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Abstract  
To control the production of parts in a production process, managers can choose a 
proper production control policy. This paper provides a performance analysis of 
production control systems in a business process, which is modeled as a 
discrete-event system and depicted by AID (Activity Interaction Diagram). 
KANBAN and CONWIP controls are focused on and analyzed. The periodic 
behavior of a token transaction system and the concepts of critical circuit and 
tokens are used. When a business process behaves periodically, Little’s law can be 
used to calculate the cycle time, inventory, and throughput of the system. By using 
the theory of token transaction systems, and employing the law, we show how 
minimum WIP (Work-In-Process) of a system can be calculated that allows the 
system to have maximum possible throughput. As an application of the theory, we 
provide a performance comparison between KANBAN and CONWIP. The results 
show that there is no general superiority between KANBAN and CONWIP. 
Appropriate design of the whole system decides which one is superior in certain 
situations. 

Keywords: Production control systems; KANBAN; CONWIP; token transaction 
systems; Little’s law; critical circuit 

 

1.  Introduction 

In order to synchronize production and sales delivery, production processes need to be 

controlled. KANBAN and CONWIP control mechanisms are successful examples of 

card-based production control systems. (In the following, we simply write KANBAN and 

CONWIP to mean respective KANBAN and CONWIP controlled production processes, as 

long as it is clear from the context.) Since the references for KANBAN and CONWIP are 

many, we just put Monden (1998) for KANBAN, and Spearman et al. (1990) and Hopp and 

Spearman (2001) for CONWIP. In the KANBAN, information is sent from a station only to 

its immediate proceeding station, while in CONWIP (CONstant Work-In-Process), 

information about a product demand flows directly from the final buffer to the first station. 

Since they have different mechanisms, a number of comparative studies have been conducted. 

According to the survey by Framinan et al. (2003), in comparison of the two, many authors 

insist that CONWIP outperforms KANBAN when processing times on component operations 
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in production processes are variable. Gstettner and Kuhn (1996) showed, however, 

KANBAN achieves a given throughput with less work-in-process (WIP, for short) at finished 

part buffer. 

All of the papers, which Framinan et al. (2003) cited for comparison of the two policies in 

optimal performance, had focused on serial production line or enhanced serial production line 

for their purpose of research. Among them, Bonvik et al. (1997), Bonvik and Gershwin 

(1996), Paternina-Arboleda and Das (2001), and Yang (2000) had used simulation for 

analysis. Spearman and Zazanis (1992) and Muckstadt and Tayur (1995) had shown 

analytical result on card-based control for serial production processes. Processing times for 

operations in a production process are varying with respective exponential distributions. 

When the same number of cards is used in both CONWIP and KANBAN, Spearman and 

Zazanis (1992) have shown that the throughput of KANBAN does not exceed that of 

CONWIP. They pointed out that it holds true because circuits in CONWIP are virtually 

divided into smaller circuits in KANBAN, and then the cards in KANBAN tend to be 

"blocked". Muckstadt and Tayur (1995) had used a generalized serial production line in 

analyzing card-based production control systems. Series of machines form a cell, and series 

of cell are connected as a production line. In a cell, CONWIP control is used. If each cell has 

only one machine, the whole system is virtually a KANBAN system. In a generalized 

production line, four sources of variability are considered. They are processing time 

variability, machine breakdowns, rework and yield loss. It has been shown that if we deploy 

more cards then the average waiting time of production orders could decrease or remain 

equal. 

As Framinan et al. (2003) pointed out, when two control policies are compared, both 

should be optimally tuned. Otherwise, we cannot say the amount of average WIP, for 

example, is less or more. Usual manufactured products have BOMs and corresponding 

routings. Takahashi et al. (2005) compared CONWIP and KANBAN for tree-shaped 

production process.  

This paper proposes a novel design discipline for card-based control of production 

process, by developing the theory of token transaction systems. The theory shows how the 

three indices represented in Little's law (Little, 1961) are decided by the structure of a 

production process with control-cards and deployment of WIP. That is, the relation of WIP, 

cycle time and throughput on specific sub-network of production process is clarified. In other 

word, we show how the Little's law should be used in the design of card-based production 

control systems. As an application of the theory, we resolve complicated result of comparison 

between CONWIP and KANBAN. In doing so, this theory does not restrict the target of 
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analysis to serial production processes, but any shaped processes can be virtually analyzed. 

The rest of the paper is organized as follows. In Section 2, the concept of token 

transaction system and related definitions are introduced. Section 3 provides the properties of 

token transaction systems that are used in analysis. In Section 4, CONWIP and KANBAN are 

analyzed so that we can clearly understand why the comparisons of CONWIP and KANBAN 

became complicated. Section 5 is the conclusion. 

 

2.  Modeling production process 

In modeling production processes with control mechanisms, this paper employs the 

concept of business transaction system (Sato and Praehofer, 1997) that is based on the DEVS 

formalism for discrete-event systems (Zeigler, 1976). In general, dynamic behavior of a 

discrete-event system requires causality. According to Mesarovic and Takahara (1975), a 

dynamic system has a state transition function if and only if the system is causal. Sato (2001) 

showed that a DEVS model always brings corresponding state transition function and it is 

unique up to isomorphism. In this sense, the DEVS formalism is universal. Thus, adopting 

the DEVS formalism is fairly common decision in modeling discrete-event systems. In a 

business transaction system, the components and connecting structure are represented by 

activity interaction diagrams (AID, for short).  

