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Abstract

To control the production of parts in a productmcess, managers can choose a
proper production control policy. This paper prasda performance analysis of
production control systems in a business processchwis modeled as a
discrete-event system and depicted by AID (Activityteraction Diagram).
KANBAN and CONWIP controls are focused on and apedly The periodic
behavior of a token transaction system and the eqmncof critical circuit and
tokens are used. When a business process behaiadigadly, Little’s law can be
used to calculate the cycle time, inventory, andubhput of the system. By using
the theory of token transaction systems, and enmgothe law, we show how
minimum WIP (Work-In-Process) of a system can bleutated that allows the
system to have maximum possible throughput. Aspafication of the theory, we
provide a performance comparison between KANBAN @NWIP. The results
show that there is no general superiority betweefNBAN and CONWIP.
Appropriate design of the whole system decides lwloice is superior in certain
situations.

Keywords: Production control systems; KANBAN; CONWIP; tokemrisaction
systems; Little’s law; critical circuit

1. Introduction

In order to synchronize production and sales defjveroduction processes need to be
controlled. KANBAN and CONWIP control mechanismse asuccessful examples of
card-based production control systems. (In theotalg, we simply write KANBAN and
CONWIP to mean respective KANBAN and CONWIP cor&golproduction processes, as
long as it is clear from the context.) Since thienences for KANBAN and CONWIP are
many, we just put Monden (1998) for KANBAN, and Speanet al. (1990) and Hopp and
Spearman (2001) for CONWIP. In the KANBAN, infornoat is sent from a station only to
its immediate proceeding station, while in CONWIEONstant Work-In-Process),
information about a product demand flows directlyni the final buffer to the first station.
Since they have different mechanisms, a numbeowiparative studies have been conducted.
According to the survey by Framinahal. (2003), in comparison of the two, many authors

insist that CONWIP outperforms KANBAN when procegstimes on component operations



in production processes are variable. Gstettner Kotin (1996) showed, however,
KANBAN achieves a given throughput with less wonkgrocess (WIP, for short) at finished
part buffer.

All of the papers, which Framina al. (2003) cited for comparison of the two policies in
optimal performance, had focused on serial prodadtne or enhanced serial production line
for their purpose of research. Among them, Bonstikal. (1997), Bonvik and Gershwin
(1996), Paternina-Arboleda and Das (2001), and Y&@P0) had used simulation for
analysis. Spearman and Zazanis (1992) and Muckstadt Tayur (1995) had shown
analytical result on card-based control for seprduction processes. Processing times for
operations in a production process are varying waspective exponential distributions.
When the same number of cards is used in both CONavid KANBAN, Spearman and
Zazanis (1992) have shown that the throughput oNRAN does not exceed that of
CONWIP. They pointed out that it holds true becaaseuits in CONWIP are virtually
divided into smaller circuits in KANBAN, and themé& cards in KANBAN tend to be
"blocked". Muckstadt and Tayur (1995) had used megdized serial production line in
analyzing card-based production control systemeeSef machines form a cell, and series
of cell are connected as a production line. Inla GONWIP control is used. If each cell has
only one machine, the whole system is virtually ANBAN system. In a generalized
production line, four sources of variability arensaered. They are processing time
variability, machine breakdowns, rework and yiaddd. It has been shown that if we deploy
more cards then the average waiting time of pradnctrders could decrease or remain
equal.

As Framinanet al. (2003) pointed out, when two control policies ammpared, both
should be optimally tuned. Otherwise, we cannot g& amount of average WIP, for
example, is less or more. Usual manufactured ptsdbeave BOMs and corresponding
routings. Takahashet al. (2005) compared CONWIP and KANBAN for tree-shaped
production process.

This paper proposes a novel design discipline fand-based control of production
process, by developing the theory of token tramsacystems. The theory shows how the
three indices represented in Little's law (LittlE961) are decided by the structure of a
production process with control-cards and deploynoérWIP. That is, the relation of WIP,
cycle time and throughput on specific sub-netwdrgroduction process is clarified. In other
word, we show how the Little's law should be usedhe design of card-based production
control systems. As an application of the theomy,resolve complicated result of comparison
between CONWIP and KANBAN. In doing so, this theahyes not restrict the target of



analysis to serial production processes, but aagesth processes can be virtually analyzed.

The rest of the paper is organized as follows. &ctisn 2, the concept of token
transaction system and related definitions ar@dhtced. Section 3 provides the properties of
token transaction systems that are used in analgsection 4, CONWIP and KANBAN are
analyzed so that we can clearly understand whygdhgparisons of CONWIP and KANBAN
became complicated. Section 5 is the conclusion.

2. Modeling production process

In modeling production processes with control medas, this paper employs the
concept of business transaction system (Sato aaehBier, 1997) that is based on the DEVS
formalism for discrete-event systems (Zeigler, 1976 general, dynamic behavior of a
discrete-event system requires causality. AccordmdMesarovic and Takahara (1975), a
dynamic system has a state transition functiomdf anly if the system is causal. Sato (2001)
showed that a DEVS model always brings correspagndiate transition function and it is
unique up to isomorphism. In this sense, the DEdM$®&lism is universal. Thus, adopting
the DEVS formalism is fairly common decision in netidg discrete-event systems. In a
business transaction system, the components angkeciimg structure are represented by
activity interaction diagrams (AID, for short).

