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Abstract

This paper proposes a model of learning about a game. Players initially have little

knowledge about the game. Through playing the identical game repeatedly, each

player not only learns which action to choose but also constructs his personal view

on the game. The model is studied using a hybrid payoff matrix of the prisoner’s

dilemma and coordination games. Results of computer simulations show (1) when all

the players are slow in learning the game, they have only a partial understanding of

the game, but may enjoy higher payoffs than the cases with full or no understanding

of the game; (2) when one of the players is quick in learning the game, he obtains a

higher payoff than the others. However, all of them can receive lower payoffs than the

case where all the players are slow learners.
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1 Introduction

In standard game theory, players are assumed to have well-formed beliefs and knowledge

of the structure of the game they play. The origin of their beliefs and knowledge is

rarely studied. The validity of this assumption is, however, questioned in experimental

economics.1 According to Camerer (2003, p. 474), “what game do people think they are

playing?” is one of the top 10 most important open research question in experimental

game theory.

If players do not understand a game completely, or misunderstand it, how do they

learn about the true game? In the extensive literature, both theoretical and experimen-

tal, on learning in games, this question has been seldom addressed. The literature has

mainly focused on learning about how to play a game rather than on learning about the

game itself.2 An exception is Oechssler and Schipper (2003). They conducted a set of

experiments in which subjects did not know the payoffs of their opponent and were given

incentive to learn about them in 2 × 2 games. The authors constructed the games that

subjects perceived they were playing—the subjective games—from the data. They found

that the subjective games differed frequently from the games actually being played.

In this paper, we study a model in which players play a normal form game repeatedly

and learn not only about how to play the game but also about the game itself. A normal

form game consists of the set of players, the set of available actions (or strategies), and the

payoff function for each player. Therefore, learning about a game means that players do not

know some of these components and learn about them. In this paper, we assume a player

knows about the set of actions available to himself and the number of opponents. However,

initially he does not know about the set of actions available to his opponents or anyone’s

payoff functions. The player learns about them—in particular, his own payoffs associated

with possible outcomes—by playing the game repeatedly. In this paper, therefore, players

1Camerer (2003, p. 474) gives an example of a student who participated in an experiment at Caltech.
The students confused the coordination game used in the experiment with the prisoner’s dilemma game,
and “defected” continuously.

2Fudenberg and Levine (1998) provided a detailed survey of the theoretical literature of learning in
games. See, for example, Crawford (1995), Cheung and Friedman (1997), Mookherjee and Sopher (1997),
Erev and Roth (1998), and Camerer and Ho (1999) for the experimental learning literature. Hanaki, Sethi,
Erev, and Peterhansl (2005) proposed a model in which players learn about which repeated game strategies
to use.
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are learning about different aspects of a game than those that were studied in Oechssler

and Schipper (2003).

To model how players build their personal views about a game from playing it repeat-

edly, we have adopted an idea from cognitive science, namely, the role that autobiographical

memory plays in learning from everyday life events (Linton, 1982; Wagenaar, 1986). An

autobiographical memory is a memory of frequently repeated events. It is an abstract

script so that the details, such as the date of occurrence, are lost, and only the general

facts about the events remain. In order to replicate such a way of learning about events in

our model, players are assumed to have two types of memories, short-term and long-term

memories.3

A short-term memory is a temporary memory of an outcome of playing the game,

i.e., the actions chosen by players and the payoff received by the player.4 The short-term

memory remains in the player’s mind only for a certain number of periods, and vanishes

after that. If the same outcome is repeated frequently enough while short-term memories

of it remain in the player’s mind, the outcome will be kept as a long-term memory. In

other words, an outcome of the game will stay in the player’s mind as a long-term memory,

if it has been experienced frequently enough during the specified periods. A long-term

memory permanently associates, in the mind of the player, an outcome of the game with

a payoff. Once an outcome of the game is engraved in the player’s mind as a long-term

memory, it remains there forever, and we say that he has learned the part of the game

corresponding to it. The personal view of a player about the game is simply the part of

the game he has learned.

In addition to learning about the payoffs, players learn which action to choose. The

latter is modeled based on the reinforcement learning model. When a player does not

know any of the payoffs, only the realized payoffs will be utilized. As the player learns

some parts of the game, he starts to infer what the payoffs could have been if he had

3The model of the mind’s memory system composed of short-term and long-term memories was first
proposed by James (1890) and established by Atkinson and Shiffrin (1968). Long-term memory can be
classified into episodic memory and semantic memory (Tulving, 1972). Autobiographical memory is a type
of episodic memory for information related to oneself (Brewer, 1986).

4In general, the word “memory” can mean either a storage of information or information itself. In this
paper, we mainly use “memory” in the latter sense.
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acted differently at least for the parts of the game he knows. Therefore, learning about

performance of actions will be based not only on the realized payoffs but also on the forgone

payoffs where possible. We have studied this model in a 3 × 3 game that embeds both a

prisoner’s dilemma and a coordination game. Through a series of computer simulations

of the model, we demonstrate what kind of personal views the players tend to form and

what kind of behavior emerges when players’ personal views and their behavior coevolve.