 

Definition 1. Activity Interaction Diagram (AID) (Sato and Praehofer, 1997) 

An activity interaction diagram is a diagram that has three kinds of components. They are 

activities, queues, and connecting arrows. Activities should be connected with queues, and 

vice versa. That is, in the graph theoretic sense, an AID is a directed bipartite graph. 

In this paper we consider specific type of business transaction systems, where queues are 

simplified as usual FIFO (first-in, first-out) queues to store objects called tokens and every 

queue can have at most one input and output arrow. We call such system a token transaction 

system. In a token transaction system, tokens represent parts, products, actors, or data. 

Queues are also referred as connecting queues. The AID of a token transaction system for a 

simple assembly process is depicted in Figure 1, where activities and queues are represented 

by squares and ovals, respectively. It shows a serial production process governed by 

CONWIP. The purchased material, m , is processed by operations 1p  through 4p  to be a 

product which is stored in the place b . Each of those operations 1p , 2p and 3p  produces its 

output part which will be stored in 1b , 2b , and 3b , respectively. The workers for operations 

are represented by tokens in iw (i = 1, 2, 3, 4). The queue C  represents the storage place of 
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cards. A card functions as a production order for1p . Let A  be the set of internal activities, 

and Q the set of queues. The number of tokens in a queue C  is denoted by C . The 

output queues of an activity are specified as one of two types. An output queue of a type gets 

one token from the activity when it starts, while the other type queue gets a token when the 

activity finishes. The former queues are called ones of SQ type, and the others are FQ type. 

An activity can have both types output. 

 

 

 

 

 

 

 

Figure 1. A serial line with CONWIP 

 

Now we define the dynamics of a token transaction system. The time evolution of a token 

transaction system is defined by the state transition function, which is originally defined by 

the set theoretic notation by Sato and Praehofer (1997). For a token transaction system we 

can use state transition table, because the content of queue variables are simple FIFO tokens.  

Rule of transfer of tokens in a token transition system: 

An activity starts when its starting condition is met. That condition is defined by relation 

between the input queues. Once started, an activity will finish after prescribed processing 

time (or holding time) for a token. When an activity starts, one token is removed from each 

input of the activity, one token is held in the activity during the processing time, and one 

token is added in the outputs of the SQ  type. When an activity finishes, one token is added 

to each of the output queues of FQ  type of the activity.  

With the above rule, the state transition of a token transaction system is defined as shown 

in Figure 2, and then brings us the state transition table, Table 1. In Figure 2, an activity is 

said to be "imminent" if its holding time had elapsed from its starting time. There might be 

several activities which are imminent at a time. When imminent activities finish, the output 

queues of FQ  type of each imminent activity get respective tokens. When an activity can 

start, it must start. If no activity can start, then the placement of tokens in the whole process 

remains the same until the next event comes. The time instant of the next event is defined as 

1p 2p 3p 4p
1b 2b

3b bm

1w 2w 3w
4w

C
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the minimum of the due times of activities in operation. So, the next event will become the 

next "current time" in the state transition table, and then it continues. 

 

 

Figure 2. Flow chart of dynamic behavior of a token transaction system 

 

Table 1. State transition table of a CONWIP (Initial condition: C has 4 tokens. Numbers of 

actors for 1p , 2p , and 4p  are 1, respectively. Number of actors for 3p  is two. Each 

activity is idle and inventory in each of 1b , 2b , 3b and b  is 0.)  
 

time C 1p  1w  1b  2p  2w  2b  3p  3w  3b  4p  4w  b  

22 0 1(2) 0 0 ---- 1 1 1(7),1(10) 0 0 1(5) 0 1 

24 0 ---- 1 0 1(3) 0 1 1(5),1(8) 0 0 1(3) 0 1 

27 0 ---- 1 0 ---- 1 2 1(2),1(5) 0 0 ---- 1 2 

29 0 1(2) 0 0 ---- 1 1 1(3),1(12) 0 0 1(5) 0 2 

31 0 ---- 1 0 1(3) 0 1 1(1),1(10) 0 0 1(3) 0 2 

32 0 ---- 1 0 1(2) 0 0 1(9),1(12) 0 1 1(2) 0 2 

34 0 1(2) 0 0 ---- 1 1 1(7),1(10) 0 0 1(5) 0 3 

 

The time evolution of CONWIP system in Figure 1 is determined by specifying the 

starting condition of activities and movement of tokens. By assuming that we always have 

enough material, we do not have to care about m . So, 1p  starts its processing if more than 

one card exists in C  and if the worker is available (that is, if the worker is not busy). 

When 1p  finishes, it outputs a token to 1b . One token in 1b  represents combination of a part 

and a card. Each of the operations2p , 3p , and 4p  will start its operation if more than one pair 

of part and an attached card exist in the respective input buffer, and if the respective actor is 

available. When 4p  starts, it also outputs a card to C. As a whole, Table 1 will come out. In 

find imminent activities 

finish the imminent activities 

 more 
executable 
  activities? 

start activities 

Y N 

time evolution 
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Table 1, "----" represents that there is no token being processed. That is, the corresponding 

worker is idle. "1(2)", for example, shows that one token is being processed and it will finish 

(be imminent) after 2 minutes. As like the 3p  column, two tokens can be processed each of 

which will be imminent independently. 

We need to further investigate some properties of token transaction systems. We first 

define "never-stopping" transaction systems. 

Definition 2. Live system (Murata, 1992) 

A token transaction system is said to be live with respect to an initial state s, if the state 

transition table will last forever from the state s. If a token transaction system is live with 

respect to a state s, then it is said to be live. 

Even if a transaction system is live, the system might have activities that will never start. 