Definition 1. Activity Interaction Diagram (AID) (Sato and Phexder, 1997)
An activity interaction diagram is a diagram thaishthree kinds of components. They are
activities, queues, and connecting arrows. Acasitshould be connected with queues, and

vice versa. That is, in the graph theoretic seas&ID is a directed bipartite graph.

In this paper we consider specific type of busirtesssaction systems, where queues are
simplified as usual FIFO (first-in, first-out) quesito store objects calledkens and every
gueue can have at most one input and output akk@icall such system taken transaction
system. In a token transaction system, tokens represarts,pproducts, actors, or data.
Queues are also referred as connecting queuesAlbhef a token transaction system for a
simple assembly process is depicted in Figure Eravhactivities and queues are represented
by squares and ovals, respectively. It shows aals@mroduction process governed by
CONWIP. The purchased material), is processed by operationg through p, to be a

product which is stored in the plade. Each of those operationg,, p,andp, produces its
output part which will be stored iy, b,, and b,, respectively. The workers for operations
are represented by tokens g (i = 1, 2, 3, 4). The queu€ represents the storage place of



cards. A card functions as a production ordempfoiLet A be the set of internal activities,
and Q the set of queues. The number of tokens in a queus denoted by|C|. The
output queues of an activity are specified as drievo types. An output queue of a type gets

one token from the activity when it starts, whihe tother type queue gets a token when the
activity finishes. The former queues are calledsooke Qstype, and the others ar@. type.

An activity can have both types output.

T
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Figure 1. A serial line with CONWIP

Now we define the dynamics of a token transactiy@tesn. The time evolution of a token
transaction system is defined by the state tramsitinction, which is originally defined by
the set theoretic notation by Sato and Praecho®@97) For a token transaction system we
can use state transition table, because the cooftepieue variables are simple FIFO tokens.

Rule of transfer of tokensin a token transition system:

An activity starts when its starting condition i€imThat condition is defined by relation
between the input queues. Once started, an actniltyfinish after prescribed processing
time (or holding time) for a token. When an actistarts, one token is removed from each
input of the activity, one token is held in theigty during the processing time, and one
token is added in the outputs of tlig, type. When an activity finishes, one token is adde
to each of the output queues Q. type of the activity.

With the above rule, the state transition of a tokansaction system is defined as shown
in Figure 2, and then brings us the state tramsitable, Table 1. In Figure 2, an activity is
said to be "imminent" if its holding time had eladsfrom its starting time. There might be
several activities which are imminent at a time.aWhmminent activities finish, the output
queues of Q. type of each imminent activity get respective ttkeWhen an activity can
start, it must start. If no activity can start, ihibe placement of tokens in the whole process
remains the same until the next event comes. The itmstant of the next event is defined as



the minimum of the due times of activities in opiena So, the next event will become the
next "current time" in the state transition talaed then it continues.

y
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Figure 2. Flow chart of dynamic behavior of a tokemsaction system

Table 1. State transition table of a CONWIP (Ihiti@ndition:C has 4 tokens. Numbers of
actors for p,, p,, and p, are 1, respectively. Number of actors fp is two. Each
activity is idle and inventory in each df, b,, byand b is0.)

ime|C| p [W|B| P |W]|[b P W, | b p,|W|Db
22 (ol1@| 0 |O|-—-]| 1 |1]|27)100)]| 0 |o0]|15)] 0|1
24 | 0 1| ol 138 0 | 1| 1(5).28)| 0| o] 138) 0 | 1
27 |0 1| 0 11 2| 12465 o 9 -+ 1 p
29 (o1 0| Of —] 2| 2] 13,1(22) 0 | 0| 1(5) 0O | 2
31 |0 1| ol 18 0 | 1| 1(®).2200 0 | 0|13 0 | 2
32 |0 1 ofl 12 0 | 019,212 0 | 1|12 0 | 2
34 [ol1@| 0 |O|-—]| 1 |1]|27)100)] 0 |0 ]|15)] 0|3

The time evolution of CONWIP system in Figure ldstermined by specifying the
starting condition of activities and movement dkdns. By assuming that we always have
enough material, we do not have to care aboutSo, p, starts its processing if more than
one card exists inC and if the worker is available (that is, if the nk@r is not busy).
Whenp, finishes, it outputs a token tb,. One token inb, represents combination of a part
and a card. Each of the operatiggsp,, andp, will start its operation if more than one pair
of part and an attached card exist in the respeatiput buffer, and if the respective actor is
available. Whermp, starts, it also outputs a card@ As a whole, Table 1 will come out. In



Table 1, "----" represents that there is no tokemd processed. That is, the corresponding
worker is idle. "1(2)", for example, shows that doken is being processed and it will finish
(be imminent) after 2 minutes. As like thp, column, two tokens can be processed each of
which will be imminent independently.

We need to further investigate some propertiesokén transaction systems. We first
define "never-stopping" transaction systems.

