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AbstratIn this paper, we �rst give asymptoti theorems for the framework proposed by Berry,Levinsohn, and Pakes (1995) to estimate the system of demand and supply models. Wethen generalize the idea given by Petrin (2002), whih extends the framework by adding newmoment onditions when demographially-ategorized purhasing pattern data are available.We also gives the asymptoti theorems to this GMM estimator and show that the use of theadditional moment onditions allows us to estimate of the demand side parameters morepreisely. Finally we run Monte Carlo experiments to evaluate these asymptoti theoremsand show that the additional summary information on the onsumer's hoie ontributes thepreision of the estimate.



1 IntrodutionReent studies, extending the framework proposed by Berry, Levinsohn, and Pakes (1995) (here-after, BLP (1995)), have been trying to integrate the information on onsumer demographis tothe utility funtions in order to make their models more realisti and onvining. For example,Nevo's examination on prie ompetition in the ready-to-eat ereal industry (Nevo 2000 and2001) uses individual's inome, age and a dummy variable indiating the individual is a hildor not in the utility funtion. The bakground behind this is that publi soures of informationsuh as CPS and IPUMS are widely available. Those soures an give us information on thejoint distribution of the U.S. household's demographis suh as inome, age of household's head,and family size.Some reent studies went further and try ombining those demographis with the informationon onsumer's hoie under the \extended" BLP frameworks. For instane, Petrin (2002),referring to Imbens and Lanaster (1994), tries to link demographis of new-vehile purhasersto the vehiles they purhased. Spei�ally, given a purhasing pattern suh as \buying aminivan," he proposes to math the model-predited average onsumer's demographis withthe average onsumer's demographis quoted from CEX automobile supplement in the GMMestimation. Petrin (2002)'s framework presupposes the market information on the populationaverage, whih is readily aessible through publi soures.Berry, Levinsohn, and Pakes (2004) (hereafter, BLP (2004)), on the other hand, uses detailedonsumer-level CAMIP data provided by General Motors, whih inlude not only individuals'hoies but also the hoies they would have made had the �rst hoie produts not been avail-able to them. In their new framework, the model-predited ovarianes between the �rst- andseond-hoie vehile harateristis and household attributes are put lose to those alulatedfrom CAMIP data as additional moment onditions in the GMM estimation. Although themethod proposed by BLP (2004) should improve the out-of-sample model's predition, it re-quires proprietary onsumer-level data, whih are not readily available to researhers, as theauthors themselves admitted in the paper: the CAMIP data \are generally not available toresearhers outside of the ompany" (page 79, line 30).Asymptoti Properties of the Estimator in the Previous StudiesThe moment onditions used in BLP (1995) are orthogonal onditions of the unobserved produtquality �j and the unobserved ost shifter !j with the orresponding instrumental variables zdjand zj . The moments are obtained by averaging �jzdj and !jzj over produts. As the numberof produts J grows large, BLP (1995) laimed that the GMM estimator is onsistent andasymptotially normal (CAN).In BLP (1995), �j are not obtained analytially, but numerially obtained as a solution of�(X; �;�d; PR) = sn. The market shares �j are approximated by the simulated values withrandom R draws of onsumers. This generates the simulation error in the evaluation of the �jand the !j. Furthermore, the sampling error produed by the use of the observed market sharessn, whih are typially alulated from random n draws of onsumers and thus not equivalentto the underlying true market shares s0, also enters the �j and the !j. As a result, what wean atually evaluate for the sample moments inlude the three distint randomness: stohastinature of the produt harateristis; randomness generated in the simulation proess; andrandomness generated in the sampling proess.In BLP (1995), the authors were aware that the number R of simulation draws and the size nof onsumer sample must grow at rates faster than the number J of produts to establish CANproperties of the GMM estimator. They also aknowledged that, even then, the asymptotivariane-ovariane matrix of the resulting estimator onsists of three distint omponents in1



responses to these three randomnesses. In the paper, they reported that estimating the randomoeÆient logit model for demand model would require n and R to grow on the order of J3, andthat the preise proofs for the asymptoti theorem of the GMM estimator were still in progress.In Petrin (2002), the additional moments are the set of funtions of the expeted value ofonsumer' demographis given spei� produt harateristis onsumers hose (e.g., expetedfamily size of households that purhased minivans). The evaluation of these new moments arealso a�eted by the aforementioned simulation and sampling errors. This is beause he evaluatesthe onditional expetations of onsumer demographis assuming that produt harateristis(X ; �) are given, and the � inludes the simulation and the sampling errors for the reasonselaborated at the beginning of this setion.In addition, the extra market information themselves possibly ontain another type of sam-pling error. This is beause the extra market information is typially estimate for the populationaverage demographis obtained from the sample of onsumers (e.g., CEX sample) separate fromthe one from whih the observed market share sn is alulated. This error may also a�et on theevaluation of the new moments. In summary eah of the three errors (the simulation error, thesampling error in the observed market shares, and the sampling error in the extra information)as well as the stohasti natures of the produt harateristis and the onsumer demographisare likely to a�et the new moment onditions. The estimator proposed by Petrin appears toassume that we are able to ontrol the impats from these errors. Unfortunately, Petrin (2002)did not provide any asymptoti theorems for the estimator.Berry, Linton, and Pakes (2004) presents the asymptoti theorem for the random oeÆientlogit models of demand estimated by the demand side moment onditions and showed the ratesof R and n at whih they are able to establish CAN properties of the GMM estimator relativeto J . However, the asymptoti theorem for the GMM estimator with the simultaneous use ofthe demand and the supply side moment onditions are yet to be known, although they laimedthat \it is straightforward to add the priing equation to the analysis" given in what follows(page 618, line 11).BLP (2004) laimed that if the number of onsumers sampled in the CAMIP data grow fasterenough when the number of produts grows large, the estimator with their new framework isalso onsistent and asymptotially normal. In the study, the authors take into aount thesimulation errors and the CAMIP data's sampling error in the alulation of the asymptotivariane of the estimator. They justi�ably negleted the sampling error in the observed marketshare sine the preise market share data are readily available in the U.S. automobile market.To objetively and preisely estimate the U.S. onsumers' automobile preferenes using unbiasedpublily-available data, we thought it best to use the framework onsidering both the demandand supply side with additional demographis information. BLP (2004), as good as they maybe, fell short in this regard beause they only onsider the demand side and they use the CAMIPdata generally not available outside of the GM. We therefore hoose to proeed following Petrin(2002)'s footsteps.In this paper, we provide general onditions under whih the extension of the GMM estimatororiginally proposed by Petrin (2002) has CAN properties. The assumptions we make use of forthe demand side spei�ation and the notations of the proof generally follow the asymptotitheorems given in Berry, Linton, and Pakes (2004), but we onsiderably extend their theoremin three diretions: �rst we learly state that the asymptotis we set forth is not onditioned onthe produt harateristis, whih we will see is stohasti; Seond, we inorporate the supplyside as well as the demand side; Third we inlude additional demographis moment onditions.Exept BLP (1995) and BLP (2004), studies in marketing and industrial organization ap-peared to ignore the e�ets of the errors generated by the simulation and the sampling proessesand thus did not adjust the variane-ovariane matrix of the estimator when employing BLPframework (See in Table 1). As for the simulation proess, this is probably due to a omputa-2



Table 1: The Consideration of Errors in the Past StudiesDemand Side Moments Supply Side Moments Additional MomentsSimulation Error Sampling Error Simulation Error Sampling Error Simulation Error Sampling Error Extra Information ErrorBLP (1995)  , but negligible   | | |Sudhir (2000) � � � � | | |Nevo (2001) � � � � | | |Petrin (2002) � � � � � � �BLP (2004)  , but negligible | |  , but negligible The symbol  (�) indiates the error was (not) took into aount in the evaluation of the moment.\|" means that the study did not use the orresponding moment onditions.3



tional burden inurred to evaluate the simulation error. To numerially isolate the magnitudeof the simulation error, for instane, researhers have to repeat the estimation algorithm withmany independent sets of R simulation draws of onsumers with the observed market share�xed.2 Bakground on the BLP (1995)'s Framework2.1 Demand Side ModelThe disrete hoie di�erentiated produt demand systems formulates that the utility of on-sumer i for produt j is a funtion of parameters, �d, observed produt harateristis, xj,unobserved (by the eonometriians) produt harateristis, �j , and random onsumer tastes,�ij. Given the produt harateristis (xj ; �j) for the all (J) produts marketed, the onsumereither hooses to buy one of the produts or not to buy any produt, in whih ase we say theonsumer hooses the \outside" good. Eah onsumer makes the hoie that maximizes his/herutility. Di�erent onsumers may make di�erent hoies beause of their tastes, and their tastesfollow the distribution denoted by P 0.Although the most produt harateristis are not orrelated with the unobserved produtharateristis �j 2 <, j = 1; : : : ; J , some of them (e.g., prie) are likely to be orrelated withthe �j.1 We denote the vetor of observed produt harateristis by xj = (x01j ;x02j)0 wherex1j 2 <K1 are the ones that are not orrelated with the �j in the sense thatE�jx1 [�jjx1j℄ = 0 and sup1�j�J E�jx1 [�2j jx1j℄ <1 (1)with probability one. Produt harateristis in the x2j 2 <K2 are orrelated with the �j. Theset of observed produt harateristis for all the produts is denoted by X = (x1; : : : ;xJ)0.In this framework, we assume the set of exogenous produt harateristis (x1j ; �j); j =1; : : : ; J are random sample of produt harateristis of size J from the underlying populationof produt harateristis. Thus, (x1j ; �j) are assumed to be independent aross j, while x2jare in general not independent aross j sine they are endogenously determined in the marketas funtions of produt harateristis of the other produts as well as its own produt.The demand model determines the purhase probability of a onsumer as a funtion ofhis/her attributes and the produt harateristis in the market. A distributional assumptionon the onsumers' unobservable heterogeneity is made to obtain expeted purhase probabil-ity onditional on produt harateristis and onsumer attributes. The onditional purhaseprobability �ij of produt j is a map from onsumer i's attributes �i 2 <v, a demand sideparameter vetor �d 2 �d, and the set of harateristis of all produts (X ; �), and is thusdenoted as �ij(X ; �;�i;�d). BLP (1995)'s framework generates the vetor of market shares,�(X; �;�d; P ), by aggregating over the individual hoie probability with the distribution P ofthe onsumer attributes �i as�j(X; �;�d; P ) = Z �ij(X ; �;�i;�d)dP (� i) (2)where P is typially the empirial distribution of the attributes from a random sample drawnfrom P 0.Note that these market shares are still random variables due to the stohasti nature of theprodut harateristis X and �. If we evaluate equation (2) at (�0d; P 0), where �0d is the true1The unobserved produt harateristis �j are produt harateristis diÆult to measure or observe byresearhers. They typially inlude onsumers' pereption on style, brand equity, e�et of promotional ativity,and servie at point-of-sale. 4



value of the parameters, it will give the \onditionally true" market shares s0 given the produtharateristis (X; �) in the population, i.e.,�(X ; �;�0d; P 0) � s0: (3)Equation in the form of �(X ; �;�d; P ) = s an, in theory, be solved for � as a funtion of(X ;�d; s; P ). BLP (1995) provides general onditions under whih there is a unique solutionfor the �(X;�d; s; P ) that satis�ess� �(X; �;�d; P ) = 0 (4)for every (X ;�d; s; P ) 2 X � �d � SJ � P, where X is a spae for the produt harateristisX, and P is a family of probability measures. If we solve the identity in (3) with respet to� under the onditions that guarantee the uniqueness of the � in (4), we are able to retrievethe original �j whih we assume are independent aross j. However, if we solve (4) at any(�d; s; P ) 6= (�0d; s0; P 0), the resulting �j(X ;�d; s; P ) are not equivalent to the true value of�j. For this �j(X ;�d; s; P ), the independene assumption is violated beause the two fatorsfor �j|the market share sj and the endogenous produt harateristis x2j for produt j|areendogenously determined through the market equilibrium (e.g., Nash in pries or quantities) asa funtion of the produt harateristis not only of its own but also of its ompetitors.2.2 Supply Side ModelThe supply side model formulates the priing equations for the J produts marketed. We assumean oligopolisti market where a �nite number of suppliers provide multiple produts. Suppliers(m = 1; : : : ; F ) are modelled as maximizers of pro�t from the ombination of produts they areproduing. Spei�ally, supplier m maximizes the following pro�t funtion.PRm = Xj2Jm(pj � j)Ms�j(X; �;�d; P ); m = 1; : : : ; F; (5)where Jm denotes the set of produts provided by supplier m, and pj and j are respetivelyprie and marginal ost of produt j, and Ms denotes the potential market size. By assumingthe Bertrand-Nash priing for supplier's strategy, the �rst order ondition in terms of pj is givenas �j(X; �;�d; P ) + Xl2Jm(pl � l)��l(X; �;�d; P )=�pj = 0 for j 2 Jm: (6)This equation an be expressed in matrix form�(X ; �;�d; P ) +�(p� ) = 0 (7)where � is the J � J non-singular gradient matrix of �(X ; �;�d; P ) with respet to p whose(j; k) element is de�ned by�jk = 8><>: ��k(X ; �;�d; P )=�pj ; if the produts j and k areprodued by the same �rm;0; otherwise. (8)Solving (7) with respet to  gives = p�mg(�;�d; P ); (9)5