In that case delete those activities with related connecting (input/output) arrows. Apparently, 

the resultant transaction system has the same dynamic behavior. Notice that the static 

structure of a token transaction system is modeled by an AID. A path is a series of activities 

and queues that follows the direction of connecting arrows among them. If the start and end 

of a path are the same activity or queue, then the path is called a circuit. If a circuit contains 

different activities and queues (except the start and end), then it is called an elementary 

circuit. When a circuit contains SQ type queues, then the activities whose outputs are the 

queues can be eliminated to form the (shorter) circuit. For example, 14332211 Cppbpbpbp  is a 

circuit and 1332211 Cpbpbpbp  is also a circuit, because C is a SQ type output queue of4p . 

For a circuitC , the set of activities in C  is denoted byA(C). The cycle mean of a circuit is 

defined as the sum of the holding time of the activities of the circuit, divided by the number 

of tokens in the circuit. The maximum cycle mean, λ , of an AID is the maximum value of all 

cycle means (Baccelli et al., 1992) and is given by 

| |
max

| |
h

t
ζ

ζλ
ζ

= , 

where, ζ  ranges over the set of elementary circuits of the AID, and | |hζ denotes the sum 

of the holding times of the activities in the circuit, and | |tζ denotes the number of tokens in 

the circuit. It is clear that any non-elementary circuit has the cycle mean which is less than or 

equal to the maximum cycle mean. All the circuits that have maximum value of cycle mean 

are called critical circuits.  

Definition 3. Strong connectivity of AID (Sato and Kawai, 2007) 

Consider an AID of a token transaction system. Let A  and FS QQQ ∪=  be the sets of 
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activities and queues, respectively. Let a ∈ A and Qq ∈  be arbitrary. If there exist a path 

from a  to q  and one from q  to a , then the AID and the token transaction system are 

said to be strongly connected. 

 

3.  Design discipline of token transaction systems 

The Little's law governs dynamics of business process, when the process is in steady state. 

Periodic behavior is a kind of steady state. The law says rigorous relation among cycle time, 

WIP, and throughput. 

 

3.1.  WIP, TH and CT in cyclic behavior 

Average WIP is defined as average value of inventories. If we assume the inventory of a 

trading good moves out in constant pace and the good is replenished once in every time 

interval N , then its inventory trajectory is depicted by Figure 3. Let us denote the inventory 

level at time t  as w(t) . Then, the average WIP is calculated as follows. 

        
0

2
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1
lim ( )

1
( ) [ ]

2 2

T

T

N N

WIP w t dt
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V V t V
t V dt t

N N N N
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=
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∫

∫
 

Thus, it suffices for calculation of average value to consider a period, instead of infinite 

interval. Similarly, average throughput (TH) and cycle time (CT) can be calculated for a 

period. WIP is usually represented as sum of safety and cycle stocks, where the former is 

considered as buffer for randomness. Since this paper focuses on deterministic model, WIP 

contains only cycle stock.  

In the following, if it is clear from the context, we simply write WIP to mean average 

WIP. And, we use TU to mean "time units" and PC to mean "pieces". TU can be interpreted 

as week, hour, minute, and so on. 

 

Figure 3. Cycle inventory 

V 

N 2N 3N 4N 

 

time 
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3.2.  Little's law in periodic behavior  

In this section, dynamic properties are investigated. 

Proposition 1 (Sato and Kawai, 2007).  For a circuit of a token transaction system, the 

number of tokens in the circuit remains the same at any state transition. 

The proof of above proposition is based on the one for an event graph, which is given by 

Murata (1992). 

In order to be live for a strongly connected token transaction system, it suffices that every 

circuit has tokens, accordingly. Especially, if a strongly connected system has tokens in every 

circuit at initial state, then it is live. Furthermore, since we define WIP by the average number 

of tokens, WIP remains the same in a strongly connected system. 

Proposition 2 (Sato and Kawai, 2007).  In the state transition table of a token transaction 

system that is both strongly connected and live, the number of possible values of remained 

time for an activity is finite. 

Proposition 3 (Sato and Kawai, 2007).  A token transaction system that is strongly 

connected and live has periodic behavior. 

Since the holding times of activities are not integer but real, the above propositions are 

not trivial. 

Proposition 4 (Sato and Kawai, 2007).  Consider a token transaction system that is strongly 

connected and live, and assume that it is in the periodic behavior. Then, every activity has the 

same number of commencement in the period. 

The number of commencement in a period is called the activation frequency of the system. 

Notice that the numbers of commencement and finish of an activity in a period are the same 

so that the definition is well defined. The throughput of a strongly connected and live token 

transaction system is defined as average value of the number of output tokens from an 

activity of the system. Since the activation frequency is the same for all of the activities in the 

system, this definition of throughput is well defined. The cycle time of a circuit is defined as 

the elapsed time for a token to go round on the circuit in the periodic behavior. 

Theorem 1.  Consider a strongly connected and live token transaction system. Let TH  be 

the throughput of the system in the periodic behavior, C  a circuit of the system, Cw  the 

average WIP of tokens on C , and CCT  the cycle time of C . Then the Little's law holds on 
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C . That is, 
TH

w
CT C

C =  holds true. 

The above proposition shows that the Little's law holds only for circuits. In other words, 

the average number of total inventories of a production system does not work as the WIP 

term in the law.  

Since the maximum cycle mean is determined by the structure of the system and the 

placement of WIP, the following two propositions show how to design the throughput of a 

token transaction system by specifying the structure of and placement of WIP in the system. 

 

Proposition 5.  Consider a token transaction system that is strongly connected and live. 

