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Abstract. A stochastic model is considered where a service time having a general
distribution is delayed by service interruptions generated by an MMPP(Markov
Modulated Poisson Process). More specifically, such interruptions occur according
to a Poisson process with intensity λi whenever the underlying Markov chain is
in state i. The distribution of the interruption period depends on the state of the
Markov chain at the time of the interruption. The matrix Laplace transform of the
effective service time is derived explicitly, where the matrix is formed for the initial
state i of the Markov chain and the state j of the Markov chain upon completion
of the service time. The mean and variance are obtained explicitly.
Keywords. Effective service time, Markov modulated Poisson process.

1 Introduction

The service process subject to random interruptions due to system failures,
arrivals of high priority customers, server vacations and the like has been
studied extensively in the literature. The effective service time (or the service
completion time) under Poisson interruptions having i.i.d. interruption peri-
ods and a general service time distribution has been analyzed by Gaver(1962),
Jaiswal(1961,1968) and Keilson(1982). The total time spent in system for an
M/G/1 priority queueing system with preempt/resume service discipline has
been studied by Keilson and Sumita(1983), yielding both transient and er-
godic results. Federgruen and Green(1986) have dealt with an M/G/1 queue-
ing system where service interruptions are captured by an alternating renewal
process consisting of on-periods and off-periods, deriving bounds and approx-
imations for important ergodic performance measures. A service system sub-
ject to inhomogeneous Poisson interruptions with age dependent interruption
periods has been examined by Sumita et al(1989) with application to optimal
rollback policy for database management.

In this paper, we study a stochastic model where a service time having
a general distribution is delayed by service interruptions generated by an
MMPP(Markov Modulated Poisson Process). More specifically, such inter-
ruptions occur according to a Poisson process with intensity λi whenever the
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underlying Markov chain is in state i. The distribution of the interruption
period depends on the state of the Markov chain at the time of the interrup-
tion. The matrix Laplace transform of the effective service time is derived
explicitly, where the matrix is formed for the initial state i of the Markov
chain and the state j of the Markov chain upon completion of the service
time. The mean and the variance are also obtained.

The structure of the paper is as follows. In Section 2, we formally intro-
duce a stochastic model describing the service process with MMPP service
interruptions. By examining the probabilistic flow of the underlying multi-
variate process, the matrix Laplace transform of the effective service time is
derived explicitly in Section 3. The mean and the variance are also obtained.
Some numerical examples are presented in Section 4.

2 Model description

A stochastic model is considered where the service to a customer commences
at time t = 0. The customer has a random service requirement S that is
absolutely continuous with Ā(x)def=P[S > x], a(x)def= − d

dx Ā(x), ηA(x)def= a(x)

Ā(x)

and α(w)def=
∫ ∞
0

e−wxa(x)dx. This service time is subject to interruptions
of preemptive-resume type, where such interruptions occur according to a
MMPP characterized by [ν, Λ

D
] with state dependent interruption periods.

Here, Λ
D

def=[δ{i=j}λi]i,j∈J with J def={1, 2, · · · , J} and ν
def=[νij ] is a hazard

rate matrix. The infinitesimal generator Q is then given by Q
def= − ν

D
+ ν,

where ν
D

def=[δ{i=j}νi] and νi
def=

∑
j∈J νij . More formally, let {J(t) : t � 0}

be a Markov chain in continuous time on J governed by ν. Then service in-
terruptions occur according to a Poisson process with intensity λi whenever
J(t) is in state i. The interruption period denoted by TINT is a nonnegative
random variable with Bij(y)def=P[TINT � y, J(TINT) = j|J(0) = i], B̄ij(y)def=1−
Bij(y), bij(y)def= ∂

∂yBij(y), B̄i(y)def=
∑

j∈J B̄ij(y), ηB:ij(y)def= bij(y)

B̄i(y)
and βij(v)def=∫ ∞

0 e−vybij(y)dy. The matrices for bij(y) and βij(v) are defined as b(y) and
β(v) respectively. During an interruption period with J(t) in state j, the
interruption period has the competing hazard rates ηB:jk(y) for completion
with the Poisson interruption intensity switched to λk upon completion ac-
cordingly. The service to the customer resumes from the point of the previous
interruption and this process continues until the service to the customer is
completed. Of interest, then, is the effective service time Seff representing the
time interval between the service commencement and the service completion.

We now introduce a stochastic process {I(t) : t > 0} defined by

I(t) =




0 if the service to the customer has been completed by time t ,

1 if the server is in service at time t ,

2 if the server is in an interruption period at time t .
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Since the service to the customer commences at time t = 0, one has I(0) = 1.
The cumulative service time given to the customer until time t is denoted
by X(t) provided that I(t) ∈ {1, 2}. When I(t) = 2, Y (t) is defined as the
elapsed time since the last service interruption and Y (t) = 0 if I(t) �= 2. The
state 0 of I(t) is absorbing and both J(t) and X(t) freeze as soon as I(t)
enters this absorbing state.