Definition 2. Live system (Murata, 1992)

A token transaction system is said tolbe with respect to an initial state, if the state
transition table will last forever from the state If a token transaction system is live with
respect to a state, then it is said to be live.

Even if a transaction system is live, the systemhinhave activities that will never start.
In that case delete those activities with relat@dnecting (input/output) arrows. Apparently,
the resultant transaction system has the same dynbemavior. Notice that the static
structure of a token transaction system is modeledn AID. Apath is a series of activities
and queues that follows the direction of connecaingws among them. If the start and end
of a path are the same activity or queue, therpétke is called aircuit. If a circuit contains
different activities and queues (except the stad and), then it is called agementary
circuit. When a circuit contain®gtype queues, then the activities whose outputstrege
queues can be eliminated to form the (shorterjitirEor example, p,b, p,b, p;b,p,Cp, is a
circuit and p,b, p,b, p;b,Cp, is also a circuit, because is a Qstype output queue qf,.
For a circuiC, the set of activities inC is denoted by(C). Thecycle mean of a circuit is
defined as the sum of the holding time of the @otis of the circuit, divided by the number
of tokens in the circuit. Theaximum cycle mean, A, of an AID is the maximum value of all
cycle means (Baccelt al., 1992) and is given by

A= maxH :
< 14|

where, { ranges over the set of elementary circuits ofAH®, and |{ |, denotes the sum
of the holding times of the activities in the citcand |{ | denotes the number of tokens in
the circuit. It is clear that any non-elementamguait has the cycle mean which is less than or
equal to the maximum cycle mean. All the circuitatthave maximum value of cycle mean
are callectritical circuits.

Definition 3. Strong connectivity of AID(Sato and Kawai2007)
Consider an AID of a token transaction system. letand Q =Q; [l Q- be the sets of



activities and queues, respectively. Let]1 A and q0Q be arbitrary. If there exist a path
from a to g and one fromg to a, then the AID and the token transaction system are

said to be strongly connected.

3. Design discipline of token transaction systems

The Little's law governs dynamics of business pece/hen the process is in steady state.
Periodic behavior is a kind of steady state. Thedays rigorous relation among cycle time,
WIP, and throughpuit.

3.1. WIP, TH and CT in cyclic behavior

Average WIP is defined as average value of invesgoif we assume the inventory of a
trading good moves out in constant pace and thel gogeplenished once in every time
interval N, then its inventory trajectory is depicted by Fg3. Let us denote the inventory
level at timet as w(t). Then, the average WIP is calculated as follows.

VV|P—|.III—1 ! t)dt
Tlﬂoo | .[OV\()
V

1N, V \VAR &
=—| (——=t+V)dt=—[-—+t]) =—
NJO( N ) N[ 2N lo 2

Thus, it suffices for calculation of average valoeconsider a period, instead of infinite
interval. Similarly, average throughput (TH) andcleytime (CT) can be calculated for a
period. WIP is usually represented as sum of sadaty cycle stocks, where the former is
considered as buffer for randomness. Since thigmpfgeruses on deterministic model, WIP
contains only cycle stock.
In the following, if it is clear from the contexiye simply writeWIP to meanaverage

WIP. And, we use TU to mean "time units" and PC to mgaeces". TU can be interpreted
as week, hour, minute, and so on.

N 2N 3N 4N time

Figure 3. Cycle inventory



3.2. Little's law in periodic behavior
In this section, dynamic properties are investigate

Proposition 1 (Sato and Kawai, 2007). For a circuit of a tokeamsaction system, the
number of tokens in the circuit remains the samangtstate transition.

The proof of above proposition is based on thefonan event graph, which is given by
Murata (1992).

In order to be live for a strongly connected tok@msaction system, it suffices that every
circuit has tokens, accordingly. Especially, it@sgly connected system has tokens in every
circuit at initial state, then it is live. Furtheone, since we define WIP by the average number
of tokens, WIP remains the same in a strongly cot@gesystem.

Proposition 2 (Sato and Kawai, 2007). In the state transitanlé of a token transaction
system that is both strongly connected and live,rtmber of possible values of remained
time for an activity is finite.

Proposition 3 (Sato and Kawai, 2007). A token transaction systdat is strongly
connected and live has periodic behavior.

Since the holding times of activities are not imtegut real, the above propositions are
not trivial.

Proposition 4 (Sato and Kawai, 2007). Consider a token transadystem that is strongly
connected and live, and assume that it is in thegie behavior. Then, every activity has the
same number of commencement in the period.

The number of commencement in a period is callecdtivation frequency of the system.
Notice that the numbers of commencement and fiofsdn activity in a period are the same
so that the definition is well defined. The thropghof a strongly connected and live token
transaction system is defined as average valudhefnumber of output tokens from an
activity of the system. Since the activation freggeis the same for all of the activities in the
system, this definition of throughput is well defth The cycle time of a circuit is defined as
the elapsed time for a token to go round on thauiiin the periodic behavior.

Theorem 1. Consider a strongly connected and live token tretiga system. LetTH be
the throughput of the system in the periodic betravC a circuit of the systemw, the
average WIP of tokens o, and CT. the cycle time ofC. Then the Little's law holds on



C. Thatis, CT, =" holds true.
TH

The above proposition shows that the Little's lasddb only for circuits. In other words,
the average number of total inventories of a prédaocsystem does not work as the WIP
term in the law.