We find that, when all the players are very slow in learning about a game, they will only

have a limited understanding (a partial view) of the game. Such a limited understanding,

however, can be beneficial for them. They may enjoy higher payoffs than the case of full

or no understanding of the game. Because the players enjoy high payoffs, their behaviors

do not change. Because their behaviors do not change, neither do their personal views.

Therefore, their views remain partial. When one of the players is quick in learning about

a game, he can obtain a higher payoff than the other players who are slow in learning.

However, in this case, all the players, even the fast-learning player, may obtain lower

payoffs than in the case where all the players are very slow learners.

The rest of the paper is organized as follows. Section 2 presents the model in de-

tail. Results of the model simulation are summarized in Section 3. Section 4 offers an

explanation of the results, and Section 5 concludes.

2 A Model of Learning about a Game

We consider a two-person game. The set of players is {1, 2}, and each player i ∈ {1, 2}

has the set Si of available actions. Initially, each player only knows the set of actions that

is available to him, but he does not know the action sets of the others nor the payoffs, i.e.,

he does not know the game he is facing. Through playing the game repeatedly, players not

only learn which action will bring about higher payoffs but also form their views of the

game they are playing. Below, we first discuss how we model the formation of personal

views by players, and the representation of such views. Once we define a player’s personal

view of the game, we formulate how the player learns which action to choose based on the

past outcomes and his view of the game.
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2.1 Formation of personal views

We assume that a player has two types of memories, short-term and long-term memories.

A short-term memory is a memory of an outcome of playing the game, i.e., the actions

chosen by players and the payoff received by the players. The short-term memory remains

in the player’s mind only for a certain number of periods, and vanishes after that. If the

same outcome is repeated frequently enough while short-term memories of it remain in

the player’s mind, it will be kept as a long-term memory. Once an outcome of the game

is engraved in the player’s mind as a long-term memory, it remains there forever, and we

say that he has learned the part of the game corresponding to it.

More precisely, player i is characterized by his short-term memory length mi and

cognition threshold ki(≤ mi). The short-term memory length is the number of periods

before a short-term memory vanishes from his mind. The cognition threshold represents

the number of repetitions needed for an outcome to be kept as a long-term memory.

Because a short-term memory vanishes after mi periods, an outcome (si, sj) will stay in

i’s mind as a long-term memory, if it has been experienced ki times in the mi most recent

interactions. Once the outcome (si, sj) is recorded as a long-term memory, the player

knows the payoff he can receive if the outcome is realized in the future.

The transformation of an outcome of the game in the mind of a player from a short-term

memory to a long-term memory in this paper plays a similar role as in the autobiographical

memory in cognitive science. The autobiographical memory is the memory of everyday life

events. As shown by Linton (1982) and Wagenaar (1986), this memory keeps a repeated

event as an abstract script. That is, when keeping such repeated events, details such

as date of occurrence are lost, and only the general facts about the events remain. In

addition, if an event is not repeated, the event will not remain as an autobiographical

memory.

In this paper, a player’s personal view of the game will be defined based both on the

objective payoff matrix and the set of long-term memories in his mind. Because the set of

long-term memories in the player’s mind may change over time, so does his personal view

of the game.
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Let Π be the objective payoff matrix of the game under consideration, and let Πi

represent the part of the payoff matrix that corresponds to what player i receives. Namely,

in a two person game,

Πi =


πi(si

1, s
j
1) . . . πi(si

1, s
j
nj )

...
. . .

...

πi(si
ni , s

j
1) . . . πi(si

ni , s
j
nj )

 ,

where ni and nj are the numbers of actions in Si and Sj , respectively, and πi : Si×Sj → R

is player i’s payoff function. We assume that πi(si, sj) ̸= 0 for all si ∈ Si, sj ∈ Sj , i, j ∈

{1, 2} with j ̸= i. This is because we assign a special meaning to value zero in the

subjective payoff matrix as defined below.

Let Li(t) be the matrix that represents the state of the long-term memories in the

mind of player i at period t, where each element of the matrix takes value zero or one;

Li
si,sj (t) ∈ {0, 1}. Li

si,sj (t) takes value zero when outcome
(
si, sj

)
is not in player i’s mind

as a long-term memory at period t, and it is one otherwise. We assume that initially players

do not know about any of the outcomes; that is, Li
si,sj (0) = 0 for all (si, sj) ∈ Si × Sj .

The personal view of the game for player i at period t, Π̃i(t), can be defined as:

Π̃i(t) = Li(t) · Πi. (1)

Therefore, Π̃i
si,sj (t) is zero when player i has not learned of the outcome

(
si, sj

)
at period

t, and it is equal to πi(si, sj) otherwise. We call this matrix the subjective payoff matrix

for player i at period t. Now we proceed to discuss how players learn which action to

choose.