where mg � ���1�(X; �;�d; P ) (10)represents the vetor of the pro�t margin for all the produts on the market. We suppress Xin the expression of mg for notational simpliity.We de�ne the marginal ost j as a funtion of the observed ost shifters wj and the unob-served (by researhers) ost shifters !j asg(j) = w0j� + !j (11)where g(�) is a monotoni funtion and � 2 � is a ost side parameter vetor. While thehoie of g(�) depends on appliation, we assume g(�) is ontinuously di�erentiable with a �nitederivative for all realizable values of ost. Suppose that the observed ost shifters wj onsistof the exogenous ones w1j 2 <L1 as well as endogenous ones w2j 2 <L2 , and thus we writewj = (w01j ;w02j)0 and W = (w1; : : : ;wJ)0. The exogenous ost shifters inlude not only theost variables determined outside the market under onsideration (e.g. rude oil prie), butalso the produt design harateristis that suppliers an not immediately hange in response toonsumer's demand. The ost variables determined at the market equilibrium (e.g. produtionsale) are treated as endogenous ost shifters. The unobserved ost shifters !j are assumed tobe unorrelated with the exogenous ost shifters w1j , and then satisfy the ondition thatE!jw1 [!jjw1j℄ = 0; and sup1�j�J E!jw1 [!2j jw1j ℄ <1 (12)with probability one.As in the formulation of (x1j; �j); j = 1; : : : ; J , on the demand side, we assume the set ofexogenous ost shifters (w1j ; !j); j = 1; : : : ; J are random sample of ost shifters of size J fromthe underlying population of ost shifters. Thus (w1j ; !j) are assumed to be independent arossj, while w2j are in general not independent with respet to j as they are determined in themarket as funtions of ost shifters of other produts.Substituting (9) for (11) and evaluating �j at �j(X;�d; s; P ); j = 1; : : : ; J , gives the reduedform of the unobserved ost shifters !j.!j(�; s; P ) = g(pj �mgj(�(X;�d; s; P );�d; P )) �w0j� (13)where the parameter vetor � ontains both the demand and supply side parameters, i.e., � =(�0d;�0)0. Sine the pro�t margin mgj(�;�d; P ) for produt j is determined not only by itsunobserved produt harateristis �j, but by those of the other produts on the market, these!j are in general dependent aross j when (�; s; P ) 6= (�0; s0; P 0). However, when (13) isevaluated at (�; s; P ) = (�0; s0; P 0), we are able to reover the original !j; j = 1; : : : ; J , whihare independent aross j. De�ne g(x) � (g(x1); : : : ; g(xJ )) and rewrite (13) in vetor form!(�; s; P ) = g(p�mg(�(X;�d; s; P );�d; P )) �W�: (14)2.3 GMM EstimationZero moment restritions between unobserved harateristis (�j; !j) and exogenous instrumen-tal variables (zdj ;zj) will be imposed to estimate � by the generalized method of moments(heneforth, GMM).Let us de�ne the J �M1 demand side instrument matrix Zd = (zd1; : : : ;zdJ)0 whose ompo-nents zdj an be written as zdj (x11; : : : ;x1J) 2 <M1 , where zdj (�) : <K1�J ! <M1 for j = 1; : : : ; J .It should be noted that the demand side instruments zdj for produt j are assumed to be a fun-tion of the exogenous harateristis not only of its own, but of the other produts (x11; : : : ;x1J)6



in the market. This is beause the instruments, by de�nition, must orrelate with the produtharateristis x2j , and this endogenous variables x2j (e.g. prie) are determined by both itsown and its ompetitors' produt harateristis as we mentioned above.Similar to the demand side, we de�ne the J �M2 supply side instrumental variables Z =(z1; : : : ;zJ)0 as a funtion of the exogenous ost shifters (w11; : : : ;w1J ) of all the produts.Here, zj(w11; : : : ;w1J ) 2 <M2 and zj(�) : <L1�J ! <M2 for j = 1; : : : ; J .Considering the stohasti nature of produt harateristis X1 as well as of �, we set forththe demand side restrition as Ex1;� hzdj�j(�d; s0; P 0)i = 0 (15)at � = �0 where the expetation is taken with respet not only to �, but also to X1. Supplyside restrition we use is Ew1;! hzj!(�; s0; P 0)i = 0 (16)at � = �0. Hereafter, we suppress the dependene on X andW in the expression of �j(�d; s; P )and !j(�; s; P ) respetively for notational simpliity. We suppose that the number of restritions(M1 +M2) is equal to or greater than the number K of parameters in �.Now let us form the average of zdj�j(�d; s0; P 0) and zj!j(�; s0; P 0) asGdJ(�d; s0; P 0) � J�1 JXj=1zdj�j(�d; s0; P 0); (17)GJ(�; s0; P 0) � J�1 JXj=1zj!j(�; s0; P 0): (18)The GMM estimator for �0 minimizes the sum of norms of GdJ(�d; s0; P 0) and GJ(�; s0; P 0),that is, it minimizes the norm ofGJ(�; s0; P 0) =  GdJ(�d; s0; P 0)GJ(�; s0; P 0) ! : (19)To derive the asymptoti properties of this estimator, we have to make assumption for howGJ(�; s0; P 0) behaves as the number of produts J tends to in�nity.We know that the (�j(�d; s0; P 0); !j(�; s0; P 0)) are dependent aross j at � 6= �0. More-over, sine zdj and zj are respetively funtions of the exogenous harateristis X1 and theexogenous ost shifters W 1 of all the produts, they are also dependent aross j. This impliesthat the uniform onvergene of the objetive funtion jjGJ(�; s0; P 0)jj to jjE[GJ(�; s0; P 0)℄jjover all possible � 2 � is not guaranteed.2 As a result, the standard onsisteny proofs of theGMM estimator that assume uniform onvergene of the objetive funtion are not appliable.Instead, we set the ondition whih bounds jjGJ(�; s0; P 0)jj away from zero for all � outside ofa neighborhood of �0 as Berry, Linton and Pakes (2004) did. This ondition enables us to useTheorem 3.1 in Pakes and Pollard (1989) to derive the onsisteny.If we an further assume that J 12 [GJ(�; s0; P 0)�E[GJ(�; s0; P 0)℄℄ onverges to J 12 [GJ(�0; s0; P 0)�E[GJ(�0; s0; P 0)℄℄ in probability as the stohasti � onverges in probability to �0, that is, theproess J 12 [GJ(�; s0; P 0) � E[GJ(�; s0; P 0)℄℄ is stohastially equiontinuous at �0, and thatJ 12GJ(�0; s0; P 0) onverges weakly to the normal distribution, the GMM estimator for �0 anbe shown to be asymptotially normal by Theorem 3.3 in Pakes and Pollard (1989).2The expetation symbol E[�℄ here means that taking expetation over (x1j , �j , w1j , !j).7



We have two separate problems in the evaluation of jjGJ(�; s0; P 0)jj. Although P 0 is sofar assumed to be known, we typially will not be able to alulate �(X ; �;�d; P 0) analytiallyand will have to approximate it by a simulator, say �(X; �;�d; PR), where PR is the empirialmeasure of some i.i.d. sample �1; : : : ;�R from the underlying distribution P 0. Simulated marketshares are then given by�j(X ; �;�d; PR)= Z �ij(X ; �;�i;�d)dPR(� i) � 1R RXr=1�rj(X ; �;�r;�d): (20)Seond, we are not neessarily able to observe the true market shares s0. Instead, the vetor ofobserved market shares, sn, will typially be onstruted from n i.i.d. draws from the populationof onsumers, and hene is not equal to the population value s0 in general. The observed marketshare of produt j is snj = 1n nXi=1 1(Ci = j); (21)where Ci denotes the hoie of the randomly sampled onsumer i, and the Ci are assumed tobe i.i.d. aross i. The indiator variable 1(Ci = j) takes one if Ci = j and zero otherwise.We substitute �(�d; sn; PR) given as a solution of sn��(X ; �;�d; PR) = 0 for (17) to obtainGdJ(�d; sn; PR) = J�1 JXj=1zdj�j(�d; sn; PR): (22)Furthermore, substituting!(�; sn; PR) = (!1(�; sn; PR); : : : ; !J(�; sn; PR))0 obtained from eval-uating (13) at � = �(�d; sn; PR) and P = PR for (18) givesGJ(�; sn; PR) = J�1 JXj=1zj!j(�; sn; PR): (23)The atual objetive funtion is thus jjGJ(�; sn; PR)jj. Consequently, our estimator of �, say �̂,satis�es jjGJ(�̂; sn; PR)jj = inf�2� jjGJ(�; sn; PR)jj: (24)In the expression of jjGJ(�̂; sn; PR)jj, there exist three distint randomness: one generatedfrom the draws of the produt harateristis (x1j ; �j ;w1j ; !j), one generated from the samplingproess of onsumers for sn, and one generated from the empirial distribution PR. The impatof these randomness on the estimate of � will be deided by the relative size of the sample|J ,n, and R. Unless n and R are muh larger than J , the impat from the sampling error and thesimulation error may not be negligible. We are going to operationalize the sampling and thesimulation errors in the following.2.4 The sampling and simulation errorsThe sampling error, �n, is de�ned as the di�erene between the observed market shares sn andthe true market share s0. Spei�ally, its omponent �nj for the produt j is�nj � snj � s0j = 1n nXi=1 1(Ci = j) � s0j = 1n nXi=1 n1(Ci = j)� s0jo= 1n nXi=1 �ji (25)8



for j = 1; : : : ; J , where �ji � 1(Ci = j) � s0j indiate the di�erene of the sampled onsumer'shoie from the population market share (s0j ) and are assumed to be independent aross i.Note that from (4), for any �d 2 �d, the unique solutions � forsn � �(X; �;�d; PR) = 0 and s0 � �(X ; �;�d; P 0) = 0are written as �(�d; sn; PR) and �(�d; s0; P 0) respetively. In other words, substituting these�s bak into �(X ; �;�d; PR) and �(X; �;�d; P 0) retrieves sn and s0 respetively. Therefore forany �d 2 �d sn = �(X ; �(�d; sn; PR);�d; PR) (26)and s0 = �(X; �(�d; s0; P 0);�d; P 0): (27)If we evaluate (4) with the observed market share sn and the underlying population P 0 ofonsumers, the resulting �(�d; sn; P 0) satis�es the equationsn = �(X; �(�d; sn; P 0);�d; P 0) (28)for all �d 2 �d. Furthermore, for all �d 2 �d, the �(�d; s0; PR) whih is obtained by evaluating(4) with the true market share s0 and the empirial population PR of onsumers satis�ess0 = �(X; �(�d; s0; PR);�d; PR): (29)The simulation proess generates the simulation error �R(�d), whih is for any �d a di�er-ene between the simulated market shares in (20) obtained from a sample of R onsumers whosedistribution follows the empirial distribution PR and those obtained from the population dis-tribution P 0 of all the onsumers. That is, the simulation error �Rj for produt j with sample ofR onsumers is�Rj (�d) � �j(X ; �(�d; s0; P 0);�d; PR)� �j(X ; �(�d; s0; P 0);�d; P 0)for j = 1; : : : ; J . From (27), �Rj (�d) an be rewritten as�Rj (�d) = 1R RXr=1�rj(X ; �(�d; s0; P 0);�r;�d)� s0j= 1R RXr=1n�rj(X ; �(�d; s0; P 0);�r;�d)� s0jo= 1R RXr=1 ��jr(X; �(�d; s0; P 0);�d) (30)where ��jr(X; �;�d) = �rj(X ; �;�r;�d)��j(X; �;�d; P 0) are by de�nition independent aross ronditional on (X; �).2.5 Metris, Neighborhoods, and NotationsWe will work with the produt spae �� SJ �P. The parameter spae � is a ompat subsetof <K and we use the Eulidean metri on �, �E(�;��) = jj� � ��jj. The spae for the marketshare vetor s is J + 1 dimensional unit simplex SJ ,SJ = 8<:(s0; : : : ; sJ)0����� 0 < sj < 1 for j = 0; : : : ; J; and JXj=0 sj = 19=; :9