Assume that it is in the periodic behavior. Then, any activity of a critical circuit of the system 

never be blocked its commencement. That is, if an activity on a critical circuit is not busy, 

and if the activity's input queue on the circuit gets any token, then it starts its processing 

immediately. 

Proposition 6.  Consider a strongly connected and live token transaction system. Let λ  be 

its maximum cycle mean, and TH the throughput. Then, 
λ
1=TH . 

In order to increase the maximum throughput of the system, the maximum cycle mean 

should be decreased. It means that the structure or WIP placement should be changed. If 

either factor changes, then another circuit can become critical. This makes situation 

complicated so that every circuit should be considered and that focusing on the current 

critical circuit is not enough to improve the performance of a production system. 

The throughput of a token transaction system can be designed as follows. Figure 4(a) is 

the strongly connected and live token transaction system under concern. In order to design 

the best throughput of the system, we can delete the input and output so that the resultant 

system is strongly connected. As like Figure 4(b), the input and output systems can be 

attached, according to the importance of and/or interest in activities and the corresponding 

queuing variables. For example, the input system is a procurement division or supplier, and 

the output is a delivery division or outside wholesaler. Theory of business transaction system 

(Sato and Praehofer, 1997) assures that any composition of token transaction systems, where 

the connection of systems accords with AID structure is also a token transaction system as a 

whole. 
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Figure 4. Designing throughput of a process 

The system, of which input and output have the same throughput, provides us with a basic 

case of equilibrium behavior. The production control systems in Figure 4(a) and 4(b) have the 

following dynamic feature, by using Propositions 6 and 7. 

(1) Let the throughput of the system in Figure 4(a) be pTH , and that of the input and output 

in Figure 4(b) TH . 

(2) If the input and output run slower than the system, that is, if pTHTH ≤  holds, then the 

whole system in Figure 4(b) shows equilibrium behavior with the throughput, TH . If 

pTHTH > , then the whole system will never reach into equilibrium behavior, by 

accumulating increasing inventory at the input queue. 

(3) Therefore, when pTHTH =  holds, then the whole process attains the maximum 

throughput with respect to the input and output. In other words, pTH  decides the best 

possible throughput of the whole system. That is, the system shows the same performance as 

we assume that the input provides infinite capacity and the output delivers finished part as 

soon as completion. 

(4) Even if the whole system attains pTH , the WIP is not necessarily minimum. Proposition 

7 tells us how the minimum WIP in the whole system can be deployed. 

(5) If the current best-possible throughput is insufficient, then the critical activities should be 

improved. In order to be non-critical for an activity, making the processing time shorter or 

increasing the numbers of actors and cards is effective. By powering up the critical activity, 

another activity then becomes critical. 

The sum of WIPs in a KANBAN or CONWIP system is focused on sometimes. It has 

practical significance. The sum of WIPs is called the system WIP in this paper. As the 

following Propositions 7 and 8 show, the system WIP of a production process does not 

uniquely determine the critical circuits or the throughput. 
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Proposition 7.  Consider a token transaction system that is strongly connected and live. 

Then, there exists the least system WIP that attains the throughput of the system. 

 

4.  Analysis of card-based production control systems 

By applying the theory developed so far, we compare CONWIP and KANBAN for two 

different production processes. One type is serial line and the other is tree shape (or, a bill of 

materials plus a routing). In comparison of different control schemes, as Framinan et al. 

(2003) pointed out, optimized parameters should be used. The meaning of optimization of 

parameters in this paper refers to attainment of the maximum throughput of the whole system 

with a control schema. As the theory of this paper showed so far, maximum throughput of a 

token transaction system is determined by the structure WIP placement. As the optimized 

WIP, we need to consider minimum system WIP in the sense of Proposition 7. 

One of the reasons of complicated aspect of the comparison (Framinan et al., 2003) is as 

follows. Assume that a controlled production process is optimal. That is, it has the throughput 

with minimum WIP. Assume that one token is added. Then the system WIP certainly 

increases. But if the added token changes the critical circuit and throughput, this new system 

WIP could be still minimum with respect to the throughput. Also, deletion of a token could 

bring the change of critical circuit. In this way, finding the minimum amount of system WIP 

does not allow a "linear" search. So, we needed a theory. 

Notice that tokens in a token transaction system correspond to cards, parts, or actors. 

Since tokens decide whether an activity can start processing, any of the three should be 

considered in analysis and design of dynamic behavior. Deployment of tokens in a system 

decides the throughput and WIP, and hence the cycle time. In the following, a circuit consists 

of an activity and its actors, such as 222 pwp  is called an activity circuit. 

4.1.  Serial production system 

Using analytical queuing network models, Gstettner and Kuhn (1996) provided a 

quantitative comparison between CONWIP and KANBAN with respect to WIP and 

throughput in a serial production line including six workstations with exponentially 

distributed processing times. According to their results, KANBAN can result in a lower 

average WIP level than CONWIP for a given production rate if the card distribution in the 

KANBAN is chosen appropriately. They defined the average number of finished parts in the 

output buffer of a station as the average WIP. 

We present comparative analysis of the performance measures between CONWIP and 

KANBAN in a serial production process shown in Figures 1 and 5, respectively. 
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Figure 5. A serial line with Kanban system 

The CONWIP process in Figure 1 is composed of four processes 1p  through 4p , and 

respective actors 1w  through 4w , and each process has output ib  or b . The process3p  

has two actors, while each of the others has only one actor. The corresponding KANBAN 

process for the same serial production line is specified as Figure 5. The first process1p  starts 

when more than one token is available in each of its inputs, 1w  and 1k . We assume that 

enough material m is always available so that we do not take care of. When 1p  finishes, a 

token will be added into each of 1b  and 1w . The process2p  starts when more than one 

token is available in each of its inputs 2w , 2k  and 1b . A token is produced in 1k  and 2p  

when 2p  starts. The outputs of 2p  are 2b  and 2w . The process 3p  and 4p  works 

similarly. In the following, we show an example of a serial production line controlled by 

KANBAN, with respective state transition table (Table 2). 