2.2 Learning about performance of actions

We assume that a player’s recent experiences from choosing (as well as not choosing) an

action are summarized by his “attraction” for the action. In each period, players choose

their actions based on their attractions for each action. It is through the evolution of

attractions that players learn.
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Let Ai
s(t) denote player i’s attraction for action s ∈ Si at period t. The probability

that player i chooses action s at period t, pi
s(t), depends on the player’s attraction as

follows:

pi
s(t) =

eλiAi
s(t)∑

k∈Si eλiAi
k(t)

. (2)

The parameter λi in the logistic transformation represents the extent to which actions

with higher attractions are favored in action choice. When λi = 0, all actions are equally

likely to be chosen regardless of their attraction. As λi becomes larger, actions with

higher attractions become disproportionally more likely to be chosen. In the limiting case

where λi → ∞, the action with the highest attraction is chosen with probability one. The

logistic transformation introduced here is common in the literature on learning in games

as well as experimental game theory to model better the action choices of subjects in

laboratory experiments (see, for example, McKelvey and Palfrey, 1995; Erev and Roth,

1998; Camerer, 2003). We assume that all the actions have the same attraction for all

the players at the beginning of the game, i.e., Ai
s(0) = 0 for all i and s ∈ Si. Therefore,

initially, all the actions are equally likely to be chosen regardless of λi.

Attractions evolve as follows:

Ai
s(t + 1) =

1
hi

hi−1∑
τ=0

Ri
s(t − τ), (3)

where hi = min(mi, t + 1).5 Ri
s(t) is a stimulus the player receives for action s at period

t, which depends on the outcome of the game as well as the player’s understanding of the

game in period t in the following manner:

Ri
s(t) =


πi(si(t), sj(t)) if s = si(t)

Π̃i
s,sj(t)

(t) otherwise,
(4)

where si(t) represents the action chosen by player i in period t. Equation (4) states that

the stimulus player i receives for action s ∈ Si at t is the realized payoff when he chooses

s at period t, i.e., s = si(t), regardless of the status of long-term memories in i’s mind. If

5hi = min(mi, t+1) is to take care of the early periods so that the game has not been played mi times.
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the player i does not choose s at period t, then the stimulus follows i’s subjective payoff

matrix. Therefore, if the payoff consequence of (s, sj(t)) is in i’s mind as a long-term

memory, then the stimulus for action s will be the forgone payoff, i.e., the payoff player i

could have obtained if he had chosen action s in period t, given the action chosen by the

opponent in that period, sj(t). Otherwise, the stimulus will be zero.

In this definition of stimulus, we are assuming that once a player understands some

of the payoffs of the game, he can infer what the payoffs could have been if he had acted

differently for the part of the game he knows. For the parts of the game he does not know,

he cannot make such inferences.

The proposed model of learning about performance of actions builds on two models of

action learning commonly studied in the literature: learning based only on realized payoffs

(see, e.g., Erev and Roth, 1998) and learning based on both forgone and realized payoffs

(see, e.g., Camerer and Ho, 1999). The bridge between these two in our model is the long-

term memories or personal views. Indeed, when Li
si,sj (t) = 0 for all t, (si, sj) ∈ Si × Sj ,

players in our model learn about performance of actions based only on realized payoffs.

In contrast, when Li
si,sj (t) = 1 for all t, (si, sj) ∈ Si × Sj , players always learn based on

both realized and forgone payoffs.6 It is the dynamics of long-term memories that makes

our model different from existing learning models. In the next section, we show the results

of computational simulation of our model.

3 Simulation Results

We consider symmetric 3×3 games in this paper. Each player i ∈ {1, 2} has three available

actions {si
1, s

i
2, s

i
3}. The objective payoff matrix Π with a parameter a ∈ (0, 0.5) is given

as follows.

6As shown by Camerer and Ho (1999), when the learning is based both on realized and forgone payoffs,
the behavior the model generates will be equivalent to the one generated by fictitious play with probabilistic
action choice.
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s2
1 s2

2 s2
3

s1
1 1 − a, 1 − a 0, 1 1, 0

s1
2 1, 0 a, a a, 0

s1
3 0, 1 0, a 1 − a, 1 − a

As mentioned in the previous section, we have given a special meaning to the zero in

the subjective payoff matrix, the payoff consequences of outcomes that are not kept as

long-term memories. In order not to have zero in the objective payoff matrix, we added

b = 0.01 to all the payoffs.7 Note that b is not shown in the above payoff matrix for clarity

of exposition. The unique pure Nash equilibrium of this game is (s1
2, s

2
2) with payoff (a, a).

The game is constructed so that a prisoner’s dilemma game (four cells in the upper

left corner) and a coordination game (four cells in the lower right corner) are embedded.