Sine the market share sj generally shrinks as the number J of the produts on the marketinreases, we need to make sure the speed at whih the sj beoming lose to the true share s0jought to be faster than the speed at whih s0j onverges to zero. To asertain this, we need touse the metri �s0 on SJ �s0(s; s�) = max0�j�J �����sj � s�js0j ����� :The P is the set of probability measures of onsumer's attributes. The L1 metri �P (P; P �) =supB2B jP (B)�P �(B)j is adopted on P, where B is the lass of all Borel sets on <v, where v isthe dimension of the onsumer attributes in the purhasing probability. This metri will be usedto measure the distane between the empirial distribution PR and the underlying distributionP 0 of onsumer's attributes.Sine the dimension of the unobserved produt harateristis � inreases, element by elementonvergene of � to �� does not automatially guarantee that jj� � ��jj = op(1). In the proof,all we need is the onvergene of the unobserved produt harateristis � as vetor to anothervetor ��, not an element by element onvergene. Hene we use the averaged Eulidean metri��(�; ��) = J�1jj� � ��jj2 = J�1PJj=1(�j � ��j )2, whih of ourse allow the possibility that a�nite number of elements in � do not onverge to the orresponding elements in ��.With these metris, we de�ne the Æ neighborhoods for �0; P 0, and s0 respetively as N�0(Æ) =f� : �E(�;�0) � Æg, NP 0(Æ) = fP : �P (P; P 0) � Æg, and Ns0(Æ) = fs : �s(s; s0) � Æg. Also foreah �, the Æ neighborhood of �(�d; s0; P 0) is de�ned by N�0(�; Æ) = f� : ��(�; �(�d; s0; P 0)) �Æg. The notation we use for the Eulidean norm of any m�n matrix A is jjAjj = ftr(A0A)g1=2.We use the Op(�) and op(�) notation of Mann and Wald (1944) to denote the stohasti order ofmagnitude. When applied to vetors and matries, the symbols should be interpreted elementby element. If x is a k � 1 vetor, diag[x℄ denotes a k � k diagonal matrix with the element ofx along its priniple diagonal.3 Asymptoti Theory for BLP (1995)3.1 ConsistenyIn this setion, we derive the asymptoti theorems for the BLP framework. Our proofs aredi�erent from the one in Berry, Linton, and Pakes (2004) in two ways. First, in Berry, Linton,and Pakes (2004), the asymptoti theorems appear to be established under the ondition that(X ; �) is given while the dimension J of the produt harateristis grows in�nitely. Our proofsfor the theorems do not ondition on (X; �). Seond, we derive the theorem not only forthe demand side model but for the system of demand and supply models. We �rst desribeassumptions needed to obtain the onsisteny of the estimator.In Assumption A1(a), we assume that the observed market share snj for produt j is theBernoulli random variables averaged over the n sampled onsumers (i = 1; : : : ; n). Assump-tion A1(b) guarantees that the simulation error ��jr de�ned in (30) relative to the number R ofthe simulation draws is of the same order as the sampling error �ji relative to the number n ofthe sample. These are used to ontrol the magnitudes of the respetive errors. Note that inA1(a), sn and s0 are the result of onsumer behavior, and the onsumers are assumed to beable to observe the true \unobserved" produt harateristis, �(�0d; s0; P 0). As a result, we anondition on X and on �(�0d; s0; P 0), but not on a general � when evaluating the moments ofthe di�erene sn � s0. On the other hand, in A1(b), �(X ; �;�d; PR) and �(X ; �;�d; P 0), bothof whih are model-alulated shares, are just the devie researhers use and they are not ableto observe the unobserved produt harateristis, true or otherwise. As a result, we need to10



treat � as unobserved and unknown, and we need to ondition on the unobserved and unknown� along with on the X.Assumption A2 is regularity ondition for the share funtion. In A2(a), we �rst assume thatthe model-alulated market share �j(X ; �;�d; P ) for produt j will not abruptly hange as theunobserved produt quality �k for produt k hanges. Moreover the H in (36) being invertiblemeans one an quantify the hange in unobserved produt quality ��j for produt j(j = 1; : : : ; J)assoiated with the hange in the model-alulated market share ��k for produt k(k = 1; : : : ; J).Assumption A2(b) stipulates how the model-alulated market share �j(X; �;�d; P ) for produtj is a�eted by the hanges in unobserved produt quality for produt k. It is positively a�etedby the improvement of its own unobserved quality, but adversely inuened by those of the otherproduts. The set of assumptions A2(a) and (b) is a suÆient ondition for the existene of aunique solution � to (4) for every (�d; s; P ) (See appendix in Berry (1994) for detail).It looks as if we need a similar setup for the supply side unobserved ost shifter !j relative tothe model-alulated market share �k. This is not so, however, beause as learly seen in (13),the !j(�; s; P ) an be obtained as a funtion of �(�d; s; P ) aside from the observed (pj;wj)and the parameters (�d;�) one we deide to hoose whih (s; P ) to evaluate, enabling theharateristis of �(�d; s; P ) to transmit to !j(�; s; P ). Therefore what we need is the fat thatthere exists a pro�t margin mgj(�(�d; s; P );�d; P ) in (10) that is at least loally smooth withrespet to �(�d; s; P ) along with smoothness in g(�). Assumption A2() guarantees the existeneof ��1, whih in turn guarantees the existene of mgj(�(�d; s; P );�d; P ) in (10). We replaeloal smoothness of mgj(�(�d; s; P );�d; P ) relative to �(�d; s; P ) with the assumption A7. Wewill ome bak to this when explaining A7. As for smoothness of g(�), we reiterate that thesingle argument funtion g(�) is monotoni and ontinuously di�erentiable with �nite derivativefor all realizable values of ost. We hoose not to inlude this in the assumptions simply beausethis does not rise to the same level as the other assumptions are.In the situation we are onsidering here, the number J of the produts in the market inreases.This means that the \onditionally" true market shares s0 and also the theoretial market shares�(X; �;�d; P 0) generally approah to zero as J grows large. Assumptions A3(a),(b) guaranteethat sn and �(X ; �;�d; PR) onverge to s0 and �(X ; �;�d; P 0) faster respetively than thespeed at whih s0 and �(X ; �;�d; P 0) onverge to zero.Assumption A4 is on instrumental variables. Throughout the paper, we treat the produtharateristis x1j as exogenous and so are the demand side instruments zdj . We impose inA4(a) a stohasti boundedness and an uniformly integrability on zdj . In assumption A4(b), thesame restritions are imposed on the supply side instruments zj .Assumption A5 is a ondition that bounds jjG(�; s0; P 0)jj away from jjG(�0; s0; P 0)jj (whihonverges to zero in probability) over � outside of a neighborhood of �0. This ondition orre-sponds to ondition (iii) in Theorem 3.1 of Pakes and Pollard (1989).For all �d, the value of � = �(�d; s0; P 0) that satis�es the equation �(X; �;�d; P 0) = s0 isassumed unique. Sine the sum of the market shares inluding that of the outside good{s00{is�xed to be one, this �(�d; s0; P 0) also satis�es�(X ; �;�d; P 0)=�0(X ; �;�d; P 0) = s0=s00:De�ne a funtion � J(�) : <J ! <J suh that � J(s) = (log(s1=s0); : : : ; log(sJ=s0)). Then, from(27), the relation is equivalent to saying that� J(�(X; �;�d; P 0)) = � J(s0) = � J(�(X; �(�d; s0; P 0);�d; P 0))at � = �(�d; s0; P 0) for all �d. Assumption A6 guarantees that any � outside the Æ neighborhoodof the �(�d; s0; P 0) annot make � J(�(X ; �;�d; P 0)) lose to � J(s0) within the range of C(Æ)in terms of the averaged Eulidean distane with probability tending to one. The hoie of this11



metri is neessary beause we allow for the fat that the dimension of the model-alulatedmarket share � inreases. The funtional treatment � J is due to making this assumption easierto verify for logit-like demand models.In assumption A7, we assume the pro�t margins J� 12mg(�(�d; s; P );�d; P ) have stohasti-ally equiontinuity-like harateristis in (�; P ) at (�(�d; s0; P 0); P 0) for any �d 2 �d. As wesee in the proof, we show that Pr[�(�d; sn; PR) 62 N�0(�d; Æ)℄ ! 0 and Pr[PR 62 NP 0(Æ)℄ ! 0for Æ > 0 as J grows large. With these onvergene in probability results along with assump-tion A7, we are able to show the averaged Eulidean distane betweenmg(�(�d; s0; P 0);�d; P 0)andmg(�(�d; sn; PR);�d; PR) is lose uniformly in �d 2 �d. We should note that assumption A7is not stohasti equiontinuity as de�ned beause the dimension of �(�d; s0; P 0) grows large,though �(�d; sn; PR) onverges to �(�d; s0; P 0) in probability in averaged Eulidean metri.One more omment on the behavior of the dimension inreasing �(�d; s0; P 0). It shouldbe noted that when evaluated at the true parameter value �0d as J inreases, say, from 100 to500, the �rst 100 elements of �(�0d; s0; P 0) at J = 500 must be equal to the all 100 elements of�(�0d; s0; P 0) at J = 100. This fat does not hold in general when evaluated at �d 6= �0d. Forinstane there is no guarantee that the �rst 100 elements of �(�d; s0; P 0) at J = 500 are equalto �(�d; s0; P 0) at J = 100.Assumption A1 (a) Given the set of produt harateristis (X ; �(�0d; s0; P 0)), the di�erenesn�s0 between the observed market share sn and the \onditionally" true market share s0 haveonditional mean E�jx;�[�njX; �(�0d; s0; P 0)℄= E�jx;�[sn � s0jX; �(�0d; s0; P 0)℄ = 0 (31)with the onditional variane-ovariane matrixV 2 = E�jx;�[(sn � s0)(sn � s0)0jX ; �(�0d; s0; P 0)℄= 1n �diag[s0℄� s0s00� : (32)(b) For eah �d, given the set of produt harateristis (X ; �), the di�erene �(X ; �;�d; PR)��(X; �;�d; P 0) have onditional meanE��jx;�[�(X; �;�d; PR)� �(X; �;�d; P 0)jX ; �℄ = 0 (33)with the onditional variane-ovariane matrixV 3 = E��jx;� � n�(X ; �;�d; PR)� �(X ; �;�d; P 0)o�n�(X ; �;�d; PR)� �(X ; �;�d; P 0)o0 ���X; �� (34)whose order of magnitude relative to R is the same as that of V 2 relative to n or,R �O(V 3) = n � O(V 2): (35)Assumption A2 (a) For every �nite J , for all �d 2 �d, and for all P in a neighborhood ofP 0, ��j(X ; �;�d; P )=��k exists, and is ontinuously di�erentiable both in � and �d. The matrixH(�;�d; P ) = ��(X; �;�d; P )=��0 (36)is invertible for all J .(b) For every (X; �;�d; P ), ��j(X; �;�d; P )=��j > 0 for j = 1; : : : ; J ,12



and ��j(X ; �;�d; P )=��k < 0 for k; j = 1; : : : ; J; k 6= j.() For every �nite J , for all �d 2 �d, and for all P in a neighborhood of P 0, ��j(X; �;�d; P )=�pkexists for j; k = 1; : : : ; J , and the matrix � whose (j; k) element is de�ned in (8) is invertiblefor all J and ontinuously di�erentiable both in � and �d.Assumption A3 The observed market shares sn are onsistent with respet to s0, i.e., for anyÆ > 0, (a) �s0(sn; s0) = max0�j�J �����snj � s0js0j ����� = op(1): (37)Similarly, the simulated market shares �(X ; �;�d; PR) are onsistent with respet to �(X ; �;�d; P 0)uniformly over � and �d 2 �d, i.e.,(b) ��(X;�;�d;P 0)(�(X; �;�d; PR);�(X ; �;�d; P 0))= max0�j�J ������j(X ; �;�d; PR)� �j(X; �;�d; P 0)�j(X ; �;�d; P 0) ����� = op(1): (38)for any � and �d 2 �.Assumption A4 (a) The demand side instrumental variables are suh that the matrix Z 0dZd=Jis stohastially bounded, i.e., for all � > 0 there exists anM� suh that Pr[jjZ 0dZd=J jj > M�℄ < �.Moreover, we suppose jjZ 0dZd=J jj is uniformly integrable in J , i.e.,lim�!1 supJ Z jjZ 0dZd=J jjfjjZ 0dZd=J jj > �gdPx1(X1) = 0where Px1(�) is the joint distribution of X1.(b) The supply side instrumental variables are suh that the matrix Z 0Z=J is stohastiallybounded and uniformly integrable in J .Assumption A5 For all Æ > 0, there exists C(Æ) suh thatlimJ!1Pr " inf� 62N�0 (Æ) jjGJ(�; s0; P 0)�GJ(�0; s0; P 0)jj � C(Æ)# = 1: (39)Assumption A6 For all Æ > 0, there exists C(Æ) suh thatlimJ!1Pr" inf�d2�d inf� 62N�0 (�d;Æ) J� 12 jj� J(�(X ; �;�d; P 0))�� J(�(X ; �(�d; s0; P 0);�d; P 0))jj > C(Æ)# = 1: (40)Assumption A7 For all Æ > 0 and for any �d 2 �d,limJ!1Pr " sup(�;P )2N�0 (�d;Æ)�NP0 (Æ) J� 12 jjmg(�;�d; P )�mg(�(�d; s0; P 0);�d; P 0)jj > Æ# = 0: (41)Theorem 1 (Consisteny of �̂) Suppose that A1{A7 hold for some n(J); R(J)!1. Then,�̂ p! �0: 13



