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Abstract. A correlated multivariate random shock model is considered, where
a system is subject to a sequence of K different shocks triggered by a common
renewal process. Let (Yj)∞j=1 be a sequence of independently and identically dis-
tributed (i.i.d.) nonnegative random variables associated with the renewal process.
For the magnitudes of the jth shock denoted by a random vector X(j), it is as-
sumed that [X(j), Yj ](j = 1, 2, · · · ) constitute a sequence of i.i.d. random vectors
with respect to j while X(j) and Yj may be correlated. The system fails as soon as
the historical maximum of the magnitudes of any component of the random vector
exceeds a prespecified level of that component. The Laplace transform of the prob-
ability density function of the system lifetime is derived, and its mean and variance
are obtained explicitly. The model is applied for analyzing the browsing behavior
of users of the Internet.
Keywords. Correlated multivariate random shock model, System lifetime, Brows-
ing behavior.

1 Introduction

A general shock model is studied by Shanthikumar and Sumita (1982,1983),
where a system is subject to a sequence of random shocks generated by a re-
newal sequence. More specifically, the model is characterized by a correlated
pairs of nonnegative random variables [Xj , Yj ](j = 1, 2, · · · ) where Xj is
the magnitude of the jth shock and Yj describes the time interval between
two consecutive shocks. The variates [Xj , Yj ](j = 1, 2, · · · ) are i.i.d. pairwise,
while Xj and Yj may be correlated. The underlying system fails as soon as the
magnitude of a shock exceeds a prespecified level. The transform results, an
exponential limit theorem and properties of the associated renewal processes
of the system failure times are obtained with an application to a stochastic
clearing system. The model is extended subsequently by Sumita and Shan-
thikumar (1984) to incorporate the system lifetime based on the cumulative
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shock.
While the general shock model has widened the application areas much be-
yond the traditional Poisson shock model, it is still limited in that the model
accepts only one type of shocks. In some applications, it is important to deal
with multiple types of shocks generated by a common renewal sequence. In
analyzing the browsing behavior of users of the Internet, for example, it is
common to find a user moving from one website to another in order to gather
information about a specific product of his/her interest. Assuming that dwell
times at different websites constitute a renewal sequence, the first type of
shocks may correspond to the values of information gathered from various
websites concerning the product produced by company C1, while the sec-
ond type of shocks may describe those concerning the product produced by
company C2. The internet search would be terminated when the user obtains
enough information to decide which company’s product should be purchased.
The purpose of this paper is to extend the general shock model of Shanthiku-
mar and Sumita (1982) so as to incorporate such multiple different random
shocks generated from a common renewal sequence.
The structure of the paper is as follows. The correlated multivariate shock
model is described in Section 2 and the system lifetime is analyzed in Section
3. An application to analysis of the browsing behavior of users of the Internet
is discussed in Section 4. Some numerical examples are also presented.

2 Model description

We consider a system where a sequence of K different shocks are triggered
by a common renewal process characterized by a sequence of i.i.d. nonnega-
tive random varibles (Yj)∞j=1. Let X(j) = [X1(j), · · · , XK(j)] be the random
vector describing the magnitudes of K different shocks occured at the j-th
renewal epoch. Throughout the paper, we assume that all random variables
are absolutely continuous with X(j) ∈ RK+ and Yj ∈ R+, where RK+ is the set
of K dimensional nonnegative vectors and R+ denotes the set of nonnegative
real numbers. For notational convenience, we define K = {1, 2, , · · · ,K} and
its power set denoted by B(K) = {A : A ⊂ K}. In addition, while X(j) and
Yj may be correlated, it is assumed that [X(j), Yj ](j = 1, 2, · · · ) constitute
a sequence of i.i.d. random vectors with respect to j. The joint distribution
function and the joint probability density function of [X(j), Yj ] are denoted
by