This is to investigate the effect of personal views in our model. As players learn the

game, they may see themselves facing a prisoners’ dilemma-type situation, a coordination

game-type situation, or something else. Depending on how players understand the game,

their behaviors may vary. The parameter a determines the severity of the dilemma in the

prisoner’s dilemma game as well as the risk–payoff trade-off in the coordination game. In

the prisoner’s dilemma game embedded here, the lower a is, the larger the aggregate loss

of not choosing (s1
1, s

2
1) becomes. In the embedded coordination game, if 1/3 < a < 0.5,

(s1
2, s

2
2) is the risk-dominant equilibrium while (s1

3, s
2
3) is the payoff-dominant equilibrium.

It is interesting to see what kind of views players construct and what kind of behavior

they learn over time under various values of a.

In the simulation analysis below, we first focus on the cases where all the players have

the same short-term memory length, mi = m, and the same cognition threshold, ki = k.

We then proceed to the cases where players have the same short-term memory length but

different cognition thresholds. Throughout the paper, we assume that the sensitivity of

action choices to the attractions are the same across players, λi = λ for all i ∈ {1, 2}.

7The results remain the same if we subtract b = 0.01 from all the payoffs.
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Figure 1: The evolution of the long-term memory (top) and the corresponding frequencies
of realized outcomes (bottom) from a single simulation run. m = 5, k = 3, λ = 5.0,
a = 0.25. The black cells represent those outcomes recorded as long-term memories.

3.1 Case of identical memory length and threshold

We first consider the case where the short-term memory length of the players and their

cognition thresholds are identical across them. In such cases, we have four parameters in

our model: a defines the payoff matrix, m and k determine the length of the players’ short-

term memory and their cognition threshold, and λ governs the importance of attractions in

action choices. We will show results based on a particular set of parameter values (m = 5,

λ = 5.0, a = 0.25 while varying k). The dependencies of the results on the parameter

values are discussed in the appendix.

Figure 1 shows an outcome of a simulation run.8 The parameters are set so that m = 5,

k = 3, λ = 5.0, and a = 0.25. To illustrate the evolution of players’ long-term memories

8A single simulation run consists of 1000 interactions by a pair of players. One period in the simulation
corresponds to one interaction by the pair of players.
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(top panel), the outcomes that are kept as long-term memories at a given point in time are

shown by the black cells. Nine cells in the objective payoff matrix are numbered from 1 to

9 as shown in the status of long-term memories at t = 0. The frequencies of realization of

each outcome of the game are represented by the height of the corresponding bars in the

bottom panel. In this simulation run, outcome 1 has been realized with a high frequency

in earlier periods. As a result, it became a long-term memory of the two players. Between

period 400 and 500, however, because of a player’s deviation from playing action 1, the

players learned other outcomes. Consequently, the behaviors of the players change quite

drastically in the later periods. As one can see from the figure, in the later period, outcome

5, which is the Nash equilibrium of the game, is realized with the highest frequency.

The result in Figure 1 is just an example of how the players’ understanding of the

game and their behaviors coevolve as players repeatedly play the game. However, it is

not the representative result. In fact, there can be many other patterns of coevolution.

Instead of enumerating all the possible results, we focus on averaged results9 below.

Figure 2 shows the results of simulations for a = 0.25. In each figure, the average

payoffs of the row-player over time (top),10 the average status of long-term memories at

t = 500 (bottom), and the average frequencies of realized outcomes for 500 ≤ t ≤ 1000

(middle) are shown for k = 1 (left), k = 3 (center), and k = 5 (right). Except for the

average status of the long-term memories, the outcome of the two models of learning, the

one based only on realized payoff (RL model) and the other based on both realized and

forgone payoff (FP model) are reported.11

In the top panel of the figure, the outcomes from the three models are shown. The

average payoff of the row-player from the RL model (“RL players”) is shown with solid

gray, and that from the FP model (“FP players”) is shown with dashed gray. The result

of our model (game learning model, “GL players”) is shown in solid black. The middle

panel shows, by the height of the bars, the frequencies with which outcomes corresponding

9For each set of parameter values, we take the average of the results generated by 100 simulation runs,
while giving varying random seeds for each run.

10The average payoff of the column-player is very similar to that of the row-player.
11The two models considered in this paper are those with a probabilistic action choice and fixed memory

length. In both of these models, actions are chosen based on the attraction following equation (2) while
the attraction evolves following equation (3) except that the status of long-term memories is modified as
discussed in the main text above.
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Figure 2: Average payoff of the row-player over time (top), average frequencies of realized
outcomes (middle), and average status of long-term memories (bottom) for various k.
m = 5, a = 0.25, λ = 5.0. For the average payoff, the result of our model is in solid black,
the solid gray represents the RL model, and the dashed gray represents the FP model. For
the average status in the long-term memories, the darker gray corresponds to the higher
likelihood that the outcome is kept as a long-term memory, which is also shown by the
height of bars.
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to cells numbered from 1 to 9 are realized. The FP in the figure stands for the outcome

of the “FP model” while RL stands for that of the “RL model”. In the bottom panel,

the darkness of a cell and the corresponding height of the bars show the proportion of the

simulation runs for which the outcome was recorded as a long-term memory at t = 500.