3.2 Asymptoti NormalityWe next establish the asymptoti normality of �̂. Throughout we assume that �̂ is onsistentwith respet to �0, or assumptions A1{A7 to hold. To derive the asymptoti distribution, we �rstdeompose the unobserved quality �(�d; sn; PR) into three random terms|the unobserved qual-ity �(�d; s0; P 0), the term generated from the sampling error �n, and the term generated fromthe simulation error �R(�d) and substitute this relationship for �(�d; sn; PR) in GdJ(�d; sn; PR).We deompose the unobserved ost shifter !(�; sn; PR) into three terms likewise and substitutethis relationship for !(�; sn; PR) in GJ(�; sn; PR).Demand Side DerivationWrite �(�d; sn; PR) = �(�d; s0; P 0) + n�(�d; sn; PR)� �(�d; s0; PR)o+n�(�d; s0; PR)� �(�d; s0; P 0)o : (42)For �xed �d, we use Taylor series approximation to the seond and the third terms in (42).Spei�ally, by the mean value theorem0 = �(X ; �(�d; sn; PR);�d; PR)� sn= �(X ; �(�d; s0; PR);�d; PR)� sn+��(X ; ��;�d; PR)��0 n�(�d; sn; PR)� �(�d; s0; PR)o= s0 � sn + ��(X; ��;�d; PR)��0 n�(�d; sn; PR)� �(�d; s0; PR)o= ��n + ��(X ; ��;�d; PR)��0 n�(�d; sn; PR)� �(�d; s0; PR)owhere �� is J � 1 vetor of the values between �(�d; sn; PR) and �(�d; s0; PR). Notie that wewrite ��(X; ��;�d; PR)��0 = 0BBBB� ��1��1 �����1 � � � ��1��J �����1... . . . ...��J��1 �����J � � � ��J��J �����J 1CCCCA :In other words, the matrix ��(X ; ��;�d; PR)=��0 ontains ��1; : : : ; ��J in its 1st to the Jth row,all of whih an be distint. For notational onveniene however, we suppress the indies in ��jand simply write ��. From assumption A2(a) the matrix H(�;�d; PR) = ��(X ; �;�d; PR)=��0is invertible for eah � 2 N�0(�d; �) with probability tending to one, we an write�(�d; sn; PR)� �(�d; s0; PR) = (��(X; ��;�d; PR)��0 )�1 �n (43)with probability tending to one. Likewise,0 = �(X ; �(�d; s0; PR);�d; PR)� s0= �(X ; �(�d; s0; P 0);�d; PR)� s0+��(X ; �;�d; PR)��0 n�(�d; s0; PR)� �(�d; s0; P 0)o14



= �(X ; �(�d; s0; P 0);�d; PR)� �(X ; �(�d; s0; P 0);�d; P 0)+��(X ; �;�d; PR)��0 n�(�d; s0; PR)� �(�d; s0; P 0)o= �R(�d) + ��(X ; �;�d; PR)��0 n�(�d; s0; PR)� �(�d; s0; P 0)owhere � is J � 1 vetor of values between �(�d; s0; PR) and �(�d; s0; P 0). By assumption A2(a),�(�d; s0; PR)� �(�d; s0; P 0) = �(��(X; �;�d; PR)��0 )�1 �R(�d) (44)with probability tending to one. Therefore, by substituting (43) and (44) for (42) and using thenotation in (36) we obtain�(�d; sn; PR)= �(�d; s0; P 0) +(��(X ; ��;�d; PR)��0 )�1 �n �(��(X; �;�d; PR)��0 )�1 �R(�d)= �(�d; s0; P 0) +H�1(��;�d; PR)�n �H�1(�;�d; PR)�R(�d): (45)Substituting (45) for GdJ(�d; sn; PR) in (22) givesGdJ(�d; sn; PR)= J�1Z 0d�(�d; sn; PR)= J�1Z 0d�(�d; s0; P 0) + J�1Z 0d nH�1(��;�d; PR)�n �H�1(�;�d; PR)�R(�d)o= GdJ(�d; s0; P 0) + J�1Z 0d nH�1(��;�d; PR)�n �H�1(�;�d; PR)�R(�d)o : (46)Now we approximate GdJ(�d; sn; PR) within the neighborhood of �0d by the following funtionGdJ(�d). GdJ(�d) = GdJ(�d; s0; P 0)+J�1Z 0dH�1(�(�0d; s0; P 0);�0d; P 0)n�n � �R(�0d)o : (47)Cost Side DerivationWrite !(�; sn; PR) = !(�; s0; P 0) + f!(�; sn; PR)� !(�; s0; PR)g+f!(�; s0; PR)� !(�; s0; P 0)g: (48)Sine g(�) is assumed to be ontinuously di�erentiable, the j-th element of the seond term in(48) an be rewritten by the mean value theorem as!j(�; sn; PR)� !j(�; s0; PR)= g(pj �mgj(�(�d; sn; PR);�d; PR))� g(pj �mgj(�(�d; s0; PR);�d; PR))= g(pj �mgj(�(�d; s0; PR);�d; PR))� g(pj �mgj(�(�d; s0; PR);�d; PR))15



+�g(pj �mgj(���;�d; PR))��0 f�(�d; sn; PR)� �(�d; s0; PR)g= � _g(pj �mgj(���;�d; PR))�mgj(���;�d; PR)��0 f�(�d; sn; PR)� �(�d; s0; PR)g (49)where ��� is between �(�d; sn; PR) and �(�d; s0; PR). By substituting (43) for (49) and using thenotation in (36), we obtain!j(�; sn; PR)� !j(�; s0; PR)= � _g(pj �mgj(���;�d; PR))�mgj(���;�d; PR)��0 H�1(��;�d; PR)�n:In vetor form, this an be expressed as!(�; sn; PR)� !(�; s0; PR)= �L(���;�d; PR)M(���;�d; PR)H�1(��;�d; PR)�n (50)where M(�;�d; P ) = �mg(�;�d; P )��0 (51)and L(�;�d; P )= 0B� _g(p1 �mg1(�;�d; P )) 0. . .0 _g(pJ �mgJ(�;�d; P )) 1CA : (52)Atually, J � J matries L(���;�d; PR) and M(���;�d; PR) ontain ���1; : : : ; ���J in its 1st to theJth rows, all of whih an be distint, but we here suppress this fat for notational simpliity.Similarly, we rewrite the third term in (48) by the mean value theorem,!(�; s0; PR)�!(�; s0; P 0)= g(p�mg(�(�d; s0; PR);�d; PR))� g(p�mg(�(�d; s0; P 0);�d; P 0))= g(p�mg(�(�d; s0; P 0);�d; PR))� g(p�mg(�(�d; s0; P 0);�d; P 0))�L(�;�d; PR)M (�;�d; PR)f�(�d; s0; PR)� �(�d; s0; P 0)g (53)where � is between �(�d; s0; PR) and �(�d; s0; P 0). Substituting (44) for (53) gives!(�; s0; PR)� !(�; s0; P 0)= g(p�mg(�(�d; s0; P 0);�d; PR))� g(p�mg(�(�d; s0; P 0);�d; P 0))+L(�;�d; PR)M (�;�d; PR)H�1(�;�d; PR)�R(�d): (54)By substituting (50) and (54) for (48), we have!(�; sn; PR)= !(�; s0; P 0)+g(p�mg(�(�d; s0; P 0);�d; PR))� g(p�mg(�(�d; s0; P 0);�d; P 0))�L(���;�d; PR)M (���;�d; PR)H�1(��;�d; PR)�n+L(�;�d; PR)M (�;�d; PR)H�1(�;�d; PR)�R(�d): (55)16



Thus, the supply side moments GJ(�; sn; PR) = J�1Z 0!(�; sn; PR) are rewritten by (55) asGJ(�; sn; PR)= J�1Z 0!(�; sn; PR)= GJ(�; s0; P 0)+J�1Z 0 ng(p�mg(�(�d; s0; P 0);�d; PR))� g(p�mg(�(�d; s0; P 0);�d; P 0))o�J�1Z 0L(���;�d; PR)M(���;�d; PR)H�1(��;�d; PR)�n+J�1Z 0L(�;�d; PR)M(�;�d; PR)H�1(�;�d; PR)�R(�d): (56)We approximate the supply side moments GJ(�; sn; PR) within the neighborhood of �0 by thefollowing funtion GJ(�).GJ(�) = GJ(�; s0; P 0)� J�1Z 0L0M 0H�10 n�n � �R(�0d)o (57)where H0 =H(�(�0d; s0; P 0);�0d; P 0), L0 = L(�(�0d; s0; P 0);�0d; P 0), andM0 =M(�(�0d; s0; P 0);�0d; P 0). LetGJ(�) =  GdJ(�d)GJ(�) ! : (58)The �rst term in GJ(�) is the sample moment evaluated at (s; P ) = (s0; P 0) and thus on-tains neither the sampling nor simulation errors, while the seond term is an approximationfor the di�erene between GJ(�; sn; PR) and GJ(�; s0; P 0). Note that the three omponentsin GdJ(�d)|GdJ(�d; s0; P 0), J�1Z 0dH�10 �n, and J�1Z 0dH�10 �R(�0d)|are not mutually indepen-dent beause they all inlude the produt harateristis X as well as the unobserved produtquality �(�d; s0; P 0), both of whih are random. However they are unorrelated if evaluated at�d = �0d as shown below due to (31) and (33) in assumption A1. For the ovariane betweenGdJ(�0d; s0; P 0) and J�1Z 0dH�10 �n, we haveCov[GdJ(�0d; s0; P 0); J�1Z 0dH�10 �n℄= E[GdJ(�0d; s0; P 0) � J�1Z 0dH�10 �n℄�E[GdJ(�0d; s0; P 0)℄ E[J�1Z 0dH�10 �n℄= Ex;�[E�jx;�[GdJ(�0d; s0; P 0) � J�1Z 0dH�10 �njX; �(�0d; s0; P 0)℄℄�Ex1;�[GdJ(�0d; s0; P 0)℄ Ex;�[E�jx;�[J�1Z 0dH�10 �njX; �(�0d; s0; P 0)℄℄= Ex;�[GdJ(�0d; s0; P 0) � J�1Z 0dH�10 E�jx;�[�njX; �(�0d; s0; P 0)℄℄�Ex1;�[GdJ(�0d; s0; P 0)℄ Ex;�[J�1Z 0dH�10 E�jx;�[�njX; �(�0d; s0; P 0)℄℄= Ex;�[GdJ(�0d; s0; P 0) � J�1Z 0dH�10 � 0℄�Ex1;�[GdJ(�0d; s0; P 0)℄ Ex;�[J�1Z 0dH�10 � 0℄= 0:Similarly, we obtain Cov[GdJ(�0d; s0; P 0); J�1Z 0dH�10 �R(�0d)℄ = 0. Sine �n and �R(�0d) are gen-erated by the distint sampling proess given (X ; �(�0d; s0; P 0)), they are onditionally indepen-dent. Thus, for the ovariane between J�1Z 0dH�10 �n and J�1Z 0dH�10 �R(�0d), we also obtainCov[J�1Z 0dH�10 �n; J�1Z 0dH�10 �R(�0d)℄ = 0.On the supply side, we an similarly show that the three omponents in GJ(�0)|GJ(�0; s0; P 0),J�1Z 0L0M0H�10 �n, and J�1Z 0L0M 0H�10 �R(�0d)|are mutually unorrelated by using A1.These fats enable us to alulate the asymptoti variane-ovariane matrix of J 12GJ(�0) as a17



sum of the three variane-ovariane matries, eah derived from the three separate omponentsin GJ(�0).We prove that (1) the di�erene between J 12GJ(�; sn; PR) and J 12GJ(�) to be op(1) withinany shrinking neighborhood of �0, and thus the estimator �� whih minimizes jjGJ(�)jj hasthe same asymptoti distribution as �̂ whih minimizes jjGJ(�; sn; PR)jj. Then we prove that(2) �� is asymptotially normally distributed with variane-ovariane matrix onsisting of thethree omponents orresponding to the term GJ(�; s0; P 0), the term involving �n and the termonsisting of �R(�0d) by applying a version of Theorem 3.3 in Pakes and Pollard (1989).Assumptions B5(a){(e) are onditions that enable us to ontrol the di�erenes betweenJ 12GJ(�; sn; PR) and J 12GJ(�) within the shrinking neighborhood of (�(�0d; s0; P 0);�0d; P 0). Es-peially, in B5(a)-(d), we assume those di�erenes have stohasti equiontinuity-like harater-istis at (�;�d; P ) = (�(�0d; s0; P 0);�0d; P 0). The assumptions B5(a) and B5(b) are respetivelyon the sampling and the simulation errors for the demand side moments, while B5() and B5(d)are on those for the supply side moments. Assumption B5(e) is on the pro�t margin.Assumptions B1, B2 and B3 have essentially the same roles as the onditions (v), (ii) and (iii)respetively in Theorem 3.3 of Pakes and Pollard (1989). Assumption B1 is on the true parameter�0. Assumption B2 is the di�erentiability ondition (di�erentiable in �) for the expetation ofGJ(�; s0; P 0). Given assumption B2, B3 implies that GJ(�; s0; P 0) an be approximated by�J(� � �0) +GJ(�0; s0; P 0) near �0. Assumptions B4(a){() determine the magnitude of thethree omponents in J 12GJ(�0), where eah omponent is shown to follow asymptotially normal,while assumptions B4(d){(f) are the Lyapunov onditions used in the entral limit theorem.Assumption B6 is the regularity ondition for the pro�t margin mg(�;�d; P ) whih guaranteesits smoothness in terms of � and �d.Assumption B1 �0 is an interior point of �.Assumption B2 For all � in some Æ > 0 neighborhood of �0,E[GJ(�; s0; P 0)℄ =  Ex1;�[GdJ(�d; s0; P 0)℄Ew1;![GJ(�; s0; P 0)℄ != �J(� � �0) + o(jj� � �0jj) (59)uniformly in J . The matrix �J = (�dJ 0;�J 0)0 ! � = (�d0;�0)0 as J ! 1, where �J has fullolumn rank.Assumption B3 For all sequenes of positive numbers ÆJ suh that ÆJ ! 0,(a) supjj�d��0djj�ÆJ ������J 12 nGdJ(�d; s0; P 0)� Ex1;�[GdJ(�d; s0; P 0)℄o�J 12 nGdJ(�0d; s0; P 0)� Ex1;�[GdJ(�0d; s0; P 0)℄o������ = op(1) (60)and (b) supjj���0jj�ÆJ ������J 12 nGJ(�; s0; P 0)� Ew1;![GJ(�; s0; P 0)℄o�J 12 nGJ(�0; s0; P 0)� Ew1;![GJ(�0; s0; P 0)℄o������ = op(1): (61)18