Since the maximum cycle mean is determined by thectsire of the system and the
placement of WIP, the following two propositionsoshhow to design the throughput of a
token transaction system by specifying the strectirand placement of WIP in the system.

Proposition 5. Consider a token transaction system that is styonghnected and live.
Assume that it is in the periodic behavior. Themy activity of a critical circuit of the system
never be blocked its commencement. That is, if@ivity on a critical circuit is not busy,
and if the activity's input queue on the circuitggany token, then it starts its processing
immediately.

Proposition 6. Consider a strongly connected and live token tretrmasystem. LetA be

its maximum cycle mean, an@H the throughput. ThenTH = %

In order to increase the maximum throughput of digtem, the maximum cycle mean
should be decreased. It means that the structub&/|Br placement should be changed. If
either factor changes, then another circuit canoimec critical. This makes situation
complicated so that every circuit should be comsideand that focusing on the current
critical circuit is not enough to improve the perfmnce of a production system.

The throughput of a token transaction system caddse&gned as follows. Figure 4(a) is
the strongly connected and live token transactystesn under concern. In order to design
the best throughput of the system, we can deletanput and output so that the resultant
system is strongly connected. As like Figure 4¢hg input and output systems can be
attached, according to the importance of and/@rést in activities and the corresponding
gueuing variables. For example, the input system pgsocurement division or supplier, and
the output is a delivery division or outside whales. Theory of business transaction system
(Sato and Praehofer, 1997) assures that any cotigposf token transaction systems, where
the connection of systems accords with AID struetgralso a token transaction system as a
whole.



<

input token- [token transaction } output

token transaction

system transaction- system token-

system transactiq

D

(a) A process (b) A process with input and outpotcpsses

Figure 4. Designing throughput of a process

The system, of which input and output have the sdammeighput, provides us with a basic
case of equilibrium behavior. The production colggstems in Figure 4(a) and 4(b) have the
following dynamic feature, by using Propositionar@l 7.

(1) Let the throughput of the system in Figure 4@)TH ,, and that of the input and output
in Figure 4(b) TH .

(2) If the input and output run slower than theteys that is, if TH <TH , holds, then the
whole system in Figure 4(b) shows equilibrium bebawvith the throughput,TH . If
TH>TH,, then the whole system will never reach into efuium behavior, by

accumulating increasing inventory at the input gueu

(3) Therefore, whenTH =TH  holds, then the whole process attains the maximum
throughput with respect to the input and output.other words,TH , decides the best
possible throughput of the whole system. Thathis,dystem shows the same performance as
we assume that the input provides infinite capaartg the output delivers finished part as
soon as completion.

(4) Even if the whole system attaingH ,, the WIP is not necessarily minimum. Proposition
7 tells us how the minimum WIP in the whole systan be deployed.

(5) If the current best-possible throughput is ffisient, then the critical activities should be
improved. In order to be non-critical for an adfyimaking the processing time shorter or
increasing the numbers of actors and cards isteffedBy powering up the critical activity,
another activity then becomes critical.

The sum of WIPs in a KANBAN or CONWIP system is dsed on sometimes. It has
practical significance. The sum of WIPs is callé@ system WIP in this paper. As the
following Propositions 7 and 8 show, the system WgfPa production process does not
uniquely determine the critical circuits or theahghput.
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Proposition 7. Consider a token transaction system that is styonghnected and live.
Then, there exists the least system WIP that atthie throughput of the system.

4. Analysisof card-based production control systems

By applying the theory developed so far, we comg@NWIP and KANBAN for two
different production processes. One type is sérialand the other is tree shape (or, a bill of
materials plus a routing). In comparison of difféare€ontrol schemes, as Framinenal.
(2003) pointed out, optimized parameters shouldided. The meaning of optimization of
parameters in this paper refers to attainmentehtaximum throughput of the whole system
with a control schema. As the theory of this paglewed so far, maximum throughput of a
token transaction system is determined by the tstread/VIP placement. As the optimized
WIP, we need to consider minimum system WIP insingse of Proposition 7.

One of the reasons of complicated aspect of thepaoson (Framinaset al., 2003) is as
follows. Assume that a controlled production pracissoptimal. That is, it has the throughput
with minimum WIP. Assume that one token is addeterT the system WIP certainly
increases. But if the added token changes thealrtircuit and throughput, this new system
WIP could be still minimum with respect to the thghput. Also, deletion of a token could
bring the change of critical circuit. In this wdiyyding the minimum amount of system WIP
does not allow a "linear" search. So, we needégary.

Notice that tokens in a token transaction systemespond to cards, parts, or actors.
Since tokens decide whether an activity can steotgssing, any of the three should be
considered in analysis and design of dynamic behnhaldeployment of tokens in a system
decides the throughput and WIP, and hence the tiyate In the following, a circuit consists
of an activity and its actors, such gsw, p, is called aractivity circuit.