When k = 1, one can see that the payoff received by GL players quickly converges to

those received by FP players. When k = 1, players learn all the payoffs of the game quite

quickly. As one can see in the figure, by t = 500, all the payoffs are known by the players

almost all the time.12 Once GL players learn of all the payoffs, their behaviors become

equivalent to those of FP players.

The convergence in the average payoff is much slower in the case of k = 3. In this

case, players do not learn all the payoffs as in the k = 1 case. Players learn, however,

the outcomes 2, 4, 5, 6, and 8 by t = 500 in the majority of the simulation runs. The

result shows that such a partial understanding is enough for players to choose the Nash

equilibrium action with a high probability.

Do partial understandings of the game always lead players to choose the Nash equi-

librium action with a higher likelihood? The results from the k = 5 case shows that the

answer is no. When k = 5, GL players receive higher payoffs than both RL and FP play-

ers. The partial understandings of the game that resulted in this case gives more benefits

to players than the full or no understanding of the game. The figure shows that players

learn outcome 1, which Pareto dominates Nash equilibrium outcome 5, in the majority of

simulation runs. While outcomes 5 and 9 are also learned, such cases are infrequent.

The result comes from both a partial view of the game and the players’ limited ability

to acquire the view. As mentioned in Section 2, it is hard for GL players with high

cognition thresholds, k, to keep the outcomes as a long-term memory. Outcome 1 realized

by these players is stable once it becomes a long-term memory. This is because it is hard

for player 1 (player 2) to encounter outcome 4 (2) repeatedly enough to learn that it is

more attractive than outcome 1, which is already engraved in his mind as a long-term

memory.

It should be noted that players’ action choices and their understandings of the game

12In fact, when k = 1, players understand all the payoffs by period 100 in most of the simulations.
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coevolve in our model. Therefore, not only do players benefit from their limited under-

standing of the game, but also, because they benefit from such a limited understanding,

their behaviors do not change. Therefore, their views remain partial.13

This result is quite interesting and illuminates the possibility that as we live in a very

complex society, it may not be feasible for us to learn the true or complete interactive

environment that we face. Our understanding of the environment may be very limited,

but as long as we are satisfied with the outcomes, we do not actively try to learn the true

environment (or do not try and see what will happen if we do something different from

what we normally do). Therefore, our understandings remain limited. Of course, it is

quite possible that, because of our limited understanding and the lack of exploration, we

are not receiving a higher payoff, which could be obtainable if we really understand the

complete environment.

3.2 Case of identical memory length but different thresholds

In the previous subsection, we have seen the case where players have identical short-term

memory length m and cognition threshold k. When all the players are slow in constructing

their personal view of the game (k close to m), they can obtain a higher payoff than when

they are quick in learning the game structure (small k). What happens if two players

who have the same short-term memory length m1 = m2 = m, but different cognition

thresholds, interact? We consider such cases in this subsection.

Figure 3 shows the typical dynamics of long-term memory of two players and the

frequencies of realized outcomes when player 1’s cognitive threshold is 1, k1 = 1, and that

of player 2 is 5, k2 = 5. Both the players have the same short-term memory length, m = 5.

The sensitivity of action choices to attractions, λ, are set equal to 5, and the payoff matrix

is such that a = 0.25.

In this particular simulation run, both players learn outcomes 1 and 5 by period 100.

While player 2 only learns these two, player 1 learns all the outcomes except for outcome 9.

By period 500, player 1 learns all the outcomes, but player 2’s understanding still remains

13The dependency of the results on parameter values are discussed in the appendix, which shows that the
result holds in quite a large parameter space as long as players’ cognition thresholds, k, are high enough,
i.e., close to their short-term memory lengths, m.
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Figure 3: The evolution of the long-term memory for a player with low k, k1 = 1, (top) and
high k, k2 = 5 (middle) and the corresponding frequencies of realized outcomes (bottom)
from a single simulation run. m = 5, λ = 5.0, a = 0.25. The black cells represent the
outcomes that are kept as long-term memories.
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limited to outcomes 1, 4, and 5.

The dynamics of the frequencies of the realized outcomes are quite interesting. In the

first 100 periods, it was outcome 1 that had been realized the most. Beyond period 100,

outcomes 4 and 5 are realized with higher frequencies than outcome 1. It should be noted

that because player 1 knows almost all the payoffs, when both players are happily choosing

action 1 (therefore outcome 1 is realized), player 1 can infer that if he chooses action 2,

while player 2 keeps choosing action 1, he can get a higher payoff (associated with outcome

4). Therefore, there is a high chance that he will change his behavior. However, if player

1 indeed chooses action 2, player 2 may think that it is better to choose action 2 instead

of action 1. (Recall that player 2 knows the payoff associated with outcome 5!) Such

learning will result in both players indeed choosing action 2, i.e., the Nash equilibrium.

