . , k.

Update X by {xl | l = 1, . . . , k, PE
j (xl) ≤ d}.

(2-3) If j < n′, then update j by j + 1 and go to step 1.

First we show properties of the obtained partition of X.

Lemma 1 For a partition (X1, X2, . . . Xk) obtained at the jth iteration of the al-
gorithm and any pair x, x′ ∈ X l (l = 1, . . . , k), it holds that |Zj(x) − Zj(x′)| ≤
ε
2n ·min{Zj(x), Zj(x′)}, |P T

j (x)−P T
j (x′)| ≤ ε

2n ·min{P T
j (x), P T

j (x′)}, and |Wj(x)−
Wj(x′)| ≤ ε

2n ·min{Wj(x),Wj(x′)}.

Define ν1 = ε/(2n) and νj+1 = νj +(1+νj)ε/(2n). Let xs be an optimal solution
of (SPs)

Lemma 2 At the end of the jth iteration, there exists xj ∈ X satisfying |P T
j (xj)−

P T
j (xs)| ≤ νjP

T
j (xs), |Wj(xj)−Wj(xs)| ≤ νjWj(xs), |Zj(xj)− Zj(xs)| ≤ νjZj(xs),

and PE
j (xj) ≤ PE

j (xs).

Proof. At the end of the first iteration, X = {0, e1} because Z1(e1) − Z1(0) =
w1p1−0 > 0 = ε

2n ·Z1(0). Since either 0 or e1 has the same values of P T
1 (x), W1(x),

Z1(x), and PE
1 (x) with xs, the lemma holds at the first iteration.
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Suppose that the statement is true at the (j − 1)th iteration. That is, there
exists a vector xj−1 = (xj−1

1 , . . . , xj−1
j−1, 0, . . . , 0) satisfying the conditions. Let x̃j =

(xj−1
1 , . . . , xj−1

j−1, x
s
j , 0 . . . , 0) and xj be a minimizer identified in step (2’-2) in the

subset containing x̃j . Since we have

|P T
j (x̃j)− P T

j (xs)| = |(P T
j−1(x

j−1) + pjx
s
j)− (P T

j−1(x
s) + pjx

s
j)|

= |P T
j−1(x

j−1)− P T
j−1(x

s)|
≤ νj−1P

T
j−1(x

s) ≤ νj−1P
T
j (xs),

(2)

it holds that P T
j (x̃j) ≤ (1 + νj−1)P T

j (xs). Hence, we obtain

|P T
j (xj)− P T

j (xs)| ≤ |P T
j (xj)− P T

j (x̃j)|+ |P T
j (x̃j)− P T

j (xs)|
≤ ε

2n
P T

j (x̃j) + νj−1P
T
j (xs)

≤ ε

2n
(1 + νj−1)P T

j (xs) + νj−1P
T
j (xs) = νjP

T
j (xs).

Analogously, we can show that |Wj(xj)−Wj(xs)| ≤ νjWj(xs). Using (2), we have

|Zj(x̃j)− Zj(xs)| ≤ |Zj−1(xj−1)− Zj−1(xs)|+ wj |P T
j (x̃j)− P T

j (xs)|xs
j

≤ νj−1Zj−1(xs) + wjνj−1P
T
j (xs)xs

j = νj−1Zj(xs).

Hence, we obtain

|Zj(xj)− Zj(xs)| ≤ |Zj(xj)− Zj(x̃j)|+ |Zj(x̃j)− Zj(xs)|
≤ ε

2n
Zj(x̃j) + νj−1Zj(xs)

≤ ε

2n
(1 + νj−1)Zj(xs) + νj−1Zj(xs) = νjZj(xs).

Finally, it holds that

PE
j (xj) ≤ PE

j (x̃j) = PE
j−1(x

j−1) + pj(1− xs
j) ≤ PE

j−1(x
s) + pj(1− xs

j) = PE
j (xs).

Thus, we obtain PE
j (xj) ≤ PE

j (xs) ≤ d, which implies that vector xj is in X at the
end of the jth iteration.

Lemma 3 Let x be a solution obtained by the algorithm for (SPs). Then Zs(x) −
Zs(xs) ≤ εZs(xs) holds.

Proof. Let xn′ be a solution satisfying the conditions of Lemma 2 at the end of
the algorithm. Since PE

n′ (x
n′) ≤ PE

n′ (x
s), we have Zs(xn′) ≤ Zn′(xn′) + (Wn′(xn′) +

ws)(PE
n′ (x

s) + ps − d)+. Hence, we obtain

Zs(x)− Zs(xs) ≤ Zs(xn′)− Zs(xs)

≤ (Zn′(xn′)− Zn′(xs)) + (Wn′(xn′)−Wn′(xs))(PE
n′ (x

s) + ps − d)+

≤ νn′Zn′(xs) + νn′Wn′(xs)(PE
n′ (x

s) + ps − d)+

< νn′Zn′(xs) + νn′(Wn′(xs) + ws)(PE
n′ (x

s) + ps − d)+ = νn′Z
s(xs),
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which, together with νn′ ≤ ε (See [3, Theorem 1]), establishes the lemma.
The following shows that the whole algorithm finds a (1 + ε)-approximate solution.

Theorem 4 Let S∗ be an optimal schedule. Assume that x̂ minimizes Zs(x) among
the solutions obtained by the algorithm for each job as the straddling job. We then
have T (S(x̂))− T (S∗) ≤ εT (S∗).