 

Case Serial-KANBAN.  Table 2 gives the state transition table for the serial production line 

shown in Figure 5. Initial inventory for every part is set to 0, and initial cards are set as 

1 2 1k k= =  and 3 2k = . Each of 1p , 2p and 4p  has one actor, while3p has 2. The system 

shows a periodic behavior every 12 [TU]. Each activity starts twice in a period. The 

throughput is 2/12, and the system WIP is equal to 6.17. It can be verified that the number of 

system WIP is minimum to attain the throughput 2/12. Later, in Tree-CONWIP-2 case, we 

will show how to calculate system WIP from state transition tables. 

Case Serial-CONWIP.  The state transition table for the same process under CONWIP has 

been given in Table 1. Four cards are initially assigned in the system. Initial inventories as 

well as the respective number of actors are the same as the case above. The period is 12 [TU], 

the throughput is 2/12, and the system WIP is 6.17, which is the minimum value to attain the 

throughput.  

 

1p 2p 3p 4p b

1w 2w 3w
4w

1k 2k 3k

1b 2b 3b
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   Table 2. State transition of Serial-KANBAN for a period 
 

time 1k  1p  1w  1b  2k  2p  2w  2b  3k  3p  3w  3b  4p  4w  b  

22 0 1(2) 0 0 0 1(3) 0 0 0 1(7), 1(12) 0 0 1(5) 0 1 

24 0 ---- 1 1 0 1(1) 0 0 0 1(5), 1(10) 0 0 1(3) 0 1 

25 0 ---- 1 1 0 ---- 1 1 0 1(4) ,1(9) 0 0 1(2) 0 1 

27 0 ---- 1 1 0 ---- 1 1 0 1(2), 1(7) 0 0 ---- 1 2 

29 0 1(2) 0 0 0 1(3) 0 0 0 1(12), 1(5) 0 0 1(5) 0 2 

31 0 ---- 1 1 0 1(1) 0 0 0 1(10), 1(3) 0 0 1(3) 0 2 

32 0 ---- 1 1 0 ---- 1 1 0 1(9), 1(2) 0 0 1(2) 0 2 

34 0 1(2) 0 0 0 1(3) 0 0 0 1(7), 1(12) 0 0 1(5) 0 3 

In both cases, Serial-CONWIP and Serial-KANBAN, the optimum system WIPs to attain 

the same level of throughput are the same. The following proposition claims that this 

statement holds true when the same total number of cards is employed in the both systems. 

Proposition 8.  Consider the serial production process shown in Figures 1 and 5 with 

CONWIP and KANBAN, respectively. Assume that both systems have the same actors for 

respective processes, the same activation frequency, and the same throughput. Let N and K be 

the total number of cards in CONWIP and KANBAN, respectively. Then, we have the 

following.  

(i)  N K<  if and only if C KW W< , 

(ii) N K=  if and only if C KW W= , 

where CW and KW are the average system WIP for CONWIP and KANBAN, respectively. 

This proposition resolves the complicated situation on a serial production line. In this 

proposition, the definition of WIP is different from that of Gstettner and Kuhn (1996). The 

system WIP is a factor that determines throughput. Therefore, if we focus on the average 

value of the final product without considering the other inventories in the system, then that 

amount alone does not bring us useful information. And it is not expected that any kind of 

optimality can be attained with respect to the three dynamic indices used in the Little's law. 

 

4.2.  Tree-shaped production process 

Takahashi et al. (2005) compared KANBAN, CONWIP and synchronized CONWIP 

systems for a tree-shaped production process with respect to two performance measures, WIP 
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and backlog, in supply chains consist of assembly stages with different lead times. They 

considered a supply chain system with three stages, which assembles and supplies one type 

product. The product is assembled from two distinctive subassemblies, and each subassembly 

is made up of two distinctive parts. The product is assembled from one unit of each 

subassembly, and each of the subassemblies is fabricated by using one unit of each part. Their 

simulation results show the superiority of both CONWIP and synchronized CONWIP over 

KANBAN, when all inventory levels among the three stages are equally important. The AIDs 

of this model under CONWIP and KANBAN are depicted in Figure 6 (a) and (b), 

respectively.  

The CONWIP system in Figure 6(a) is specified as follows. There are eight activities in 

the production process which are deployed as a routing for a final product, including a 

delivery activity dp , for a warehouse. Let ijp  be any one of 11p , 12p , 21p and 22p . As like 

the serial line cases, we assume enough raw material so that we do not have to take care of it. 

In order to start processing for ijp , more than one token should exist in each of ijw  (actors) 

and the respective card buffer. When it starts, one token is decreased from each of them, and 

one token is in processing in ijp . When ijp  finishes, the token in ijp  is removed, and one 

token is added to each of ijb  and ijw . The 1p  and 2p  processes behave similarly with the 

corresponding inputs and outputs. The delivery process dp  starts when more than one token 

exist in each of b  and dw . It outputs one token into each of 1C , 2C , 3C , 4C  at the 

commencement. When it finishes, one token is added into dw . The processing times of ijp  

and kp  are denoted by ijh  and kh , respectively. 