4.1. Serial production system

Using analytical queuing network models, Gstettaed Kuhn (1996) provided a
guantitative comparison between CONWIP and KANBANthwrespect to WIP and
throughput in a serial production line includingx siorkstations with exponentially
distributed processing times. According to theisutess, KANBAN can result in a lower
average WIP level than CONWIP for a given productiate if the card distribution in the
KANBAN is chosen appropriately. They defined theelmge number of finished parts in the
output buffer of a station as the average WIP.

We present comparative analysis of the performaneasures between CONWIP and
KANBAN in a serial production process shown in Figgil and 5, respectively.

11



Figure 5. A serial line with Kanban system

The CONWIP process in Figure 1 is composed of fmacessesp, throughp,, and
respective actorsy, through w,, and each process has outgutor b. The process,
has two actors, while each of the others has one actor. The corresponding KANBAN
process for the same serial production line isifipdcas Figure 5. The first procegs starts
when more than one token is available in eachofnputs, w, and k . We assume that
enough materiaim is always available so that we do not take caréMienp, finishes, a
token will be added into each df and w,. The procesp, starts when more than one
token is available in each of its inputs,, k, and b,. Atoken is produced irk, and p,
whenp, starts. The outputs ofp, are b, and w,. The processp, and p, works
similarly. In the following, we show an example afserial production line controlled by
KANBAN, with respective state transition table (TaR).

CaseSerial-Kk ANBAN. Table 2 gives the state transition table for th@kproduction line
shown in Figure 5. Initial inventory for every past set to 0, and initial cards are set as
k =k,=1 and k,=2. Each of p, p,and p, has one actor, whilg,has 2. The system
shows a periodic behavior every 12 [TU]. Each atgtiwtarts twice in a period. The
throughput is 2/12, and the system WIP is equél1@. It can be verified that the number of
system WIP is minimum to attain the throughput 2M&ter, in Tree-CONWIP-2 case, we

will show how to calculate system WIP from stasnsition tables.

CaseSerial-CONWIP. The state transition table for the same prooeser CONWIP has
been given in Table 1. Four cards are initiallyigresd in the system. Initial inventories as
well as the respective number of actors are theesssthe case above. The period is 12 [TU],
the throughput is 2/12, and the system WIP is 6atiich is the minimum value to attain the
throughput.

12



Table 2. State transition of Serial-KANBAN fopariod

tme| kK | B [ W[ B | K|P |W|b|k Py Wb | p, | Wb
22 1 0[12| 0 |0]|0[|138]| 0| 0| 0]|17),212| 0| 0|15 0 |1
24 | 0 1| 1| 0| 21(1) o | 0| O 1(5),1(10)) O] o 13 0 1
25 | 0 1 1] 0 1| 1] 0 1(4) .19 Q D 1@) Db |1
27 | 0 1] 1| 0 1| 1/ 0 12, 1(7 ( ) - 1 2
29| 012 0| 0] 0|13 0| 0| O 1(12,1(55) O o 18) 0o 2
31| 0 1| 1| 0| 1(1) o | 0| O 1(10),1®3) ©O| o] 133 o0 2
32| 0 1 1] 0 1| 1] 0 1(9), 1(2 Q D 1@) D |2
34 | 012 0|0]| 0 |138]| 0| 0| 0]|17),212| 0| 0 |15)| 0 |3

In both cases, Serial-CONWIP and Serial-KANBAN, tpimum system WIPs to attain
the same level of throughput are the same. Thewallg proposition claims that this
statement holds true when the same total numbeardk is employed in the both systems.

Proposition 8. Consider the serial production process shown irurdeg 1 and 5 with
CONWIP and KANBAN, respectively. Assume that bogistems have the same actors for
respective processes, the same activation frequandythe same throughput. ItandK be
the total number of cards in CONWIP and KANBAN, pestively. Then, we have the
following.

(i) N<K ifandonlyif W, <W,_,

(i) N=K ifandonlyif W, =W,,
where W, and W, are the average system WIP for CONWIP and KANBAd¢$pectively.

This proposition resolves the complicated situationa serial production line. In this
proposition, the definition of WIP is different frothat of Gstettner and Kuhn (1996). The
system WIP is a factor that determines throughphberefore, if we focus on the average
value of the final product without considering thiher inventories in the system, then that
amount alone does not bring us useful informatdamd it is not expected that any kind of
optimality can be attained with respect to theeghagnamic indices used in the Little's law.

4.2. Tree-shaped production process

Takahashiet al. (2005) compared KANBAN, CONWIP and synchronized NGRIP

systems for a tree-shaped production process et to two performance measures, WIP
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and backlog, in supply chains consist of assemtdges with different lead times. They
considered a supply chain system with three stagleieh assembles and supplies one type
product. The product is assembled from two distrecsubassemblies, and each subassembly
is made up of two distinctive parts. The productassembled from one unit of each
subassembly, and each of the subassemblies isd&datiby using one unit of each part. Their
simulation results show the superiority of both G®IR and synchronized CONWIP over
KANBAN, when all inventory levels among the threages are equally important. The AIDs
of this model under CONWIP and KANBAN are depicted Figure 6 (a) and (b),
respectively.