FX,Y (x, y) = P [X(j) < x, Yj ≤ y] (1)

and

fX,Y (x, y) =
∂K

∂x

∂

∂y
FX,Y (x, y) def=

∂K

∂x1 · · · ∂xK
∂

∂y
FX,Y (x, y) , (2)

respectively. We note that the inequality associated with X(j) in FX,Y (x, y)
is taken to be strict. Since the historical maximum processes are of our main
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concern, equalities are attached to tail probabilities for X(j) as a general rule
in this paper.
LetN(t) be the counting process associated with the renewal sequence (Yj)∞j=1

and define the historical maximum process M(t) by

M(t) = [M1(t), · · · ,MK(t)] ; Mk(t) = max
0≤j≤N(t)

{Xk(j)} , (3)

where X(0) = 0 is employed for notational convenience. The system fails as
soon as the historical maximum of any component exceeds a prespecified level
of that compontent. More specifically, we define, for z = [z1, · · · , zK ] > 0,

Tz = inf{t : Mk(t) > zk, for any k ∈ K} . (4)

In what follows, we analyze Tz, deriving the transform results and it’s mean
and variance.

3 Analysis of Tz

Let [X(j), Yj ] be a correlated pair of renewal sequences with the common
joint distribution function FX,Y (x, y) and the joint probability density func-
tion fX,Y (x, y) as in (1) and (2) respectively. Correspondingly, the marginal
distribution functions and the marginal density functions are given by

FX(x) = FX,Y (x,∞) ; FY (y) = FX,Y (∞, y) , (5)

fX(x) =
∫ ∞

0

fX,Y (x, y)dy , (6)

fY (y) =
∫ ∞

0

fX,Y (x, y)dx def=
∫ ∞

0

· · ·
∫ ∞

0

f(τ , y)dτ1 · · · τK . (7)

Throughout the paper, we assume that the first two moments of both X(j)
and Yj are finite. For notational convenience, the following functions are also
introduced:

GX(x, y) =
∫ x

0

fX,Y (τ , y)dτ ; GX(x, y) =
∫ ∞
x

fX,Y (τ , y)dτ , (8)

GY (x, y) =
∫ y

0

fX,Y (x,w)dw ; GY (x, y) =
∫ ∞
y

fX,Y (x,w)dw . (9)

We now define the distribution functions of M(t) and Tz denoted by

V (t, z) = P [M(t) < z] ; Wz(t) = P [Tz ≤ t] . (10)

Lapalace transforms with respect to t are denoted by a circumflex, i.e.,

V̂ (s, z) =
∫ ∞

0

e−stV (t, z)dt ; ŵz(s) =
∫ ∞

0

e−stdWz(t) . (11)
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One then easily sees that there exists a dual relationship between M(t) and
Tz specified by

V (t, z) = P [M(t) < z] = P [Tz > t] = W z(t) , (12)

where W z(t) = 1 −Wz(t) is the survival function of Tz. In this section, we
derive ŵz(s) explicitly based on (12).
In this Model, the system starts anew at time t = 0. The magnitudes X(j)
of the j-th shocks are correlated only to the time interval Yj since the (j −
1)st shocks and do not affect the future events. One then has the following
theorem.

Theorem 1. Let ϕ̂Y (s) be the Laplace transform of fY (t) in (7), i.e. ϕ̂Y (s)
def
=∫∞

0
e−stfY (t)dt. One then has

V̂ (z, s) =
1− ϕ̂Y (s)

s{1− ĜX(z, s)}
, Re(s) ≥ 0 .

Proof. Since V (z, t) is the probability that the maximum magnitude of
Xk(j) has not exceeded the level zk for 0 ≤ j ≤ N(t) for all k ∈ K, by
conditioning on the first renewal time Y1 and using the regenerative property
of the paired process [X(j), Yj ] at Y1, one sees that

V (z, t) = FY (t) +
∫ t

0

GX(z, y)V (z, t− y)dy . (13)

By taking the Laplace transform of both sides of (13) with respect to t, it
can be seen that

V̂ (z, s) =
1− ϕ̂Y (s)

s
+ ĜX(z, s)V̂ (z, s) .