The KANBAN in Figure 6(b) is now specified. Let ijp  be any one of 

11p , 12p , 21p and 22p . In order to start processing for ijp , more than one token should exist in 

each of ijw  and ijk . When it starts, one token is decreased from each of them, and one token 

is being processed in ijp . We assume enough raw material as well. After its holding time, 

when it finishes the processing, the token in ijp  is removed, and one token is added to each 

of ijb  and ijw . The process 1p  starts when more than one token exist in each of the input 

11b , 12b , 1w  and 1k . When 1p  starts, those tokens are respectively removed, one token is 

added in each of 11k  and 12k , and one token is being processed in 1p . When 1p  finishes, 

one token is added in each of 1b  and 1w . The activities 2p  and p  work similarly. The 

delivery process dp  starts when more than one token exist in each of b  and dw . It outputs 

one token into k  at the commencement, and one token in dw  at the end of its process. 
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(a) CONWIP system 

 

 

 

 

 

 

 

 

 

 

 
 
 

(b) Kanban system 

Figure 6. Tree-shaped production process with CONWIP and KANBAN 
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We show four examples of state transition of a tree-shaped production process. Three of 

them are CONWIP (Figure 6(a)), while the other is KANBAN (Figure 6(b)). Since the 

number of tokens on a circuit remains the same at any state transition, we can control the WIP 

on a circuit by initial placement of tokens. Initial tokens on circuits decide the throughput and 

optimality of the system WIP. All of the following four cases have minimum WIP with 

respect to throughput.  

Case Tree-CONWIP-1.  Initial inventory for every part is set to zero. Initial deployments of 

cards are 2321 === CCC , and 4C = 3. Respective numbers of actors are one, except 

that number of actors for22p that is 2. The whole system shows cyclic behavior with the 

period 25 [TU] as Table 3 shows. In the table, actor-queues are omitted, because if an activity 

11p , for example, is in processing, then 11w  is zero. That is, ijw  can be think of the opposite 

of processing, and this makes the table concise. 

Case Tree-CONWIP-2.  Now, we increase one card in 2C . That is, initial cards are 

231 == CC , and 342 == CC . The whole system shows cyclic behavior with the period 

12 [TU] as Table 4 shows. Both the former and this case show a complicated situation in 

finding the optimal deployment of cards for CONWIP on the same production process. When 

we increase WIP, for example, the former critical circuit becomes non-critical and other 

circuit is critical with different throughput, and this WIP is still minimum to attain the 

throughput. 

Case Tree-CONWIP-3.  The respective processing times of 21p  and 22p  have been 

changed here. This case will be used later for comparison between CONWIP and KANBAN. 

Initial inventory for every part is set to zero. Initial cards are 21 =C , 332 == CC , and 

44 =C . Respective number of actors remains the same as the former two cases. The whole 

system shows cyclic behavior with the period 12 [TU] as well, as Table 5 shows. 

 

Table 3. State transition of Tree-CONWIP-1 for a period. 

time 1C  11p  11b  2C  12p  12b  1p  1b  3C  21p  21b  4C  22p  22b  2p  2b  p  b  dp  

82 0 1(8) 0 0 1(11) 0 1(7) 0 0 1(6) 0 0 1(15), 1(2) 0 1(5) 0 ---- 0 1(12) 

84 0 1(6) 0 0 1(9) 0 1(5) 0 0 1(4) 0 0 1(13), ---- 1 1(3) 0 ---- 0 1(10) 

87 0 1(3) 0 0 1(6) 0 1(2) 0 0 1(1) 0 0 1(10), ---- 1 ---- 1 ---- 0 1(7) 

88 0 1(2) 0 0 1(5) 0 1(1) 0 0 ---- 0 0 1(9), ---- 0 1(12) 1 ---- 0 1(6) 

89 0 1(1) 0 0 1(4) 0 ---- 0 0 ---- 0 0 1(8), ---- 0 1(11) 0 1(5) 0 1(5) 
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90 0 ---- 1 0 1(3) 0 ---- 0 0 ---- 0 0 1(7), ---- 0 1(10) 0 1(4) 0 1(4) 

93 0 ---- 0 0 ---- 0 1(9) 0 0 ---- 0 0 1(4) , ---- 0 1(7) 0 1(1) 0 1(1) 

94 0 1(8) 0 0 1(11) 0 1(8) 0 0 1(6) 0 0 1(3), 1(15) 0 1(6) 0 ---- 0 1(12) 

97 0 1(5) 0 0 1(8) 0 1(5) 0 0 1(3) 0 0 ----, 1(12) 1 1(3) 0 ---- 0 1(9) 

100 0 1(2) 0 0 1(5) 0 1(2) 0 0 ---- 0 0 ----, 1(9) 0 1(12) 1 ---- 0 1(6) 

102 0 ---- 1 0 1(3) 0 ---- 0 0 ---- 0 0 ----, 1(7) 0 1(10) 0 1(5) 0 1(4) 

105 0 ---- 0 0 ---- 0 1(9) 0 0 ---- 0 0 ----, 1(4) 0 1(7) 0 1(2) 0 1(1) 

106 0 ---- 0 0 ---- 0 1(8) 0 0 ---- 0 0 ----, 1(3) 0 1(6) 0 1(1) 0 ---- 

107 0 1(8) 0 0 1(11) 0 1(7) 0 0 1(6) 0 0 1(15), 1(2) 0 1(5) 0 ---- 0 1(12) 

 

Table 4. State transition of Tree-CONWIP-2 for a period. 

 

Table 5. State transition of Tree-CONWIP-3 for a period.   