This example shows that even if only one of the players is quick in learning about the

game, two players may learn to choose the actions that correspond to the Nash equilibrium

outcome. It is not necessary that both the players be quick in learning about the game to

reach the Nash equilibrium.

Figure 4 shows the averaged results14 of the simulation runs. It shows, for three differ-

ent thresholds (k = 1, 3, 5) of player 1, average payoffs of players over time (top), average

frequencies of realized outcomes (middle), and average status of long-term memories for

two players (bottom). In these simulation runs, player 2’s thresholds are fixed at k2 = 5.

Other parameter values are m1 = m2 = 5, a = 0.25, and λ = 5.0. We are presenting the

k1 = k2 = 5 case as the benchmark.

In the top panel, the average payoff of the player with a lower k, player 1, is the solid

line, while that of the player with a high k, player 2, is the dashed line. In the figure,

player 1 receives a higher payoff than player 2. This is because a player who is quick

in learning about the game, and therefore better understands the game, can make more

sophisticated decisions than the other player.

However, interestingly, compared with the case where both players have a very high

cognitive threshold, k1 = k2 = 5, payoffs for both players are lower when one of the players

14As noted above, for each set of parameter values, we take the average of the results generated by 100
simulation runs, while giving varying random seeds for each run.
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Average Payoff of Players Over Time

k1 = 1 vs k2 = 5 k1 = 3 vs k2 = 5 k1 = 5 vs k2 = 5

250 500 750 1000
t

0.2

0.4

0.6

0.8

1
Payoff

250 500 750 1000
t

0.2

0.4

0.6

0.8

1
Payoff

250 500 750 1000
t

0.2

0.4

0.6

0.8

1
Payoff

Average Frequencies of Realization 500 ≤ t ≤ 1000

k1 = 1 vs k2 = 5 k1 = 3 vs k2 = 5 k1 = 5 vs k2 = 5

1 2 3 4 5 6 7 8 9

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

0.2

0.4

0.6

0.8

1

Average Status of Long-Term Memories at t = 500
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Figure 4: Average payoff of the row-player over time (top), average frequencies of realized
outcomes (middle), and average status of long-term memories (bottom) for three values
of k1. m1 = m2 = 5, k2 = 5, a = 0.25, λ = 5.0. In the top figure, the average payoff of
player 1 (low cognitive threshold) is the solid line, while that of player 2 (high cognitive
threshold) is the dashed line. For the average status in the long-term memories, the
darker gray corresponds to the higher likelihood that the outcome is kept as the long-term
memory. The same information is also shown by the height of bars.
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has a lower cognitive threshold. As seen above, the player with a low cognitive threshold,

player 1, learns almost all the outcomes while the player with a high threshold, player 2,

learns outcome 1. As player 1 takes action 2, the payoff that player 2 receives from using

action 1 decreases. As a result, player 2 also learns to take action 2 to get a higher payoff.

Once both the players learn the Nash equilibrium outcome, they do not deviate from it.

However, because the Nash equilibrium outcome is Pareto dominated, the payoffs of both

the players are lower.

Note also that when one of the players has a low k, the player with a high k also learns

the Nash equilibrium outcome much more often (see the bottom panel of the figure). In

addition, when a is smaller, the payoff difference between the player with a low k and the

player with a high k is larger. See the appendix for more discussion.

4 An Account for the Simulation Results

Why can a partial understanding of the game structure benefit players in the focal game,

and why do behaviors of players remain such that their understanding of the game remains

partial? In this section, we provide an explanation through a highly simplified analysis of

the case where players have an identical short-term memory length and cognition thresh-

old.

In our simulation, the model always seems to reach a steady state where probabilities

with which players choose their actions do not vary over time (at least, if we take averages

over several realizations). Here we restrict our analysis to such an average steady state.

Because the game in this paper is symmetric and the players have identical characteristics

(i.e., mi, ki, and λi are all the same across players), we focus on a symmetric steady state.

More rigorous and exact analysis is needed to understand fully the behavior of the model,

but the simplified analysis below can explain the main result in our simulation analysis,

namely, why partial understanding of a game can benefit players and why behaviors of

players remain such that their understandings of the game remain partial.

Let us start with considering the learning based only on the realized payoffs (RL
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model). The expected steady-state level of attractions, Ai
s, for action s in this case is:

Ai
s = pi

s

(
pj
1π(ai

s, a
j
1) + pj

2π(ai
s, a

j
2) + pj

3π(ai
s, a

j
3)

)
, (5)

where pi
s and pj

s are player i’s and j’s probabilities for choosing action s, respectively,

when t → ∞ in equation (2).

This is because, in this model, an action will not receive the stimulus unless it is

actually chosen, and when it is chosen, the expected value of the stimulus that the action

receives depends on the probabilities with which the opponent is choosing the actions.