In the next section, we analyze the multivariate stochastic process [X(t), Y (t), I(t), J(t)],
which is Markov, by examining its probabilistic flow in the state space R+ ×
R+×{0, 1, 2}×J . This in turn enables one to derive the matrix transform in-
volving Seff, J(0) and J(Seff). A typical sample path of [X(t), Y (t), I(t), J(t)]
is depicted in Figure 1.

：Effective Service Time ：Effective Service Time 

Fig. 1. Typical sample path of [X(t), Y (t), I(t), J(t)]

3 Analysis of effective service time with MMPP
service interruptions

The key entities of interest for analyzing Seff are S
eff

(t) = [Seff:ij(t)];Seff:ij(t)
def=

P[Seff � t, J(Seff) = j|I(0) = 1, J(0) = i] and

σ
eff

(s)def=
∫ ∞

0

e−sts
eff

(t)dt ; s
eff

(t)def=
d

dt
S

eff
(t) . (1)

For the multivariate process [X(t), Y (t), I(t), J(t)], let F
0
(t) be defined

by F0:ij(t)
def=P[I(t) = 0, J(t) = j|I(0) = 1, J(0) = i] and F

0
(t)def=[F0:ij(t)].

We also define

f̂
0
(s)def=

∫ ∞

0

e−stf
0
(t)dt ; f

0
(t)def=

d

dt
F

0
(t) . (2)

Since state 0 is the unique absorbing state of I(t) and J(t) freezes as soon
as I(t) enters state 0, one sees that Seff:ij(t) = P[Seff � t, J(Seff) = j|I(0) =
1, J(0) = i] = P[I(t) = 0, J(t) = j|I(0) = 1, J(0) = i] = F0:ij(t). From
(1) and (2), this equation leads to σ

eff
(s) = f̂

0
(s). In order to find σ

eff
(s),

we define F1:ij(x, t)def=P[X(t) � x, I(t) = 1, J(t) = j|I(0) = 1, J(0) = i],
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F
1
(x, t)def=[F1:ij(x, t)] and f

1
(x, t)def= ∂

∂xF
1
(x, t). The matrix Laplace trans-

form of f
1
(x, t) is defined by f̂

1
(x, s)def=

∫ ∞
0 e−stf

1
(x, t)dt. When I(t) = 2, let

τ1→2 be the time at which the current interruption occurred, i.e., τ1→2
def= sup{τ :

Y (τ−) = 0, Y (τ+) > 0, 0 � τ � t}. By using τ1→2, the joint distribution
function and the joint density function of [X(t), Y (t), I(t), J(t)] when J(t) is
in state r at the time of occurrence of the current interruption are denoted by
F2:ir(x, y, t)def=P[X(t) � x, Y (t) � y, I(t) = 2, J(τ1→2) = r|I(0) = 1, J(0) = i]
and f2:ir(x, y, t)def= ∂2

∂x∂y F2:ir(x, y, t) .
We begin our analysis by investigating the probabilistic flow of the mul-

tivariate process [X(t), Y (t), I(t), J(t)] centering on the state of I(·) at 1
given that I(0) = 1 and J(0) = i. For the multivariate process to be at
(x+∆, 0, 1, j) for x > 0 at time t+∆, one of the following three cases should
have happened.

• The multivariate process was already at (x, 0, 1, j) at time t and no state
change has occurred in [t, t+∆) except X(t) = x increased to X(t+∆) =
x + ∆.

• The multivariate process was at (x, y, 2, j) at time t with J(t − y) = r
for some r ∈ J , where τ1→2 = t − y and y is the length of the current
interruption. Then the interruption period has been completed in [t, t+∆)
and J(t) has moved from r to j at the competing hazard rate of ηB:rj(y).

• The multivariate process was at (x, 0, 1, m) at time t for some m ∈ J ,
and J(t) has moved from m to j in [t, t + ∆) with I(t) in state 1.

Combining these three cases, one observes that f1:ij(x+∆, t+∆) = [1−{λj +
νj+ηA(x)}∆]f1:ij(x, t)+

∫ ∞
0

∑
r∈J f2:ir(x, y, t)ηB:rj(y)∆dy+

∑
m∈J f1:im(x, t)νmj∆+

o(∆) for x, y > 0. By dividing both sides of this equation by ∆ and letting
∆ → 0, one has

( ∂

∂x
+

∂

∂t

)
f1:ij(x, t) = −{

λj + νj + ηA(x)
}
f1:ij(x, t)

+
∫ ∞

0

∑
r∈J

f2:ir(x, y, t)ηB:rj(y)dy +
∑

m∈J
f1:im(x, t)νmj . (3)

In order to understand the probabilistic flow of the multivariate process
centering on the state of I(·) at 2, we suppose that [X(t), Y (t), I(t), J(t)] =
(x, y, 2, j) with J(τ1→2) = r. This means that τ1→2 = t − y and the cur-
rent interruption lasts with probability B̄r(y). Consequently, one sees that
f2:ir(x, y, t) = λrf1:ir(x, t − y)B̄r(y). Substitution of this expression into (3)
yields that ( ∂

∂x+ ∂
∂t)f1:ij(x, t) = −{λj+νj+ηA(x)}f1:ij(x, t)+

∫ ∞
0

∑
r∈J λrf1:ir(x, t−

y)brj(y)dy+
∑

m∈J f1:im(x, t)νmj . This differential equation can be rewritten
in matrix form as
( ∂

∂x
+

∂

∂t

)
f

1
(x, t) = −f

1
(x, t)

{
Λ

D
− Q + ηA(x)I

}
+

∫ ∞

0

f
1
(x, t − y)Λ

D
b(y)dy , (4)
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where I is the J-dimensional identity matrix. We are now in a position to
prove the key theorem of this paper.