Assumption B4 Let Z 0dH�1(�;�; P ) � (ad1(�;�d; P ); : : : ;adJ(�;�d; P ));�Z 0L(�;�d; P )M (�;�d; P )H�1(�;�d; P ) � (a1(�;�d; P ); : : : ;aJ(�;�d; P )):Set Y Ji(�;�d; P ) � 1nJ 12 JXj=1 adj (�;�d; P )�ji;aj(�;�d; P )�ji ! ;Y �Jr(�;�d; P ) � 1RJ 12 JXj=1 adj (�;�d; P )��jr(X ; �;�d)aj(�;�d; P )��jr(X ; �;�d) ! :Suppose that (a) limJ!1Vx1;�;w1;! " Z 0d�(�0d; s0; P 0)=J 12Z 0!(�0; s0; P 0)=J 12 !# = �1; (62)(b) limn;J!1nV�;x;�[Y Ji(�(�0d; s0; P 0);�0d; P 0)℄ = �2; (63)() limR;J!1RV��;x;�[Y �Jr(�(�0d; s0; P 0);�0d; P 0)℄ = �3 (64)for �nite positive de�nite matries �1;�2 and �3. Suppose that the following Lyapunov ondi-tions hold. (d) JXj=1Ex1;�;w1;! 24���������� zdj�j(�0d; s0; P 0)=J 12zj!j(�0; s0; P 0)=J 12 !����������2+Æ35 = o(1); (65)(e) nE�;x;�[jjY Ji(�(�0d; s0; P 0);�0d; P 0)jj2+Æ ℄ = o(1); (66)(f) RE��;x;�[jjY �Jr(�(�0d; s0; P 0);�0d; P 0)jj2+Æ ℄ = o(1) (67)for some Æ > 0.Assumption B5 For all sequenes of positive numbers ÆJ with ÆJ ! 0, we assume(a) supjj�d��0djj�ÆJ sup(�1;P )2fN�0 (�0d;ÆJ)gJ�NP0(ÆJ ) ������J� 12Z 0d nH�1(�1;�d; P )�H�10 o �n������= op(1); (68)(b) supjj�d��0djj�ÆJ sup(�1;P )2fN�0 (�0d;ÆJ)gJ�NP0(ÆJ ) ������J� 12Z 0d nH�1(�1;�d; P )�R(�d)�H�10 �R(�0d)o������ = op(1); (69)() supjj�d��0djj�ÆJ sup(�1;�2;P )2fN�0 (�0d;ÆJ )g2J�NP0(ÆJ ) ������J� 12Z 0�nL(�1;�d; P )M (�1;�d; P )H�1(�2;�d; P )�L0M0H�10 o �n������= op(1); (70)(d) supjj�d��0djj�ÆJ sup(�1;�2;P )2fN�0 (�0d;ÆJ )g2J�NP0(ÆJ ) ������J� 12Z 0�nL(�1;�d; P )M (�1;�d; P )H�1(�2;�d; P )�R(�d)�L0M0H�10 �R(�0d)o ������= op(1); (71)(e) supjj�d��0djj�ÆJ supP2NP0(ÆJ ) ������J� 12Z 0fg(p�mg(�(�d; s0; P 0);�d; P )�g(p�mg(�(�d; s0; P 0);�d; P 0)g������ = op(1) (72)19



where �1 = (�11; : : : ; �1J) and �2 = (�21; : : : ; �2J) are respetively a set of distint J vetors, eahvetor orresponds to eah row of J � J matries L(�;�d; P ), M(�;�d; P ) and H�1(�;�d; P ).Assumption B6 For every �nite J , for all �d 2 �d, and for all P in a neighborhood of P 0,M(�;�d; P ) = �mg(�;�d; P )=��0 (73)exists and ontinuous both in � and �d.Theorem 2 (Asymptoti Normality of �̂) Suppose that A1{A7 and B1{B6 hold for somen(J); R(J) ! 1. Then, the estimator �̂ that minimizes jjGJ(�; sn; PR)jj is asymptotiallynormal at the rate of J 12 :J 12 (�̂ � �0) w; N [0; (�0�)�1�0��(�0�)�1℄ (74)with � = �1 +�2 +�3.4 Estimating Demand and Supply Systems with Purhasing In-formation on the Consumer's Demographis4.1 Additional Moments with Purhasing InformationThe framework in BLP(1995) uses the orthogonal onditions between the unobserved produtharateristis (�j ; !j) and the exogenous instrumental variables (zdj ;zj) to obtain the GMMestimate of the parameter �. For some markets, however, market summaries suh as averageddemographis of onsumers who purhased spei� type of produts are publily available, evenif their detailed individual-level data suh as purhasing history are not. In the U.S. automo-bile market, for instane, we know the median inome of onsumers who purhased domesti,European, or Japanese vehiles from publiations suh as the Ward's Motor Vehile Fats &Figures. In this setion, we �rst generalize the idea given by Petrin (2002), who extends theBLP framework by additional moment onditions onstruted from the market summary datato the GMM. We then give the asymptoti theorem to this GMM estimator and unover theonditions under whih the use of the additional moment onditions allows us to estimate of thedemand side parameters more preisely.First we de�ne some words and notations. Disriminating attributes is the produt hara-teristi or attribute that enables onsumers to disriminate some produts from others. When wesay onsumer i takes a disriminating attribute q, this means that onsumer hooses a produtfrom a group of produts whose harateristi or attribute have disrimating attribute q. An au-tomobile attribute \imports" is one of suh disriminating attributes. When we say a onsumerhooses this attribute, what we mean is that the onsumer purhases an imports. Similarly,\minivan" and \osting less than $10,000" are examples of the disriminating attribute as wede�ne here. We onsider a �nite number of disriminating attributes (q = 1; : : : ; Np) and de-note all the produts involved in attribute q as Qq. By de�nition, disriminating attributes foroutside good is unde�ned.We next onsider expetation of onsumer's demographis onditional on a spei� disrimi-nating attribute. Suppose that some information on demographis for onsumer t are available.Demographi variables suh as age, family size, or, inome, is already numerial, but for otherdemographis suh as having hildren, belonging to ertain age group, hoie of residentialarea, an be numerially expressd using indiators. We denote this numerially represented Ddimensional demographis as �ot = (�ot1; : : : ; �otD)0. We assume that the joint distribution of de-mographis �ot has a bounded support. The onsumer t's observed demographi �otd; d = 1; : : : ;D20



is averaged over onsumers who hoose disriminating attribute q in the population to obtainthe onditional expetation �0dq = E[�otdjCt 2 Qq;X ; �(�0d; s0; P 0)℄. An example of this ondi-tional expetation would be the expeted value of inome of onsumers in the population P 0who purhased imported vehiles.Sine the onditional expetation an be written asE[�otdjCt 2 Qq;X ; �(�d; s0; P 0)℄= Z �otd Pr[d�otdjCt 2 Qq;X ; �(�d; s0; P 0)℄= R �otd Pr[Ci 2 QqjX; �(�d; s0; P 0); �otd℄P 0(d�otd)Pr[Ci 2 QqjX; �(�d; s0; P 0)℄= R �otd Pr[Ct 2 QqjX ; �(�d; s0; P 0);�t℄P 0(d�t)Pr[Ct 2 QqjX; �(�d; s0; P 0)℄= Z �otdPj2Qq �tj(X ; �(�d; s0; P 0);�t;�d)Pj2Qq �j(X; �(�d; s0; P 0);�d; P 0)P 0(d�t); (75)we an form an identity�0dq � Z �otdPj2Qq �tj(X ; �(�d; s0; P 0);� t;�d)Pj2Qq �j(X; �(�d; s0; P 0);�d; P 0)P 0(d�t) = 0 (76)at �d = �0d for q = 1; : : : ; Np; d = 1; : : : ;D. Although P 0 is so far assumed known, we typiallywill not be able to alulate the seond term on the left-hand side of (76) analytially and willhave to approximate it by the i.i.d. sample �t; t = 1; : : : ; T from the underlying distribution P 0.The sample moments GaJ;T (�d; s0; P 0;�0) orresponding to (76) areGaJ;T (�d; s0; P 0;�0) = �0 � 1T TXt=1 �ot 
 t(�(�d; s0; P 0);�d; P 0) (77)where
�0 =0BBBBBBBBBBBBB�

�011...�01Np...�0D1...�0DNp
1CCCCCCCCCCCCCA ;  t(�;�d; P ) =0BBBBBB� Pj2Q1 �tj(X ;�;�t;�d)Pj2Q1 �j(X;�;�d;P )...Pj2QNp �tj(X;�;�t;�d)Pj2QNp �j(X;�;�d;P )

1CCCCCCA : (78)
The symbol 
 denotes the Kroneker produt. The quantity  t(�;�d; P ) is the onsumer t'smodel-alulated purhasing probability of produts with disriminating attribute q relative tothe model-alulated market share of the same produts. This random sample �t; t = 1; : : : ; Tof onsumers is taken independent of the sample �r; r = 1; : : : ; R in (20) for alulating thesimulated market shares �j(X ; �;�d; PR). Note that these additional moment onditions areonditional on produt harateristis (X; �(�0d; s0; P 0)), and thus depend on the indies J andT . Suppose that we do not know the onditional expetation of demographis �0dq, instead, wehave its estimate �Ndq from independent soures suh as CEX automobile supplement in the aseof Petrin (2002). We assume N independent onsumer draws with their purhasing histories21



are used to onstrut �N = (�N11; : : : ; �N1Np ; : : : ; �ND1; : : : ; �NDNp)0 and de�ne the sampling error �Nontained in �N as follows. �N = �N � �0 = 1N NXi0=1 �#i0 : (79)In short, we assume here that �N is the sum of N onditionally independent random variablesgiven the set of produt harateristis (X; �) of all produts. Note that quantities n and Nare respetively the number of samples taken to alulate the observed market share and theobserved demographi average of onsumers purhasing produt with disriminating attribute.As suh they are beyond the ontrol of researhers. On the other hand quantities R and Tare respetively the number of samples taken to simulate the model-alulated market shareas well as the model-alulated demographi average of onsumers purhasing produt withdisriminating attribute from the population P 0 of onsumers. They are both hosen by theresearhers and these two samples must be independent.Sine we evaluate the unobserved quality �(�d; s; P ) at (s; P ) = (sn; PR) in (77), the samplemoments we an alulate areGaJ;T (�d; sn; PR;�N ) = �N � 1T TXt=1 �ot 
 t(�(�d; sn; PR);�d; PR) (80)for �d 2 �d. As an extension to BLP(1995), we use GaJ;T (�d; sn; PR;�N ) to estimate �, inaddition to the two sample moments GdJ(�d; sn; PR) in (22) and GJ(�; sn; PR) in (23). Theobjetive funtion we minimize in the GMM estimation is the sum of norm of GdJ(�d; sn; PR),GJ(�; sn; PR), and GaJ;T (�d; sn; PR;�N ), that is, the norm ofGJ;T (�; sn; PR;�N ) = 0B� GdJ(�d; sn; PR)GJ(�; sn; PR)GaJ;T (�d; sn; PR;�N ) 1CA : (81)In the following, we derive the CAN properties for the GMM estimator �� whih minimizesjjGJ;T (�; sn; PR;�N )jj. Notie that the �rst two moments GdJ and GJ in GJ;T are samplemoments averaged over produts j = 1; : : : ; J , while the third moment GaJ;T is averaged overonsumers t = 1; : : : ; T . To derive asymptotis for ��, we have to inrease two distint samplesize indies J and T simultaneously. We assume the sample size T of onsumers is always greaterthan the number of produts J , and then T grows faster than J , that is, J=T ! 0 as J !1.4.2 ConsistenyFor any Æ > 0, we show that limJ;T!1Pr[jj�� � �0jj > Æ℄ ! 0. The proof is a straightforwardextension to the onsisteny proof for �̂ in Theorem 1.Assumption A8 bounds jjGaJ;T (�d; s0; P 0;�0)jj away from jjGaJ;T (�0d; s0; P 0;�0)jj over �d out-side of a neighborhood of �0d. This ondition parallels assumption A5, whih boundsGJ(�; s0; P 0)away from GJ(�0; s0; P 0).In assumption A9, we assume an asymptoti property the disriminating attributes q; q =1; : : : ; Np must obey. We guarantee non-zero aggregate market shares for produts with dis-riminating attribute q when the number of produts J grows large. With this assumption andthe following assumption A10(b), the additional moment de�ned in (77) has �nite variane at�d = �0d. 22