Note that pj
s = exp(λAj

s)
P3

k=1 exp(λAj
k)

. Because, in the symmetric steady state, Ai
s = Aj

s(≡ ARL
s )

for s ∈ {1, 2, 3}, the expected levels of steady-state attractions for the RL model (ARL
s )

become:

ARL
1 = pRL

1 (pRL
1 (1 − a) + pRL

3 ),

ARL
2 = pRL

2 (pRL
1 + pRL

2 a + pRL
3 a),

ARL
3 = pRL

3 (pRL
1 + pRL

3 (1 − a)),

where pRL
s = exp(λARL

s )
P3

k=1 exp(λARL
k )

for each action s in the game. Here we have ignored b added to

the payoffs for clarity of exposition. Solving these equations for ARL
1 , ARL

2 , and ARL
3 gives

us the expected levels of attractions for each action in the steady state, and the expected

probabilities that players choose each action in the steady state follows immediately.15

In our model of game learning, players’ understanding of the game plays a role in

determining the expected steady-state attractions. For example, if the payoff associated

with (si
1, s

j
1) is the unique long-term memory in players’ minds, then the steady-state

attractions of our model (AGL
s ) become:

AGL
1 = pGL

1 (1 − a) + pGL
1 pGL

3 ,

AGL
2 = pGL

2 (pGL
1 + pGL

2 a + pGL
3 a),

AGL
3 = pGL

3 (pGL
1 + pGL

3 (1 − a)).

15It is possible that there are multiple steady states.

19



This is because action 1 will receive stimulus not only when outcomes (si
1, s

j
1), (si

1, s
j
2), and

(si
1, s

j
3) are realized but also every time the opponent chooses action 1. One can expect

from these equations that when players only learn of the payoffs associated with (si
1, s

j
1),

action 1 will have a higher steady-state attraction than the RL model and will be chosen

with a higher probability by players. As a result, (si
1, s

j
1) will be observed much more

frequently in our model than in the case of the RL model, and because players choose

other actions with a low probability, other outcomes are not realized frequently enough.

Therefore, their understanding of the game remains partial.

On the other hand, if players quickly learn the entire game, as in the k = 1 case, the

steady-state attractions of our model immediately become equivalent to those of learning

based on both realized and forgone payoffs (FP model). The expected attraction for action

s in the FP model is given by:

Ai
s = pj

1π(ai
s, a

j
1) + pj

2π(ai
s, a

j
2) + pj

3π(ai
s, a

j
3). (6)

This is because all the actions will always receive stimulus regardless of whether they have

been chosen or not. Therefore, the expected levels of steady-state attractions in the FP

model (AFP
s ) become:

AFP
1 = pFP

1 (1 − a) + pFP
3 ,

AFP
2 = pFP

1 + pFP
2 a + pFP

3 a,

AFP
3 = pFP

1 + pFP
3 (1 − a),

for the game when we ignore the b added to the payoffs. These expressions give the

largest weight to choosing action 2 for both of the players. Therefore, compared with the

RL model, the FP model results in players obtaining lower payoffs.

5 Summary and Conclusion

In this paper, we have presented a model of learning about a game. Players initially have

little knowledge about the game they play. They gain experience through playing the
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game repeatedly, and based on their experience, they not only learn which action will

bring about a higher payoff but also form their view about the game they are playing. We

show that, in the 3×3 game we have considered, which embeds both a prisoner’s dilemma

and a coordination game, players may benefit from having a very limited understanding

of the game when all the players have such a limited understanding. Their payoffs can be

higher than the cases where players have full or no understanding of the game. It should be

noted that personal views and behaviors of players coevolve in our model. Because players

enjoy a high payoff, their understanding of the game remains partial and vice versa. This

result suggests that players may live happily without fully understanding highly complex

strategic environments.

When one of the players has a much better understanding of the game than the other,

the one with the better understanding can enjoy a higher payoff than the one with less

understanding. However, their payoffs—even the payoffs of the player who better un-

derstands the game—can be lower than in the case where all the players have a limited

understanding. The behavior of the player who better understands the game can lead the

other player to respond in a way that lowers their payoffs. This, combined with the results

above, suggests that a benefit of ignorance may exist, but it exists only when everyone is

ignorant.

In this paper, we have considered a pair of players playing the game repeatedly. How-

ever, one can easily extend the framework presented here to the case where there are many

players to be matched with a few others. In such a case, it is possible to consider various

matching protocols: for example, players may be situated in a network and interact only

locally. The results here suggest that it is possible that players may form several different

“local views” of the same objective game. What will happen when there is occasional

random matching among those with different views? Are there views that can spread

much more easily than others? These are all interesting questions to investigate, but we

will leave them for future research.

It is also interesting to conduct laboratory experiments and examine how subjects

learn in the situation considered in this paper; namely, subjects are initially only informed

about the set of actions available to themselves, but they observe actions chosen by all
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the relevant players and the payoff received after each interaction. Do subjects behave in

the way that the model predicts? We also leave these questions for future research.
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A Dependency of the Results on Parameter Values

In the main text, we presented results under m1 = m2 = 5, a = 0.25, λ = 5.0. Here we

show what happens to the results if we change the parameter values.