Proof. Let s∗ be the straddling job in S∗. Then we have a 0-1 vector x∗ for (SPs∗)
such that T (S∗) = T (S(x∗)). Since

∑
i∈{1,...,n},i6=s∗ pi(1− x∗i ) + ps∗ ≤ d, T (S(x∗)) =

Zs∗(x∗) holds. From Lemma 3, the algorithm for (SPs∗) finds a solution x̃ with
Zs∗(x̃)−Zs∗(x∗) ≤ εZs∗(x∗). Thus, we obtain T (S(x̂))−T (S∗) ≤ T (S(x̃))−T (S∗) ≤
Zs∗(x̃)− Zs∗(x∗) ≤ εZs∗(x∗).

Finally, we establish the time complexity of our algorithm. The numbers of dis-
tinct values of qz(x), qp(x), and qw(x) are bounded by log(1+ε/(2n)) PW, log(1+ε/(2n)) P ,
and log(1+ε/(2n)) W , respetively. Thus, the number of subsets in any partition in step
(2’-1) is bounded by O(n3

ε3 log PW log P log W ). We can summarize the following re-
sult.

Theorem 5 The modified algorithm is also an FPTAS with running time O(n5

ε3 log PW log P log W ).

4 Strongly Polynomial Time Algorithm

The second modification of Kellerer–Strusevich’s FPTAS is designed for the running
time that is only polynomial in n and 1/ε. This modification replaces step (2-1) with
the following procedure.

(2”-1) Round up the values

Zj(x) = dZj(x) · 4n′

εZLB
e

for all x ∈ X. Partition X into (X1, X2, . . . , Xk) such that for any X l

(l = 1, . . . , k) and any pair x, x′ ∈ X l, Zj(x) = Zj(x′), and |Wj(x)−Wj(x′)| ≤
ε
4n min{Wj(x),Wj(x′)} hold, and P T (x) and P T (x′) belong to the same inter-
val Ir

j .

That is, instead of rounding up the values Wj(x), we divide X into groups by
using the values of Wj(x). As Lemmas 1 and 2, we can show that, at the end of this
modified algorithm for (SPs), X contains a solution x such that |Wn′(x)−Wn′(xs)| ≤
ε
2Wn′(xs), where xs is an optimal solution for (SPs). Together with the analysis
of Kellerer–Strusevich [2] described in Section 2, we can show that this modified
algorithm also finds a (1 + ε)-approximate solution.
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Let W1 < W2 < · · · < Wm be the sorted distinct values among values {Wj(x) |
x ∈ X} at the jth iteration. Split the interval [W1,Wm] into h′ intervals:

Ji = [Wρ(i),Wρ(i+1)] (i = 1, . . . , h′),

where ρ satisfies ρ(1) = 1, ρ(h′ + 1) = m, and 2Wρ(i) ≤ Wρ(i+1) and 2Wρ(i) >

Wρ(i+1)−1 hold for each i. Additionally, each interval Ji(i = 1, . . . , h) is split into
subintervals Jr

i with lengths less than ε
4n′Wρ(i). Then for any x, x′ in the same

subinterval Jr
i , we obtain |Wj(x) − Wj(x′)| ≤ ε

4n′Wρ(i) ≤ ε
4n′ min{Wj(x),Wj(x′)}.

Hence, we obtain a partition (X1, . . . , Xk) of X by using these subintervals.
Finally, we estimate the complexity of this modified algorithm. The total number

of subintervals in Ji can be bounded by (Wρ(i+1)−1 −Wρ(i))/( ε
4n′Wρ(i)) ≤ (2Wρ(i) −

Wρ(i))/( ε
4n′Wρ(i)) = 4n′

ε = O(n
ε ). We use as bound h′ the result of Radzik [5] as

follows.

Lemma 6 ([5], Corollary4.2) Let c = (c1, c2, . . . , cp) ∈ Rp, and y1, y2, . . . , yq be
vectors from {0, 1}p. If, for all i = 1, 2, . . . , q − 1, 0 < yi+1c ≤ (yi c)/2, then
q = O(p log p).

Thus, we obtain h′ = O(n′ log n′), and the number of total subintervals can be
bounded above from O(n2

ε log n). From Kellerer–Strusevich [2], the total number
of subintervals Ir

j is bounded by O(n2/ε), and the total number of distinct values
of Zj(x) is bounded by O(n/ε). Thus, the number of subsets of any partition is
bounded by O((n5/ε3) log n). In each iteration, because we need to sort the values
Wj(x) for all x ∈ X in order to obtain subintervals, step (2”-1) can be performed
in O(k log k) time where k = O((n5/ε3) log n). Therefore the modified algorithm
for (SPs) finds an approximate solution in O(n5

ε3 log n log n
ε )× n′ = O(n6

ε3 log n log n
ε )

time and we conclude the following.

Theorem 7 The second modified algorithm is also FPTAS with running time O(n7

ε3 log n log n
ε ).

5 Conclusion

We have described two FPTASs for the single machine weighted tardiness problem
with a common due date, thereby resolving the question of whether there is an
FPTAS with a running time that is only polynomial in n and 1/ε. The technique
used can also be used to develop FPTASs for other combinatorial optimization
problems: variations of one machine scheduling, partitioning problems, shortest
weight-constrainted path problems, and so on.
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