Assumption A10(a) spei�es properties for error ontained in the additional information �Ndq.We assume �Ndq is unbiased for the true value �0dq and onsistent at a rate of N1=2 given theprodut harateristis (X ; �(�0d; s0; P 0)). Assumption A10(b) guarantees a �niteness for �0dq.Assumption A11 is on the proportion of the probabilities taking disriminating attributesbetween individual t and population P ,  t(�;�d; P ). We assume that the average absolute dis-tane between  t(�;�d; P ) and  t(�(�d; s0; P 0);�d; P 0) onverges to zero in probability withinthe Æ neighborhood of �(�d; s0; P 0) for any �d 2 �d. This assumption will be used to guaranteethat we an bring the sample analogue of the additional moments, GaJ;T (�d; sn; PR;�N ), loseenough to GaJ;T (�d; s0; P 0;�N ) for any �d.Assumption A8 For all Æ > 0, there exists C(Æ) suh thatlimJ;T!1Pr24 inf�d 62N�0d(Æ) jjGaJ;T (�d; s0; P 0;�0)�GaJ;T (�0d; s0; P 0;�0)jj � C(Æ)35 = 1: (82)Assumption A9 For all disriminating attributes q = 1; : : : ; Np,8<:Xj2Qq �j(X; �(�0d; s0; P 0);�0d; P 0)9=;�2has a �nite mean and variane for every J .Assumption A10 (a) For all observed onsumer's demographis d = 1; : : : ;D and for all dis-riminating attributes q = 1; : : : ; Np, the sampling error �Ndq � �0dq has zero mean and varianeof order 1=N onditional on produt harateristis (X ; �(�0d; s0; P 0)) of all produts, i.e.,E�#jx;� h�Ndq � �0dqjX; �(�0d; s0; P 0)i = 0; (83)V�#jx;� h�Ndq � �0dqjX; �(�0d; s0; P 0)i = Op(1=N): (84)(b) For all observed onsumer's demographis d = 1; : : : ;D and for all disriminating attributesq = 1; : : : ; Np, �0dq has a �nite mean and variane for all J , i.e., Ex;�[�0dq℄ <1 and Vx;�[�0dq℄ <1.Assumption A11 For any �d 2 �d, and for all Æ > 0,limJ;T!1Pr � sup(�;P )2N�0 (�d;Æ)�NP0 (Æ) T�1=2jj	(�;�d; P )�	(�(�d; s0; P 0);�d; P 0)jj > Æ� = 0; (85)where 	(�;�d; P ) = ( 1(�;�d; P ); : : : ; T (�;�d; P ))0.Theorem 3 (Consisteny of ��) Suppose that A1{A11 hold for some n(J; T ); R(J; T ), and N ,all of whih grow in�nitely as J and T grow in�nitely. Then, �� p! �0:4.3 Asymptoti NormalityTo derive the asymptoti normality of �̂ in Theorem 2, we approximated the demand sidemoments GdJ(�d; sn; PR) and the supply side moments GJ(�; sn; PR) respetively by GdJ(�d)
23



and GJ(�) within the shrinking neighborhood of �0. Similarly, we will use an approxima-tion to the additional moments GaJ;T (�d; sn; PR;�N ). Deompose the additional momentsGaJ;T (�d; sn; PR;�N ) into four terms.GaJ;T (�d; sn; PR;�N )= GaJ;T (�d; s0; P 0;�0) + fGaJ;T (�d; sn; PR;�N )�GaJ;T (�d; s0; PR;�N )g+fGaJ;T (�d; s0; PR;�N )�GaJ;T (�d; s0; P 0;�N )g+fGaJ;T (�d; s0; P 0;�N )�GaJ;T (�d; s0; P 0;�0)g: (86)The seond term in (86) an be written asGaJ;T (�d; sn; PR;�N )�GaJ;T (�d; s0; PR;�N )= �N � 1T TXt=1 �ot 
 t(�(�d; sn; PR);�d; PR)�(�N � 1T TXt=1 �ot 
 t(�(�d; s0; PR);�d; PR))= � 1T TXt=1 �ot 
 f t(�(�d; sn; PR);�d; PR)� t(�(�d; s0; PR);�d; PR)g= � 1T TXt=1 �ot 
 � t(�(�d; s0; PR);�d; PR)� t(�(�d; s0; PR);�d; PR)+� t(�y;�d; PR)�0 (�(�d; sn; PR)� �(�d; s0; PR))�= � 1T TXt=1 �ot 
�t(�y;�d; PR)(�(�d; sn; PR)� �(�d; s0; PR)) (87)where �t(�;�d; P ) = � t(�;�d; P )=��0 and �y = (�y1; : : : ; �yJ) is the set of intermediate vetorsbetween �(�d; sn; PR) and �(�d; s0; PR). Substituting (43) for (87) givesGaJ;T (�d; sn; PR;�N )�GaJ;T (�d; s0; PR;�N )= � 1T TXt=1 �ot 
�t(�y;�d; P )H�1(��;�d; PR)�n: (88)The third term in (86) isGaJ;T (�d; s0; PR;�N )�GaJ;T (�d; s0; P 0;�N )= �N � 1T TXt=1 �ot 
 t(�(�d; s0; PR);�d; PR)�(�N � 1T TXt=1 �ot 
 t(�(�d; s0; P 0);�d; P 0))= � 1T TXt=1 �ot 
 f t(�(�d; s0; PR);�d; PR)� t(�(�d; s0; P 0);�d; P 0)g= � 1T TXt=1 �ot 
 � t(�(�d; s0; P 0);�d; PR)� t(�(�d; s0; P 0);�d; P 0)24



+� t(�z;�d; PR)�0 (�(�d; s0; PR)� �(�d; s0; P 0))�= � 1T TXt=1 �ot 
 � t(�(�d; s0; P 0);�d; PR)� t(�(�d; s0; P 0);�d; P 0)+�t(�z;�d; PR)(�(�d; s0; PR)� �(�d; s0; P 0))� (89)where �z = (�z1; : : : ; �zJ) is the set of intermediate vetors between �(�d; s0; PR) and �(�d; s0; P 0).Substituting (44) for (89) givesGaJ;T (�d; s0; PR;�N )�GaJ;T (�d; s0; P 0;�N )= � 1T TXt=1 �ot 
 � t(�(�d; s0; P 0);�d; PR)� t(�(�d; s0; P 0);�d; P 0)��t(�z;�d; PR)H�1(�;�d; PR)�R(�d)�: (90)The fourth term in (86) isGaJ;T (�d; s0; P 0;�N )�GaJ;T (�d; s0; P 0;�0)= �N � 1T TXt=1 �ot 
 t(�(�d; s0; P 0);�d; P 0)�(�0 � 1T TXt=1 �ot 
 t(�(�d; s0; P 0);�d; P 0))= �N � �0: (91)Consequently, by substituting (88), (90) and (91) for (86), we an rewrite the additional momentsGaJ;T (�d; sn; PR;�N ) as follows.GaJ;T (�d; sn; PR;�N )= GaJ;T (�d; s0; P 0;�0)� 1T TXt=1 �ot 
 � t(�(�d; s0; P 0);�d; PR)� t(�(�d; s0; P 0);�d; P 0)+�t(�y;�d; PR)H�1(��;�d; PR)�n ��t(�z;�d; PR)H�1(�;�d; PR)�R(�d)�+�N � �0: (92)We use the following approximation GaJ;T (�d) to GaJ;T (�d; sn; PR;�N ).GaJ;T (�d) = GaJ;T (�d; s0; P 0;�0)� 1T TXt=1 �ot 
�0tH�10 f�n � �R(�0d)g+�N � �0: (93)where �0t � �t(�(�0d; s0; P 0);�0d; P 0).In order to obtain the asymptoti normality of ��, we will take the same path as the proof ofTheorem 2, that is, we �rst show that the sample moments GJ;T (�; sn; PR;�N ) in (81) are wellapproximated by GJ;T (�) = 0B� GdJ(�d)GJ(�)GaJ;T (�d) 1CA (94)25



within the ÆJ;T neighborhood of �0 where ÆJ;T is onverges to 0 as J; T ! 1, and then showthat the estimator whih minimizes the norm of GJ;T (�) is asymptotially normal.Assumption B7 plays the same role on the additional moments GaJ;T (�d; sn; PR;�N ) asassumption B5 does on the GJ(�; sn; PR), or it guarantees that the di�erene between GaJ;T (�d)and GaJ;T (�d; sn; PR;�N ) is stohastially small enough within the neighborhood of �0d.Assumption B8 and B9 are used in a same way as assumption B2 and B3. Assumption B8is just a di�erentiability ondition for the expetation of GaJ;T (�d; s0; P 0;�0) at �0d. Given B8,assumption B9 approximates GaJ;T (�d; s0; P 0;�0) by �aJ;T (�d � �0d) +GJ;T (�0d; s0; P 0;�0) near�0d. In assumptions B10(a){(d), we speify the asymptoti ovariane for the four terms inT 12GaJ;T (�0d), or T 12GaJ;T (�0d; s0; P 0;�0), T� 12 PTt=1 �ot
�0tH�10 �n, T� 12 PTt=1 �ot
�0tH�10 �R(�0d),and T 12 (�N ��0). These terms are mutually independent onditional on the produt harater-istis (X ; �(�0d; s0; P 0)), and thus the asymptoti ovariane of T 12GaJ;T (�0d) is the sum of the fourovariane matries. Assumptions B10(e){(h) are respetively Lyapunov onditions neessaryto ensure the four terms onverge to the normal distribution.Assumption B7 For all disriminating attributes q(q = 1; : : : ; Np), and for any ÆJ; T suh thatÆJ; T ! 0 as J; T !1,(a) supjj�d��0djj<ÆJ; T sup(�1;�2;P )2fN�0 (�0d;ÆJ; T )g2J�NP0 (ÆJ; T ) ��������T� 12 TXt=1 h�t(�1;�d; P )H�1(�2;�d; P )�n��t(�(�0d; s0; P 0);�0d; P 0)H�1(�(�0d; s0; P 0);�0d; P 0)�ni�������� = op(1); (95)(b) supjj�d��0djj<ÆJ; T sup(�1;�2;P )2fN�0 (�0d;ÆJ; T )g2J�NP0 (ÆJ; T ) ��������T� 12 TXt=1 h�t(�1;�d; P )H�1(�2;�d; P )�R(�d)��t(�(�0d; s0; P 0);�0d; P 0)H�1(�(�0d; s0; P 0);�0d; P 0)�R(�0d)i�������� = op(1); (96)() supjj�d��0djj<ÆJ; T T 12 Xj2Qq �Rj (�d) = op(1): (97)Assumption B8 For all �d in some Æ > 0 neighborhood of �0d,E[GaJ;T (�d; s0; P 0;�0)℄ = �aJ;T (�d � �0d) + o(jj�d � �0djj) (98)uniformly in J and T . The Matrix �aJ;T ! �a as J; T !1, where �aJ;T has full olumn rank.Assumption B9 For all sequene of positive numbers ÆJ;T suh that ÆJ;T ! 0 as J; T !1,supjj�d��0djj�ÆJ; T ������T 12 fGaJ;T (�d; s0; P 0;�0)� E[GaJ;T (�d; s0; P 0;�0)℄g�T 12 fGaJ;T (�0d; s0; P 0;�0)� E[GaJ;T (�0d; s0; P 0;�0)℄g������ = op(1): (99)Assumption B10 Let� TXt=1 �ot 
�t(�;�d; P )H�1(�;�d; P ) � (aa1(�;�d; P ); : : : ;aaJ(�;�d; P ))
26