 

Now, we apply the theory of this paper to the above cases. First consider 

Tree-CONWIP-1. By Proposition 6, the throughput of a critical circuit is that of the whole 

system. Denote the circuit 21112122 pbCbpbpC  as 2C . This circuit is critical. In fact, by 

observing the state transition table, we see any token on 2C  is not blocked. Then, by 

time 1C  11p  11b  2C  12p  12b  1p  1b  3C  21p  21b  4C  22p  22b  2p  2b  p  b  dp  

80 0 1(8) 0 0 1(11) 1 1(5) 0 0 1(6) 0 0 1(15), 1(3) 0 1(7) 0 ----- 0 1(12) 

83 0 1(5) 0 0 1(8) 1 1(2) 0 0 1(3) 0 0 1(12), ----- 1 1(4) 0 ----- 0 1(9) 

85 0 1(3) 0 0 1(6) 1 ----- 1 0 1(1) 0 0 1(10), ----- 1 1(2) 0 ----- 0 1(7) 

86 0 1(2) 0 0 1(5) 1 ----- 1 0 ----- 1 0 1(9), ----- 1 1(1) 0 ----- 0 1(6) 

87 0 1(1) 0 0 1(4) 1 ----- 0 0 ----- 0 0 1(8), ----- 0 1(12) 0 1(5) 0 1(5) 

88 0 ----- 0 0 1(3) 0 1(9) 0 0 ----- 0 0 1(7), ----- 0 1(11) 0 1(4) 0 1(4) 

91 0 ----- 0 0 ----- 1 1(6) 0 0 ----- 0 0 1(4), ----- 0 1(8) 0 1(1) 0 1(1) 

92 0 1(8) 0 0 1(11) 1 1(5) 0 0 1(6) 0 0 1(3), 1(15) 0 1(7) 0 ----- 0 1(12) 

time 1C  11p  11b  2C  12p  12b  1p  1b  3C  21p  21b  4C  22p  22b  2p  2b  p  b  dp  

97 0 1(8) 0 0 1(11) 1 1(5) 0 0 1(8) 1 0 1(8), 1(20) 1 1(7) 0 ----- 0 1(12) 

102 0 1(3) 0 0 1(6) 1 ----- 1 0 1(3) 1 0 1(3), 1(15) 1 1(2) 0 ----- 0 1(7) 

104 0 1(1) 0 0 1(4) 1 ----- 0 0 1(1) 0 0 1(1), 1(13) 0 1(12) 0 1(5) 0 1(5) 

105 0 ----- 0 0 1(3) 0 1(9) 0 0 ----- 1 0 -----, 1(12) 1 1(11) 0 1(4) 0 1(4) 

108 0 ----- 0 0 ----- 1 1(6) 0 0 ----- 1 0 -----, 1(9) 1 1(8) 0 1(1) 0 1(1) 

109 0 1(8) 0 0 1(11) 1 1(5) 0 0 1(8) 1 0 1(20), 1(8) 1 1(7) 0 ----- 0 1(12) 
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Proposition 5, 2C  is critical. Every activity on 2C  starts twice in a period. Therefore, the 

throughput of 2C  and the whole system is 2/25 [PC/TU]. 

In Tree-CONWIP-2 and Tree-CONWIP-3 cases, the critical circuit is 222 pwp ; that is, 

2p  is a critical activity. The period is 12 [TU], and the throughput is 1/12 [PC/TU]. The 

respective placements of system WIP are optimum for this throughput. The system WIP of 

Tree-CONWIP-2 is 10.33, while that of Tree-CONWIP-3 is 11.75. For the former case, for 

example, we show how to calculate the system WIP by using the state transition table, 

according to the definition of average WIP given in Section 3.1. Consider Table 4. We can 

count tokens in the places of activity circuits and those in the rest of the places, separately. 

The number of tokens on an activity circuit is unchanged from the initial state, which is the 

number of actors for the activity. On the activity circuit 22p , for example, there are two 

tokens. It means that the WIP on this activity circuit is 2. Here, let us denote the sum of WIP 

on all of activity circuits by AW . Since we have 8 activities, and since 22p  has two actors, 

we have 9=AW . Now, let us count tokens in the rest of the places, which are actually 

connecting queues. Take 12b  as such an example. By observing the state transition table for 

a period from time 88 through 91, a token remains in 12b  is for 9 [TU]. Thus, its integration 

value for a period is 991 =∗  [PC*TU]. Denote the average WIP in all of the connecting 

queues by QW . Since the connecting queues are bbbCbCbbCbC ,,,,,,,,,, 22242131122111 , we can 

calculate respective integration values for a period L  from the table, and add them. Thus, 

we have 16)00401029000( =++++++++++=⋅ LWQ . Therefore, the system WIP is 

33.10)12/16(9 =+=+ QA WW . 

An example of KANBAN for Tree-shaped process is as follow. 

 

Case Tree-KANBAN.  Initial inventory for every part is set to zero. Initial cards are set as 

11 12 21 1 2 1k k k k k k= = = = = =  and 22 2k = . Respective numbers of actors are one, except 

that number of actors for 22p  that is 2. The state transition is given in Table 6, where the 

throughput is 1/12.  

The connecting queues are kbkbkbkbkbkbk ,,,,,,,,,,,, 22222221211112121111  and b . Thus, by 

calculating respective WIP for those queues from Table 6, we have 

23)07004040301040( =+++++++++++++=⋅ LWQ  

Therefore, the system WIP is  

92.10)12/23(9 =+=+ QA WW  
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Table 6. State transition of Tree-KANBAN for a period. 