Theorem 1 For σ
eff

(s) defined in (1), one has σ
eff

(s) = α(ζ(s)), where

ζ(s)
def
=sI − Q + Λ

D
− Λ

D
β(s).

Proof. By taking Laplace transforms of (4) with respect to t, one finds that
∂
∂x f̂

1
(x, s)+f̂

1
(x, s)H(x, s) = 0 since f

1
(x, 0+) = 0, where H(x, s)def=ηA(x)I+

ζ(s). In this matrix differential equation, multiplying e
� x
0 H(z,s)dz from the

right and integrating with respect to x lead to

f̂
1
(x, s)e

� x
0 H(z,s)dz = f̂

1
(0+, s) . (5)

One has f
1
(0+, t) = δ(t)I so that the corresponding Laplace transform with

respect to t is given by f̂
1
(0+, s) = I. Substituting this expression into (5),

one has f̂
1
(x, s)e

�
x
0 H(z,s)dz = I. Since Ā(x) = exp[− ∫ x

0
ηA(τ)dτ ], multiplying

e−
� x
0 H(z,s)dz from the right then yields

f̂
1
(x, s) = Ā(x)e−ζ(s)x

. (6)

We now turn our attention to analysis of f̂
0
(s). One sees that f

0
(t) =∫ ∞

0
f

1
(x, t)ηA(x)dx. Taking the Laplace transform with respect to t in this

expression, it can be seen that σ
eff

(s) = f̂
0
(s) =

∫ ∞
0 f̂

1
(x, s)ηA(x)dx. By

substituting (6) into this equation, the theorem follows.
Let µeff:i:n be the n-th moment of Seff and let µ

eff:n
be the corresponding

vector. The following theorem then holds from Theorem 1.

Theorem 2 Let µ̂
A:k

def
=

∫ ∞
0

e
Qx

xka(x)dx, µ
B:k

def
=[E[T k

INT
|J(TINT) = j, J(0) =

i] = (−1)n( d
ds )nβ(s)|s=0 and 1

def
=[1 · · · 1]�.

a) µ
eff:1

= (I + Λ
D

µ
B:1

)µ̂
A:1

1

b) µ
eff:2

= {(I + Λ
D

µ
B:1

)2µ̂
A:2

+ Λ
D

µ
B:2

µ̂
A:1

}1

4 Numerical examples

In this section, numerical examples are provided by using Theorem 2. For the
underlying Markov chain, the uniformization procedure of Keilson(1979) is
employed, where ν � max{νi}i∈J and a

ν
= [aν:ij ]

def=I+ 1
ν Q. We consider α(s)

in the following three cases: αIFR(s) = θα:1
s+θα:1

· θα:2
s+θα:2

, αDFR(s) = qα
θα:1

s+θα:1
+

(1 − qα) θα:2
s+θα:2

and αCFR(s) = ν
s+ν . βIFR:ij(s), βDFR:ij(s) and βCFR:ij(s) are
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defined similarly. The parameters are set in such a way that the underlying
distributions for α(s) (or βij(s)) share the same mean, where

ν =

�
����

0.1 0.2 0.2 0.2 0.2
0.1 0.1 0.3 0.1 0.1
0.2 0.1 0.1 0.1 0.2
0.3 0.2 0.1 0.1 0.2
0.2 0.2 0.2 0.2 0.1

�
���� , Λ

D
=

�
�����

2 0

1
2

4
0 3

�
�����

,

ν = 1 and [pi(j)] = 0.2I. We also set (θα:1, θα:2, qα) = (1.000102, 100, 0.99),

[θβ:ij1] =

�
����

1 100 100 100 100
2.02 100 100 100 100
100 100 100 100 100
100 100 100 100 100
100 100 100 100 100

�
���� , [θβ:ij2] =

�
����

100 1.005 1.005 1.005 1.005
100 0.5013 0.6689 2.0202 2.0202

1.005 2.0202 0.6689 2.0202 0.6689
0.669 1.005 2.0202 1.005 1.005
1.005 1.005 1.005 1.005 1.005

�
���� ,

and qβ = 0.99. The mean and variance of the effective service time are plotted
in Figure 2. When βij(s) = βIFR:ij(s), the changes of the mean and the
variance are consistent with those of λj . When βij(s) = βDFR:ij(s), the mean
and the variance are extremely small compared with those for the case of
βij(s) = βIFR:ij(s), βCFR:ij(s).
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Fig. 2. Mean and variance of effective service time
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