The CONWIP system in Figure 6(a) is specified d®es. There are eight activities in
the production process which are deployed as angpdor a final product, including a
delivery activity p,, for a warehouse. Lep, be any one ofp,,, p,, P, andp,. As like

the serial line cases, we assume enough raw nlaerthat we do not have to take care of it.
In order to start processing fop, , more than one token should exist in eachwgf (actors)

and the respective card buffer. When it starts,token is decreased from each of them, and
one token is in processing ip, . When p; finishes, the token inp, is removed, and one
token is added to each df, and w;. The p, and p, processes behave similarly with the
corresponding inputs and outputs. The delivery ggecp, starts when more than one token
exist in each ofb and w,. It outputs one token into each &, C,, C,, C, at the
commencement. When it finishes, one token is adued w, . The processing times of,

and p, are denoted byh;, and h,, respectively.

The KANBAN in Figure 6(b) is now specified. Letp, be any one of
P, P,y P andp,,. In order to start processing fop; , more than one token should exist in
each of w; and k;. When it starts, one token is decreased from eftfiem, and one token
is being processed irp;. We assume enough raw material as well. Aftehdigling time,
when it finishes the processing, the tokenpp is removed, and one token is added to each
of b, and w;. The processp, starts when more than one token exist in eacheirtput
b, b,, w and k. When p, starts, those tokens are respectively removed taken is
added in each ok, and k,, and one token is being processedpn When p, finishes,
one token is added in each bf and w,. The activities p, and p work similarly. The
delivery processp, starts when more than one token exist in eacbh oand w . It outputs

one token intok at the commencement, and one tokenip at the end of its process.
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(b) Kanban system
Figure 6. Tree-shaped production process with CON®id KANBAN
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We show four examples of state transition of a-ste@ped production process. Three of
them are CONWIP (Figure 6(a)), while the other IBNBAN (Figure 6(b)). Since the
number of tokens on a circuit remains the samewstate transition, we can control the WIP
on a circuit by initial placement of tokens. Initiakens on circuits decide the throughput and
optimality of the system WIP. All of the followinfpur cases have minimum WIP with
respect to throughput.

Caselree-CONWIP-1. Initial inventory for every part is set to zehoitial deployments of
cards are|C,|=|C,|=|C,|=2, and |C,|= 3. Respective numbers of actors are one, except
that number of actors fq,that is 2. The whole system shows cyclic behavigh wthe
period 25 [TU] as Table 3 shows. In the table, agteeues are omitted, because if an activity
P, for example, is in processing, them, is zero. Thatis,w; can be think of the opposite

of processing, and this makes the table concise.

Case Tree-CONWIP-2. Now, we increase one card i@,. That is, initial cards are
IC|=|C;|=2, and |C,| =|C,| =3. The whole system shows cyclic behavior with tleeiqu

12 [TU] as Table 4 shows. Both the former and ttdse show a complicated situation in
finding the optimal deployment of cards for CONWIP the same production process. When
we increase WIP, for example, the former criticmtuit becomes non-critical and other

circuit is critical with different throughput, anthis WIP is still minimum to attain the
throughput.

Case TreeeCONWIP-3. The respective processing times pf, and p,, have been

changed here. This case will be used later for @ispn between CONWIP and KANBAN.
Initial inventory for every part is set to zeroitial cards are|C,|=2, |C,|=|C,[=3, and
|C4| = 4. Respective number of actors remains the samkeeaf®tmer two cases. The whole

system shows cyclic behavior with the period 12]@s well, as Table 5 shows.