and set Y aJ;T;i(�;�d; P ) � 1npT JXj=1aaj (�;�d; P )�ji;Y �aJ;T;r(�;�d; P ) � 1RpT JXj=1aaj (�;�d; P )��jr(X ; �;�d):Suppose that (a) limJ;T!1 1T TXt=1V�;x;� ��0 � �ot 
 t(�(�0d; s0; P 0);�0d; P 0)� = �a1; (100)(b) limJ;T;n!1nV�;�;x;�[Y aJ;T;i(�(�0d; s0; P 0);�0d; P 0)℄ = �a2; (101)() limJ;T;R!1RV��;�;x;�[Y �aJ;T;r(�(�0d; s0; P 0);�0d; P 0)℄ = �a3 (102)(d) limJ;T;N!1N V�#;x;�[T 12N�1�#i0 ℄ = �a4 (103)for �nite positive de�nite matries �a1;�a2, �a3 and �a4. Suppose that for some Æ > 0,(e) TXt=1E�;x;�[jjf�0 � �ot 
 t(�(�0d; s0; P 0);�0d; P 0)g=pT jj2+Æ℄ = o(1); (104)(f) nE�;�;x;�[jjY aJ;T;i(�(�0d; s0; P 0);�0d; P 0)jj2+Æ ℄ = o(1); (105)(g) RE��;�;x;�[jjY �aJ;T;r(�(�0d; s0; P 0);�0d; P 0)jj2+Æ ℄ = o(1); (106)(h) N E�#;x;�[jjT 12N�1�#i0 jj2+Æ ℄ = o(1): (107)Theorem 4 (Asymptoti Normality of ��) Suppose that A1{A11 and B1{B10 hold for someinreasing n(J; T ); R(J; T ); N , suh that T=J !1 as J !1 and N !1. Then, the estimator�� that minimizes jjGJ;T (�; sn; PR;�N )jj is asymptotially normal at the rate of J 12 :J 12 (�� � �0) w; N(0;V ):The variane-ovariane matrix V is written asV = (�0�+ �a0�a)�1�0��(�0�+ �a0�a)�1where � = �1 +�2 +�3.Remark 1 The variane redution of the estimates through the use of additional moments isdue to the omponent �a0�a in the asymptoti ovariane matrix in Theorem 4. Notie alsothat this asymptoti ovariane matrix assumes the ratio of the two size indies, J=T , onvergesto 0 as J goes to in�nity. For the �nite sample where T does not dominate J , the ovarianematrix will be V = (�0�+ �a0�a)�1 ��0��+ JT �a0�a�a� (�0�+ �a0�a)�1 (108)where �a = �a1 +�a2 +�a3 +�a4. The term (J=T )�a0�a�a inreases variane of the estimatedparameters. Consequently, the use of the additional moments does not neessarily improve theauray of the estimates. 27



5 Conrete ExamplesIn this setion, we disuss the onditions that guarantee the assumptions in the previous setions.When the number J of produts in the market grows large, the dimension of the market sharevetor inreases. This implies that almost all elements of the market share vetor derease tozero. The rate at whih the market share onverges to zero and the response of market share tothe hange of the unobserved produt quality, both of whih determine the appropriateness ofthe assumptions, depend on the underlying distribution of the produt harateristis and theonsumer heterogeneity as well as the struture of ompetition in the market.In the following, we onsider two primal examples to examine the assumptions. The �rst isthe simple logit model in whih we an analytially solve the equation (4) in terms of � and thusdo not inur the simulation error in the model. Without the simulation error, it is fairly easyto verify the assumptions for the logit model. The seond is the random oeÆient logit model.As disussed in BLP (1995), this model has useful properties when produt harateristis andonsumers' taste are multi-dimensionally distributed and then nature of ompetition amongproduts is omplex. Our main onern in the previous setion is also in the eÆient estimationfor the random oeÆient logit model. However, the random oeÆient logit model has nolosed-form solution for (4) and for the inverse of H(�;�d; P ). Thus, our examination has torely on its stohasti approximation.Logit ModelThe utility funtion of onsumer i for produt j in one of the simplest logit model is given byuij = Æj + �ij ; Æj = �ppj + �xxj + �j (109)where pj and xj are respetively the prie and the harateristi of produt j, and (�p; �x) isthe set of demand parameters �d. The assumption that the onsumer heterogeneity �ij beingextreme-value distributed derives the probability of onsumer i hoosing produt j as�j(�;�; P ) = exp(Æj)1 +PJk=1 exp(Æk) : (110)If we assume that the distribution of Æj has a bounded support, the stohasti magnitude of�j is Op(1=J). This implies that when the number of produts grows large, the market sharefor eah produt, inluding outside good, dereases to zero at the same rate. Therefore we anreasonably assume the following ondition on the rate at whih the market share approaheszero when we use the logit model for demand.Condition S1(a) There exists positive �nite onstants  and  suh that with probability oneJ � s0j � J ; j = 0; 1; : : : ; J: (111)(b) The onstant � further satis�es the relationship �Jm < J for eah �rm m = 1; : : : ; F , whereJm is the number of produts �rm m produes in the markets.Condition S1(a) leads us to s0j = Op(1=J). In addition, this ondition bounds the marketshare for eah produt away from zero for any �xed J , and then the inverse of the market shareis stohastially of order of J , i.e., 1=s0j = Op(J). By ondition S1(b), we exlude the eventthat the aggregate market share for any of �rms dominates in the market, i.e. Pj2Jm s0j �Pj2Jm �=J = �Jm=J < 1 at any given J . This guarantees that the inverse of the aggregate28



market share for the other �rms' produts and the outside good, is �nite and thus its stohastimagnitude is of order one, i.e., 1=(1 �Pj2Jm s0j) = Op(1).The limiting behavior of the market shares, both observed and model-alulated, are assumedin assumption A3. Assumptions A3(a) and (b) ontrol the way in whih sn and �(�;�d; PR)approah to the true market share s0 and �(�;�d; P 0) respetively. To guarantee assumption A3to hold, we require onditions on the growth rates of n and R as J grows large as well as onthe limiting behavior of the true market share s0. We below derive the growth rates of n and Rneessary to ensure A3 when ondition S1 is satis�ed.First, we derive the rate for assumption A3(a). For any Æ > 0,Pr h�s0(sn; s0) > Æi= Pr " max0�j�J �����snj � s0js0j ����� > Æ#� JXj=0Pr"�����snj � s0js0j ����� > Æ#= JXj=0Pr"snj � s0js0j > Æ#+ JXj=0Pr"snj � s0js0j < �Æ#= JXj=0Ex;� "Pr"snj � s0js0j > Æ�����X; �(�0d; s0; P 0)##+ JXj=0Ex;� "Pr"snj � s0js0j < �Æ�����X; �(�0d; s0; P 0)##= JXj=0Ex;� "Pr" nXi=1 �ji > nÆs0j �����X; �(�0d; s0; P 0)##+ JXj=0Ex;� "Pr" nXi=1 �ji < �nÆs0j �����X; �(�0d; s0; P 0)## : (112)Sine j�jij < 1 and �ji are independently distributed aross i onditional on (X ; �(�0d; s0; P 0))with onditional mean zero and onditional variane s0j(1 � s0j) by assumption A1(a), underondition S1(a), we an rewrite the �rst term in (112) by the Bernstein inequality asJXj=0Ex;� "Pr " nXi=1 �ji > nÆs0j �����X; �(�0d; s0; P 0)##� JXj=0Ex;� 24exp0�� (nÆs0j )22V�jx;� hPni=1 �jijX; �(�0d; s0; P 0)i+ 2nÆs0j1A35= JXj=0Ex;� "exp � (nÆs0j )22ns0j(1� s0j) + 2nÆs0j !#= JXj=0Ex;� "exp � Æ22(1� s0j)=(ns0j ) + 2Æ=(ns0j )!#= J Ex;�[exp(�Æ2Op(n=J))℄: (113)The upper bound for the seond term on the right hand side of (112) is obtained similarly. Ifthe term exp(�Æ2Op(n=J)) is individually uniformly integrable, the left-hand side of (113) is29



bounded by J exp(�Æ2O(n=J)). By Cauhy's onvergene test (ratio test), we have a suÆientondition to ensure J exp(�Æ2O(n=J)) to derease to zero: J1+�=n ! 0 for any � > 0. Thisguarantees assumption A3(a). Notie that sine the logit model inurs no simulation error inthe evaluation of �, we do not need to take aount of assumption A3(b) for the ase of the logitmodel.3In assumption A4, we simply assume that the instrumental matries Zd and Z are respe-tively stohastially bounded.To guarantee assumption A5, it is suÆient that the �rst order derivative matrix ofGJ(�; s0; P 0)in terms of � 2 � is of full olumn rank, sine then for all Æ > 0, there exist C suh thatinf� 62N�0(Æ) jjGJ(�; s0; P 0)�GJ(�0; s0; P 0)jj = inf� 62N�0(Æ) �����������GJ(��; s0; P 0)��0 (� � �0)����������� inf� 62N�0(Æ)Cjj� � �0jj = CÆin probability tending to one as J ! 1. In the following, we examine what it means to have�GJ(�; s0; P 0)=��0 being of full-olumn rank. We should note that the demand side momentontains only the vetor of demand parameters, �d, while that for ost side ontains both ofdemand and ost side parameter vetors, �d and �, as noted on page 6. This means that thematrix �GJ(�; s0; P 0)=��0 takes the following form�GJ(�; s0; P 0)��0 =  �GdJ(�d; s0; P 0)=��0d 0�GJ(�; s0; P 0)=��0d �GJ(�; s0; P 0)=��0 ! : (114)This matrix is full-olumn rank if the omponents �GdJ(�d; s0; P 0)=��0d and �GJ(�; s0; P 0)=��0are respetively of full-olumn rank, regardless of the value of �GJ(�; s0; P 0)=��0d. Moreover,we know that �GJ(�; s0; P 0)=��0 = �J�1Z 0W by the de�nition of the ost side moment in(18) and the assumed linear dependene of ! onW in (14). By properly hoosing the ost sideinstruments Z and ost shifter W , we an onstrut �GJ(�; s0; P 0)=��0 to be of full-olumnrank for all J . Therefore we only need to hek �GdJ(�d; s0; P 0)=��0d below. The �rst orderderivative of GdJ(�d; s0; P 0) in terms of �d an be rewritten as�GJ(�d; s0; P 0)��0d= J�1Z 0d ��(�d; s0; P 0)��0d= �J�1Z 0dH�1(�(�d; s0; P 0);�d; P 0)��(�(�d; s0; P 0);�d; P 0)��0d (115)sine ��(�)=��0 � ��=��0d + ��(�)=��0d = 0 from the impliit funtion theorem.For the ase of the logit model, we haveH(�(�d; s; P );�d; P ) = S � ss0; and H�1(�(�d; s; P );�d; P ) = S�1 + ii0=s0; (116)where S = diag[s℄ and i = (1; : : : ; 1)0. Furthermore,��(�(�d; s; P );�d; P )��0d = 0B� s1(p1 �P pjsj) s1(x1 �Pxjsj)... ...sJ(pJ �P pjsj) sJ(xJ �Pxjsj) 1CA : (117)3A suÆient ondition for assumption A3(b) ould have been shown to be J1+�=R! 0 under ondition S1(a)by the similarly way, but this ondition would have to hold uniformly over �d.30



Substituting (116) and (117) for (115) gives us �GdJ(�d; s0; P 0)=��0d = �J�1(Pzdjpj ;Pzdjxj).Therefore, unless the prie pj is a linear funtion of the produt harateristis xj, �GdJ(�d; s0; P 0)=��0dwith the logit model will be automatially of full olumn rank.Assumption A6 an be veri�ed by the similar way as A5, that is, to see whether the �rstorder derivative of � J(�(�;�d; P )) with respet to � is of full-rank, whereas the dimension of�� J(�(�;�d; P ))=��0 inreases as J grows large. In the logit model ase, this matrix is offull-rank sine �� J(�(�;�d; P ))=��0 = I .In assumption A7, we guarantee that the pro�t marginmg(�(�d; sn; PR);�d; PR) shows thesame distributional harateristis asmg(�(�d; s0; P 0);�d; P 0) as �(�d; sn; PR) and PR onvergeto �(�d; s0; P 0) and P 0 respetively. Using the logit model for demand determines the strutureof the pro�t margin of produt j via the response of market share to the prie hange��j(�;�d; P )�pl = ( �p�j(1� �j) (l = j)��p�j�l (l 6= j) : (118)The pro�t margin of produt j with the logit model is alulated asmgj(�(�d; s; P );�d; P ) = �f��1�(�(�d; s; P );�d; P )gj= � 1�p(1�Pl2J jm sl) (119)where J jm denotes the set of all produts of the �rm that produes produt j, i.e., J jm = Jm ifj 2 Jm, and �p in (109) is expeted to be negative. The (119) implies that when we employ thelogit model for demand, the pro�t margin is the same aross the produts one �rm produesand is inreasing in the �rm's aggregate market share. Hene, we obtain the fat that J=n! 0guarantees assumption A7 under ondition S1 as follows.J�1jjmg(�(�d; sn; PR);�d; PR)�mg(�(�d; s0; P 0);�d; P 0)jj2= J�1 FXm=1 Xj2Jm hmgj(�(�d; sn; PR);�d; PR)�mgj(�(�d; s0; P 0);�d; P 0)i2= J�1 FXm=1 Xj2Jm "� 1�p(1�Pl2J jm snl ) + 1�p(1�Pl2J jm s00)#2= J�1��2p FXm=1Jm " Pl2Jm(snl � s0l )(1�Pl2Jm snl )(1�Pl2Jm s0l )#2= J�1��2p FXm=1Jm " bm1� bm � 11�Pl2Jm s0l #2 ;where bm =Pl2Jm(snl �s0l )=(1�Pl2Jm s0l ). We know that 1=(1�Pl2Jm s0l ) = Op(1) by onditionS1, and that snl � s0l = Op(1=pnJ) by assumption A1(a). Therefore, bm = JmOp(1=pnJ) �Op(1) � (J=�)Op(1=pnJ) = Op(pJ=n) by ondition S1(b). This givesJ�1jjmg(�(�d; sn; PR);�d; PR)�mg(�(�d; s0; P 0);�d; P 0)jj2� ��2p F� " Op(pJ=n)1�Op(pJ=n) � Op(1)#2= Op(J=n); (120)assuming the parameter assoiated with the prie is negative and away from zero.31