Figures 5 and 6 show the results for the case where a = 0.05 and a = 0.45, respectively,

in the same format as Figure 2. As in the case discussed in the main text, when k = 1,

GL players quickly learn all the outcomes, and their behaviors converge to that of FP

players. When a = 0.45, there is not much difference in behavior among the GL, FP,

and RL players. It is also the case that among GL players, the differences in cognition

threshold k do not affect their behavior significantly. In all the models, players learn to

play the Nash equilibrium, and they learn the payoff associated with the Nash equilibrium

outcome almost all the time.

In these two figures, the GL players do not receive higher payoffs than FP or RL

players, contrary to what we have shown in the main text and Figure 2. What is the

range of a over which our main result holds? How about the range of λ? Figure 7 shows

the average payoff of players for various values of a holding λ constant at λ = 5.0 (top)

as well as various values of λ while holding a constant at a = 0.25. One can see that the

GL players receive higher payoffs than FP and RL players over quite a large parameter

space, in particular, 0.1 ≤ a ≤ 0.35 when λ = 5.0 and 3.0 ≤ λ ≤ 6.0 for a = 0.25. In

fact, we have experimented with other values of m, and qualitatively the same results can

be obtained: as k becomes closer to m, the GL players receive high payoffs while their

understanding of the game remains very limited, although the specific values of a and λ

for which such a result holds depend on m.

We have seen that when players have the same short-term memory length but different

cognition thresholds, the player with a low cognition threshold (the one who learns the

game quickly) receives a higher payoff than the one with a high cognition threshold. The

difference between the payoffs received by the two players is larger when the difference

between the two thresholds is large and also when a is low.

Figure 8 shows the results for simulation runs when m1 = m2 = 5, λ = 5.0 and

a = 0.05. As one can see, the lower is k1, the larger is the payoff difference between

24



Average Payoff of the Row-Player Over Time
k = 1 k = 3 k = 5

250 500 750 1000
t

0.2

0.4

0.6

0.8

1
Payoff

250 500 750 1000
t

0.2

0.4

0.6

0.8

1
Payoff

250 500 750 1000
t

0.2

0.4

0.6

0.8

1
Payoff

Average Frequencies of Realization in 500 ≤ t ≤ 1000

1        2        3

4        5        6

7        8        9
1 2 3 4 5 6 7 8 9

0.2

0.4

0.6

0.8

1
FP

1 2 3 4 5 6 7 8 9

0.2

0.4

0.6

0.8

1
RL

k = 1 k = 3 k = 5

1 2 3 4 5 6 7 8 9

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

0.2

0.4

0.6

0.8

1

Average Status of Long-Term Memories at t = 500
k = 1 k = 3 k = 5

1 2 3 4 5 6 7 8 9

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

0.2

0.4

0.6

0.8

1

Figure 5: Average payoff of the row-player over time (top), average frequencies of realized
outcomes (middle), and average status of long-term memories (bottom) for various k.
m = 5, a = 0.05, λ = 5.0. For the average payoff, the result of our model is in solid black,
the solid gray represents the RL model, and the dashed gray represents the FP model.
For the average status in the long-term memory, the darker gray corresponds to the higher
likelihood that the outcome is kept as a long-term memory, which is also shown by the
height of bars.
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Figure 6: Average payoff of the row-player over time (top), average frequencies of realized
outcomes (middle), and average status of long-term memories (bottom) for various k.
m = 5, a = 0.45, λ = 5.0. For the average payoff, the result of our model is in solid black,
the solid gray represents the RL model, and the dashed gray represents the FP model.
For the average status in the long-term memory, the darker gray corresponds to the higher
likelihood that the outcome is kept as a long-term memory. The same information is also
shown by the height of bars.
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Average Payoff of the row-player over time for various values of a
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Figure 7: Average payoff of the row-player over time for various a (top) and for various
values of λ (bottom). m = 5, k = 5, λ = 5.0 (top) and a = 0.25 (bottom). For the average
payoff, the result of our model is in solid black, the solid gray represents RL model, and
the dashed gray represents FP model.
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the two players. Furthermore, compared with what was shown in Figure 4, the payoff

differences between the two players are larger here.
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Average Frequencies of Realization 500 ≤ t ≤ 1000
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Average Status of Long-Term Memories at t = 500
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Player 2 (k2 = 5)
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Figure 8: Average payoff of the row-player over time (top), average frequencies of realized
outcomes (middle), and average status of long-term memories (bottom) for three values of
k1. m1 = m2 = 5, k2 = 5, a = 0.05, λ = 5.0. In the top panel, the average payoff of player
1 (low cognitive threshold) is in solid line, while that of player 2 (high cognitive threshold)
is in the dashed line. For the average status of the long-term memories, the darker gray
corresponds to the higher likelihood that the outcome is recorded as a long-term memory.
The same information is also shown by the height of bars.
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