 

The following proposition partly resolves the dynamics of the tree-shaped production 

control. 

Proposition 9.  Consider the tree-shaped production process shown in Figure 6 with 

CONWIP and KANBAN. Assume that both systems have the same actors for respective 

processes, the same activation frequency, and the same throughput. Let N and K be the total 

number of cards in CONWIP and KANBAN, respectively. Then, we have the following. 

(i) If 1 2 3h h h
N K

λ
+ +− ≤ , then C KW W≤ ,  

(ii)  If N K= , then C KW W< ,  

whereλ  is the maximum cycle mean, and CW and KW are the average system WIP of 

CONWIP and KANBAN, respectively.  

For the tree-shaped production process in the above proposition, many CONWIP and 

KANBAN cases, which have the same level of throughput, satisfy the if-condition of (i), and 

then C KW W<  certainly holds. However, the if-condition is not satisfied by Tree-CONWIP-3 

and Tree-KANBAN, where the system WIP is 11.75 and 10.92, respectively. That is, the 

if-condition of the Proposition 9 is meaningful, and we would say that CONWIP does not 

necessarily outperform KANBAN. 

The statement on comparison between CONWIP and KANBAN is different to Takahashi 

et al. (2005). Our result requires finite capacity, while Takahashi et al. (2005) considered 

infinite capacity case. As we have shown in Section 3, the optimality of system WIP requires 

analysis of critical circuit in the system. The same number of system WIP, in general, does 

not assure us the optimality, because the placement of tokens changes the best possible 

throughput and the corresponding minimum amount of system WIP. By specifying 

time 11k  11p  11b  12k  12p  12b  1k  1p  1b  21k  21p  21b  22k  22p  22b  2k  2p  2b  k  p  b  dp  

109 0 1(3) 0 0 1(6) 0 0 1(4) 0 0 1(3) 0 0 1(3), 1(15) 0 0 1(7) 0 1 ---- 0 1(12) 

112 0 ---- 1 0 1(3) 0 0 1(1) 0 0 ---- 1 0 ----, 1(12) 1 0 1(4) 0 1 ---- 0 1(9) 

113 0 ---- 1 0 1(2) 0 0 ---- 1 0 ---- 1 0 ----, 1(11) 1 0 1(3) 0 1 ---- 0 1(8) 

115 0 ---- 1 0 ---- 1 0 ---- 1 0 ---- 1 0 ----, 1(9) 1 0 1(1) 0 1 ---- 0 1(6) 

116 0 1(8) 0 0 1(11) 0 0 1(9) 0 0 1(8) 0 0 1(20), 1(8) 0 0 1(12) 0 0 1(5) 0 1(5) 

121 0 1(3) 0 0 1(6) 0 0 1(4) 0 0 1(3) 0 0 1(15), 1(3) 0 0 1(7) 0 1 ---- 0 1(12) 
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production process and placement of WIP, we can conduct the analysis of comparison of best 

tuned performance of CONWIP and KANBAN as like in Proposition 9. 

 

5.  Conclusion 

By employing the framework of token transaction system, this paper showed how and for 

what the Little's law holds with respect to average WIP, average cycle time, and average 

throughput. In order to apply the framework, the target production control systems should 

have deterministic processing time, a strongly connected structure, and connecting queues 

with FIFO control policy. Since such token transaction systems show periodic behavior, we 

can design dynamic properties of production processes, which are related to the Little's law.  

The method developed in this paper has revealed the following issues. 

(1) WIP 

The Little's law holds on every circuit in a production process modeled as a token 

transaction system. The sum of average WIP in the whole system does not necessarily give us 

any relation to the cycle time or throughput of the system. Or, focusing on inventory in a 

single storage or warehouse does not show the Little's law, neither. Since the law is much 

fundamental as a physical law of material logistics in a factory and wider logistics network, 

this may bring a strong impact on the way to measure the amount of inventories in production 

control research. 

In general, there is a trade-off between amount of WIP and lead time (i.e., cycle time). 

That trade-off should be considered by focusing on proper circuit, according to the theory. 

Otherwise, the analysis might be very vague, because there could not be a proper relation 

between those indices. Furthermore, WIP should not restricted to be tangible inventory. From 

the token transaction systems theoretic point of view, production orders and production 

resources work as WIP in the sense that they decide whether an activity in the process can 

start or not. The whole configuration of those three kinds of WIP bring out the resultant 

performance of the whole process. 

(2) Throughput 

The throughput of the whole process is decided by a critical circuit in the process. A 

critical circuit is formed as the result of the connecting structure of activities and queues and 

the deployment of WIP. As stated in (1) above, WIP in a token transaction system represent 

inventory of part or material, production capacity, and production orders. 

(3) Comparison of CONWIP and KANBAN 

CONWIP is superior to KANBAN in some cases, while it is not in other cases. 

Superiority here refers the fact that the minimum system WIP is smaller than the other to 
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attain the same throughput by deploying suitable number of cards. As shown in Section 4, 

there is no universal superiority between CONWIP and KANBAN. 

Comparison of production control systems can be complicated. One reason that this paper 

showed is in the complex relation among WIP deployment, critical circuits, and throughput. 

Such examples are Tree-CONWIP-1 and Tree-CONWIP-2 cases. Even if we change the 

number of tokens, the resultant WIP can be still optimum in the sense that the WIP is 

minimum to attain the changed throughput. 

There are some related topics remained. Effect of randomness needs to be considered. 

Basic question is: How will randomness affect the criticality of critical circuits? Original idea 

of CONWIP does not restrict to FIFO policy. Sophisticated policy may lead the process to 

different performance. 
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