Table 3. State transition of Tree-CONWIP-1 for aiquk

time P | B |G| P B R B|G| Py|by|C, P2z b, | P, | B | p|b| P

82 18| o | o1 o |1 ol ol1e| o] o] 15,12 o |15 ]| 0o | — |0 |112
84 16)|] o| ol 19 ol 15) 4 d 14 d 113), - 1 | 1@ | o | -] o| 1010
87 13| of o 18 o/ 1@ d 9 1@ d 0 1201 | | 1| ] 0o 17
88 12| o ol 15 ol 11) 4 o - d a 10, 0102 1| —| ol 1)
89 | o] ol 1@ o -4 o o - o d 18, aqiay| o | 15| o 15
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9 | 0 1] 0| 13| o© of o0 o o 1(7), - q 1(10) 1(4) 1(4)
93 | 0 0| o 0| 19) of o o o 14, 0 | 1(7) 1(1) 1(1)
94 | 0| 18| O| 0| 111) o] 18 d Qg 18 @ D) 1(3),1(1p) 0 | 1(6) 1(12
97 | 0| 15| o| o 1® o] 15 9 g 13 Q —-1(12) 1 | 1(3) 1(9)
100/ 0| 12| O o 15| o] 1@ dq 0 q -, 19) 0 | 1(12) 1(6)
02| 0 1| o| 13| o o o0 of O —- 17| 0 |1(10) 1(5) 1(4)
05| 0 o] o 0| 1(9) o o0 of O - 14| o | 17 1(2) 1(1)
06| 0 o] o 0| 18] o O of O - 13) 0 | 1(6) 1(1)
0700 [ 18) | 0 | 0 |211)| O |1(7| O | O | 16)| O | O | 1(15),1(2 | O | 1(5) 1(12)
Table 4.State transition of Tree-CONWIP-2 for a period.
ime | C | Pu B |G| Po [Bo | BB |G| Pu|B|C| P [ P P Py
80| 0|18 | 0| 0| 11)| 1 [15| 0| 0 |26)| O | O [1(15),13)| O | 17| O | - 1(12)
83| 0| 15| o] O 18| 1| 1@ 9 0o 13 QqQ 0 1(12),-+-1 | 14| O | - 1(9)
85| 0| 13| o| o 1(6)| 1 1 o 1(1) o Q 1(10),-}- 1 | 12| O | - 1(7)
86 | 0| 12| o| o 15)| 1 1 o 1 a0 19,— 1 | 11| 0| - 1(6)
87 | 0| 11)| o| O 14| 1 0 o0 o g 18, 0 |1(12 1(5) 1(5)
88 | 0| - 0| o| 13| O] 199 0 © o o 1(7),—-{ 0 |1(11) 1(4) 1(4)
91 | 0| - 0| 0| - 1| 16 oO0f o0 - of o 14),—| 0 | 18 1(2) 1(1)
92 | 0|18 | 0| 0|11 | 1 |25 0| 0 |26)| 0 | 0 [1(3),115)]| 0 | 1(7)| O | — 1(12)
Table 5.State transition of Tree-CONWIP-3 for a period.
me | C | Pu By |G| Po [Bo | BB |G| Pu|B|C| P [ P P Py
97 | 0 (18 | O | 0 | 121) | 2 |15)| O | O |28 | 1 | O |1(8),220)| 1 |17 | O | - 1(12)
02| o] 13| o] o] 16| 1 1 o 13 14 0 13,151 | 12| 0| - 1(7)
04| 0| 1) o] o] 14| 1 o 0 1(1) d 0 1(1),X130 |1(12) 1(5) 1(5)
105 0| - o 0| 13| O 199 0o O 1 q - | 1 | 1(12) 1(4) 1(4)
08| 0| - o 0| - 1] 16 0 oOf - 1l 0 - @] 1| 108 1(1) 1(1)
09| 0 |18 | 0| 0] 121 | 2 [215| 0| O |28 | 1 | 0 |[120),18)] 1 |[17)| O | - 1(12)

Now, we apply the theory of this paper to the abos@ses.
Tree-CONWIP-1. By Proposition 6, the throughputao€ritical circuit is that of the whole
system. Denote the circui€,p,b,pb pbC, as C,. This circuit is critical. In fact, by
observing the state transition table, we see akgntcon C, is not blocked. Then, by
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Proposition 5,C, is critical. Every activity onC, starts twice in a period. Therefore, the
throughput of C, and the whole system is 2/25 [PC/TU].

In Tree-CONWIP-2 and Tree-CONWIP-3 cases, thecalittircuit is p,w,p,; that is,
p, is a critical activity. The period is 12 [TU], aride throughput is 1/12 [PC/TU]. The
respective placements of system WIP are optimunthisrthroughput. The system WIP of
Tree-CONWIP-2 is 10.33, while that of Tree-CONWIRs311.75. For the former case, for
example, we show how to calculate the system WIRu&ipg the state transition table,
according to the definition of average WIP givenSection 3.1. Consider Table 4. We can
count tokens in the places of activity circuits d@hdse in the rest of the places, separately.
The number of tokens on an activity circuit is uaehed from the initial state, which is the
number of actors for the activity. On the activdycuit p,,, for example, there are two
tokens. It means that the WIP on this activity wirés 2. Here, let us denote the sum of WIP
on all of activity circuits byW, . Since we have 8 activities, and singg, has two actors,
we haveW, =9. Now, let us count tokens in the rest of the Hacehich are actually
connecting queues. Takls, as such an example. By observing the state tramgséble for
a period from time 88 through 91, a token remamsj, is for 9 [TU]. Thus, its integration
value for a period isLlC9=9 [PC*TU]. Denote the average WIP in all of the ceating
queues byW, . Since the connecting queues &gb,;,,C,,b,,b,C;,b,,,C,,b,,,b,,b, we can
calculate respective integration values for a merlo from the table, and add them. Thus,
we have W, [L =(0+0+0+9+2+0+1+0+4+0+0) =16. Therefore, the system WIP is
W, +W, =9+ (16/12) =1033.

An example of KANBAN for Tree-shaped process isadsw.

CaseTree-KANBAN. Initial inventory for every part is set to zetaitial cards are set as
k,=k,=k,=k,=k,=k=1 and k,, =2. Respective numbers of actors are one, except
that number of actors fomp,, that is 2. The state transition is given in TabJevhere the

throughput is 1/12.