This equation can be solved for V̂ (z, s) as V̂ (z, s) = 1−ϕ̂Y (s)

s{1−ĜX(z,s)} , completing
the proof.

The system failure time Tz has the dual relation to M(t) given in (12). The
Laplace transform ŵz(s) = E[e−sTz ] is then easily found from Theorem 1.

Theorem 2.

ŵz(s) =
ϕ̂Y (s)− ĜX(z, s)

1− ĜX(z, s)
=

ĜX(z, s)

1− ĜX(z, s)
, Re(s) ≥ 0 .

Proof. From (12), one finds that V̂ (z, s) = 1−ŵz(s)

s , so that ŵz(s) = 1 −
sV̂ (z, s). The theorem now follows from Theorem 1.

By differentiating ŵz(s) at s = 0, the mean and the variance of Tz can be
obtained.
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Corollary 1.

a) E[Tz] =
E[Y ]

1− FX(z)

b) V ar[Tz] =
E[Y 2]

1− FX(z)
+

E[Y ]
(1− FX(z))2

{2FX(z)E[Y |X < z]− E[Y ]}

4 Application to analysis of the browsing behavior of
users of the Internet

We suppose that a consumer visits various websites in order to gather
information about a product. Let X1:j be the value of information about
the product produced by company C1 that the consumer gains from the
jth search with length of Yj , and X2:j is defined similarly for the product
produced by company C2. We assume that both X1:j and X2:j consist of two
parts: a part independent of Yj and another part proportional to Yj . The
former parts for X1:j and X2:j are denoted by X̂1:j and X̂2:j respectively.
More formally, we define

X1 = X̂1 + α1Y ; X2 = X̂2 + α2Y . (14)

We assume that X̂1:j , X̂2:j and Yj constitute three independent renewal se-
quences with respect to j having the following exponential density functions:

fX̂1
(x̂1) = µ1e

−µ1x̂1 ; fX̂2
(x̂2) = µ1e

−µ2x̂2 ; fY (y) = λe−λy. (15)

While X̂1:j and X̂2:j are assumed to be independent, X1:j and X2:j are not
independent because of sharing the common value of Yj . Let FX,Y (x, y) =
P [X(j) < x, Yj ≤ y]. By conditioning on Y , one finds that

FX,Y (x, y) =
∫ y

0

FX̂1
(x1 − α1τ)FX̂2

(x2 − α2τ)fY (τ)dτ · I, (16)

where I = I{0 ≤ y ≤ min{ x1
α1
, x2
α2
}}, and FX̂1

(x) and FX̂2
(x) are the distri-

bution functions of X̂1 and X̂2 respectively. From (2), it then follows that

fX,Y (x, y) = fX̂1
(x1 − α1y)fX̂2

(x2 − α2y)fY (y) · I. (17)

Suppose that the consumer will stop the search process whenever the desired
information for either company, specified by z1 or z2, is obtained. Then from
Theorem 2 and Equations (14)∼ (17), we have

ŵz(s) =
ĜX(z, s)

1− ĜX(z, s)
=

{
1 +

s
s+λ

A+B − C +D

}−1

, (18)



6 Sumita and Zuo

where, by using z∗ def= min{ z1α1
, z2α2
}, A,B,C and D are given by

A =
λe−µ2z2(1− e−(s+λ−µ1α1)z

∗
)

s+ λ− µ1α1
; B =

λe−µ1z1(1− e−(s+λ−µ2α2)z
∗
)

s+ λ− µ2α2

C =
λe−(µ1z1+µ2z2)(1− e−(s+λ−µ1α1−µ2α2)z

∗
)

s+ λ− µ1α1 − µ2α2
; D =

λe−(s+λ)z∗

s+ λ
.

The mean E[Tz] can be computed from Corollary 1, as depicted in Figure 1.
We note that the monotonicity of E[Tz] in z can be observed.

Fig. 1. Mean Search Time:α1 = 1, α2 = 1, µ1 = 0.6, µ2 = 0.25, λ = 1
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