The connecting queues atg,,b,,k,,b,,k;,b,k,;,b,,,K,,,0,,,k,,b,,k and b. Thus, by
calculating respective WIP for those queues froinid &, we have
W,[L=0+4+0+1+0+3+0+4+0+4+0+0+7+0)=23

Therefore, the system WIP is
W, +W, =9+ (23/12) =1092
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Table 6. State transition of Tree-KANBAN for a poeti

time | K, | Py | By [ K| P [ B K] R |RK| Ry | Rk P, b, | k| P | |k| P |b| p
09| 0 |13)| 0 | 0 | 16)| O | O |14 | O | O | 1) | O | O [1(3),1(a5)| O0 | O |47 | O | 1 | -— | O |1(12
112| 0 1| o 18| ©o0| o 11 d9 d - 1 0 - 21 1| o| 14| o 1| -| 0| 1(9
113| 0 1| o| 12| o| o -4 1 o - 1 g -1 1| o] 13| o 1| -—| 0| 1(8)
115| 0 1| 0| -—| 1| 0 - 1] of - 1 o -39 1| 0| 1| o 1| | 0| 1(®)
116 | o | 18| 0| o0| 12(11) of 494 19 O 0 1(8) ) D 12e®)1 0 | 0| 1(12) o] o] 1(5) 0o 15
121 | O

13| o o |16 | 0 |0 |1@| 0] 0|18 | 0 | 0 |115,13)| 0 | 0 |17 | O |1 |- | 0 |1012)

The following proposition partly resolves the dynesnof the tree-shaped production
control.

Proposition 9. Consider the tree-shaped production process showRigure 6 with
CONWIP and KANBAN. Assume that both systems hawe shme actors for respective
processes, the same activation frequency, andathe shroughput. Lell andK be the total
number of cards in CONWIP and KANBAN, respectivdlgen, we have the following.

() If N—sz, then W, <W, ,

(i) If N=K,then W, <W,,
whered is the maximum cycle mean, ald. and W, are the average system WIP of
CONWIP and KANBAN, respectively.

For the tree-shaped production process in the apoaposition, many CONWIP and
KANBAN cases, which have the same level of throughpatisfy the if-condition of (i), and
then W, <W, certainly holds. However, the if-condition is rsattisfied by Tree-CONWIP-3
and Tree-KANBAN, where the system WIP is 11.75 48d92, respectively. That is, the
if-condition of the Proposition 9 is meaningful,dawe would say that CONWIP does not
necessarily outperform KANBAN.

The statement on comparison between CONWIP and KAMNIB different to Takahashi
et al. (2005). Our result requires finite capacity, whilakahashiet al. (2005) considered
infinite capacity case. As we have shown in SecBpthe optimality of system WIP requires
analysis of critical circuit in the system. The sanmumber of system WIP, in general, does
not assure us the optimality, because the placemietbkens changes the best possible
throughput and the corresponding minimum amountsgétem WIP. By specifying
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production process and placement of WIP, we cadwttrthe analysis of comparison of best
tuned performance of CONWIP and KANBAN as like moposition 9.

5. Conclusion

By employing the framework of token transactiontegsg this paper showed how and for
what the Little's law holds with respect to averAy&, average cycle time, and average
throughput. In order to apply the framework, thegeéa production control systems should
have deterministic processing time, a strongly eoted structure, and connecting queues
with FIFO control policy. Since such token trangattsystems show periodic behavior, we
can design dynamic properties of production praegsshich are related to the Little's law.

The method developed in this paper has revealetblioging issues.

(1) WIP

The Little's law holds on every circuit in a protlon process modeled as a token
transaction system. The sum of average WIP in th@evsystem does not necessarily give us
any relation to the cycle time or throughput of gystem. Or, focusing on inventory in a
single storage or warehouse does not show thee'kitkhw, neither. Since the law is much
fundamental as a physical law of material logistica factory and wider logistics network,
this may bring a strong impact on the way to meathe amount of inventories in production
control research.

In general, there is a trade-off between amounVé® and lead time (i.e., cycle time).
That trade-off should be considered by focusingoorper circuit, according to the theory.
Otherwise, the analysis might be very vague, bexdusre could not be a proper relation
between those indices. Furthermore, WIP shouldesiticted to be tangible inventory. From
the token transaction systems theoretic point efwyiproduction orders and production
resources work as WIP in the sense that they deddgher an activity in the process can
start or not. The whole configuration of those ¢hkends of WIP bring out the resultant
performance of the whole process.

(2) Throughput

The throughput of the whole process is decided lyitecal circuit in the process. A
critical circuit is formed as the result of the pewting structure of activities and queues and
the deployment of WIP. As stated in (1) above, \MIR token transaction system represent
inventory of part or material, production capacayd production orders.

(3) Comparison of CONWIP and KANBAN
CONWIP is superior to KANBAN in some cases, whileis not in other cases.

Superiority here refers the fact that the minimwstem WIP is smaller than the other to
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attain the same throughput by deploying suitablelmer of cards. As shown in Section 4,
there is no universal superiority between CONWI& EANBAN.

Comparison of production control systems can bepticated. One reason that this paper
showed is in the complex relation among WIP depleytncritical circuits, and throughput.
Such examples are Tree-CONWIP-1 and Tree-CONWIRs2x Even if we change the
number of tokens, the resultant WIP can be stilinopm in the sense that the WIP is
minimum to attain the changed throughput.

There are some related topics remained. Effecinflamness needs to be considered.
Basic question is: How will randomness affect thgaality of critical circuits? Original idea
of CONWIP does not restrict to FIFO policy. Sopigisted policy may lead the process to

different performance.
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