We next examine the asymptoti normality in Theorem 2. In Theorem 2, the variane ofthe GMM estimator onsists of the three omponents, �1;�2, and �3, eah of whih is dueto the randomness of the produt harateristis, the sampling error, and the simulation errorrespetively. Assumption B4(a), (b), and () bound these variane omponents as J goes toin�nity. In the logit model ase, �3 = 0 beause there is no need for simulation, and thus nosimulation error. We fous on B4(b) here. Without loss of generality, we assume below thatthe instrument matries, Zd and Z, are respetively J � 1 vetors. Then, sine the onditionalvariane of �ji is given as s0j(1� s0j) in assumption A1, �2 generally takes the form of�2 � " �dd2 �d2�d2 �2 #= limJ;n!1 1nJ �Ex;� " Pj(adj )2s0j � (Pj adjs0j)2 Pj adjajs0j � (Pj adjs0j)(Pj ajs0j)Pj adjajs0j � (Pj adjs0j)(Pj ajs0j) Pj(aj)2s0j � (Pj ajs0j)2 # (121)where adj and aj are respetively jth elements of Z 0dH�10 and �Z 0L0M 0H�10 . If we simply useg(x) = x as the ost funtion in (14), the logit model derivesadj = zdjs0j + Pl zdls00 ; aj = Pl2J jm zl�0p(1�Pl2J jm s0l )2 ; j = 1; : : : ; J: (122)Let �(J) = J �zd=s00; �j = zdj s00=(J �zds0j) and thus adj = �(J)(1 + �j), thenPj(adj )2s0j � (Pj adjs0j)2= Pj �(J)2(1 + �j)2s0j � (Pj �(J)(1 + �j)s0j)2= �(J)2 hPj s0j � (Pj s0j)2 + 2(1 �Pj s0j)(Pj �js0j) +Pj �2j s0j � (Pj �js0j)2i= �(J)2 hs00(1� s00) + 2s00Pj �js0j � (Pj �js0j)2 +Pj �2j s0ji� �(J)2 hs00(1� s00) + 2s00maxj j�j j �Pj s0j +maxj j�j j2 �Pj s0ji= �(J)2(1� s00) �s00 + 2s00maxj j�j j+maxj j�j j2� :Assuming zdj =�zd = Op(1), we have �(J) = Op(J2) and �j = Op(1=J) under ondition S1 andassumption A4. Then, the (1; 1) element of �2 is�dd2 = limJ;n!1 1nJ Ex;� hPj(adj )2s0j � (Pj adjs0j)2i = O(J2=n): (123)By the similar alulation, we obtain �2 = Op(J=n) and �d2 = Op(J2=n). Therefore, we needto inrease n at least as fast as J2 in order to bound �2 �nite.Assumptions B4(d), (e), and (f) are the Lyapunov ondition neessary to guarantee that thethree terms in J1=2GJ(�0) follows asymptotially normal respetively. We just hek assump-tion B4(e). Hene,nE�;x;�[jjY Ji(�(�0d; s0; P 0);�0d; P 0)jj2+Æ ℄= (n1+ÆJ (2+Æ)=2)�1 E�;x;� �n(Pj adj �ji)2 + (Pj aj�ji)2o(2+Æ)=2� :We obtainjPj adj �jij � Pj jadj�jij � max1�j�J jadj j �Pj j�jij = max1�j�J jadj j �Pj j1(Ci = j) � s0j j� max1�j�J jadj j �Pjf1(Ci = j) + s0jg� 2max1�j�J jadj j: 32



Similarly, we have jPj aj�jij � 2max1�j�J jaj j. Under ondition S1, adj and aj for the logitmodel given in (122) are respetively Op(J2) and Op(J). Therefore,nE�;x;�[jjY Ji(�(�0d; s0; P 0);�0d; P 0)jj2+Æ ℄� (n1+ÆJ (2+Æ)=2)�1 E�;x;� h�Op(J2)2 +Op(J)2	(2+Æ)=2i= E�;x;� "Op J3+3Æ=2n1+Æ !# : (124)If we impose that n inreases as fast as J2, i.e., n = O(J2), the Lyapunov ondition B4(e)follows for Æ > 2 by (3 + 3Æ=2) � 2(1 + Æ) = 1� Æ=2 < 0.4Finally, we examine assumption B5. The equiontinuity-like onditions in B5 guarantee thatGJ(�; sn; PR) is well approximated by GJ(�) near the neighborhood of (�0; �(�0d; s0; P 0); P 0)and then the �rst order residual terms in Taylor approximation an be negligible as J goes large.B5(b) and B5(d) are assumptions respetively on the demand and ost side residuals aused bythe simulation error, and B5(d) is on the properties of the ost funtion g(�) and of the pro�tmargin mg(�) near P 0, they are all unneessary to hek in the logit model ase. Then theremained to hek are B5(a) and B5(). Sine the jth element of Z 0dH�1 is zdj =sj + J �zd=s0 forthe logit model, the residual for the demand side moment in B5(a) evaluated at the observedmarket share sn an be bounded as follows.jJ�1=2Z 0dfH�1(�(�d; sn; P 0);�d; P 0)�H�10 g�nj= jJ�1=2PJj=1fzdj =snj + J �zd=sn0 � zdj =s0j � J �zd=s00g�nj j= jJ�1=2PJj=1fzdj (1=snj � 1=s0j )(snj � s0j) + J �zd(1=sn0 � 1=s00)(snj � s0j)gj= jJ�1=2PJj=1fzdj (snj � s0j)2=(snj s0j) + J �zd(snj � s0j)(sn0 � s00)=(sn0 s00)gj� J�1=2PJj=1 jzdj b2j=(1 + bj)j+ J1=2j�zdj � jb0=(1 + b0)j � (1=s00) �PJj=1 jsnj � s0j j� J�1=2max1�j�J jzdj j �PJj=1 jb2j=(1 + bj)j+ J1=2j�zdj � jb0=(1 + b0)j � (s0j=s00) �PJj=1 jbj j;(125)where bj = (snj � s0j )=s0j . From ondition S1, assumptions A1(a), and A3(a), we have bj =Op(pJ=n) = op(1). Thus b2j=(1 + bj) = Op(J=n)=(1 +Op(1)) = Op(J=n). Assuming maxj jzdj j =Op(1), both of the �rst and seond terms of the right hand side in the above inequality areOp(J3=2=n). Therefore, we need n to grow faster than J3=2. For B5(), let us abbreviatesnJm =Pj2Jm snj and s0Jm =Pj2Jm s0j and assume �zJm = J�1m Pj2Jm zj = Op(1), thenjJ�1=2Z 0fL(�(�d; sn; P 0);�d; P 0)M(�(�d; sn; P 0);�d; P 0)H�1(�(�d; sn; P 0);�d; P 0)�L0M0H�10 g�nj= jJ�1=2PJj=1faj(�(�d; sn; P 0);�d; P 0)� aj(�(�d; s0; P 0);�d; P 0)g(snj � s0j)j= ������J�1=2 FXm=1 Xj2Jm( Pl2J jm zl�p(1�Pl2J jm snl )2 � Pl2J jm zl�p(1�Pl2J jm s0l )2) (snj � s0j)������= �����J�1=2 FXm=1 ��1p Jm�zJm ( 1(1� snJm)2 � 1(1� s0Jm)2) (snJm � s0Jm)�����= ���������J�1=2 FXm=1 ��1p Jm�zJm 8>>><>>>: 11� 2 snJm�s0Jm1�s0Jm + � snJm�s0Jm1�s0Jm �2 � 19>>>=>>>; snJm � s0Jm(1� s0Jm)2 ���������4Obviously, if we allow n to grow at the order of J3, this requirement of Æ > 2 an be relaxed to Æ > 0 as BLP(1995) laimed. 33



= ���������J�1=2 FXm=1 ��1p Jm�zJm 8>>><>>>: 2 snJm�s0Jm1�s0Jm � � snJm�s0Jm1�s0Jm �21� 2 snJm�s0Jm1�s0Jm + � snJm�s0Jm1�s0Jm �29>>>=>>>; snJm � s0Jm(1� s0Jm)2 ���������� j�pj�1J�1=2 FXm=1Jmj�zJm j ��������� 2 snJm�s0Jm1�s0Jm � � snJm�s0Jm1�s0Jm �21� 2 snJm�s0Jm1�s0Jm + � snJm�s0Jm1�s0Jm �2 ��������� � ����� snJm � s0Jm(1� s0Jm)2 �����= j�pj�1J�1=2 � F � O(J) �Op(1)0� 2 �Op �pJ=n��Op(J=n)1� 2 � Op �pJ=n�+Op(J=n)1A �Op �qJ=n�= Op(J3=2=n) (126)where, by ondition S1 and assumption A1(a), we use (1 � s0Jm)�1 = Op(1) and snJm � s0Jm =PJm(snl � s0l ) = JmOp(1=pnJ) = Op(pJ=n), and thus (snJm � s0Jm)=(1 � s0Jm) = Op(pJ=n).To summarize, when we use the logit model for demand, the rate of inrease for n relativeto J required to guarantee the onsisteny of the GMM estimator is of order of J1+� by theargument following (113) and (120), while the rate for the asymptoti normality is of order ofJ2 based on the argument following (123){(126).We should note that, to guarantee the CAN property of the estimator in Theorems 1 and 2for the use of the logit model, we have assumed that the number Jm of the produts produed by�rm m inreases as the number J of produts in the market grows. Instead, the CAN propertyis equally obtained if we �x the number of produts a �rm produes to be one and inrease thenumber F of �rms in the market, i.e, Jm = 1 and F = J ! 1. As seen in (119), the logitmodel annot have di�erent pro�t margins aross the produts produed by the same �rm, andaordingly, a number of empirial studies that use the logit model have assumed that eah�rm produes a produt or a omposite produt in the market. This empirial use of the logitmodel impliitly assumes that the number of �rms in the market grows. Nevertheless the CANproperty of the logit estimates an be similarly obtained with the slight modi�ation on thesetup of Theorems 1 and 2.As for Theorems 3 and 4, it should be noted that additional demographially-ategorizedpurhasing information does not lend itself to �ner and more aurate estimates for logit model.This is beause, for logit model, onsumers' demographi information are all summarized in theerror term and is integrated out. As a result, individual purhasing probability for a produt isthe same aross onsumers and agree with the market share.Therefore we defer to the next subsetion of the random oeÆient logit model on the exam-ination of how fast the number T of onsumers drawn to math the observed demographially-ategorized purhasing information must inrease relative to the number J of produts on themarket and the number R of onsumers used to simulation in order for us to have Theorems 3and 4. We also see that the numberN of the sample size to alulate suh purhasing informationmust inrease in�nitely relative to T .Random CoeÆient Logit ModelIn what follows, we assume a random oeÆient logit model with one random oeÆient:uij = Æj + �ux�xi xj + �ij with Æj = �ppj + �xxj + �j (127)where �xi represents onsumer i's random preferene on the harateristi xj relative to theprie. The parameter �ux shows the magnitude of the preferene, and when �ux = 0, the model is34



simple logit model. Provided that �ij's are i.i.d. extreme value, the probability �ij of onsumeri hoosing produt j is given by�ij(�; �i;�d) = exp(Æj + �ux�xi xj)1 +PJk=1 exp(Æk + �ux�xi xk) : (128)The market share of produt j is obtained by integrating (128) in terms of �xi over the populationP 0. We simulate it with a random sample of R individuals as�j(�;�; PR) � 1R RXr=1�rj(�;�r;�d) = 1R RXr=1 exp(Æj + �ux�xr xj)1 +PJk=1 exp(Æk + �ux�xr xk) (129)In the following, we put forward Condition S2 on the magnitude of the individual hoie prob-ability stronger than Condition S1(a). Although the ondition makes individual's behaviorrestritive, this treatment allows us to alulate the rate of n, R, N , and T relative to J , atwhih the random oeÆient logit model follows our limiting theorems.Condition S2 For all onsumer r with the demographis �r, and for all possible value ofthe produt harateristis (X; �), there exists positive �nite onstants  and  suh that withprobability one J � inf�d2�d �rj(�;�r;�d)� sup�d2�d �rj(�;�r;�d) � J ; j = 0; 1; : : : ; J: (130)Obviously, Condition S2 is a suÆient ondion of Condition S1(a) beause substituting � =�(�d; s0; P 0) and integrating both sides of the inequality over the population P 0 immediatelyleads to Condition S1(a). With Condition S2, the individual hoie probability �rj(�;�r;�d)and its inverse are respetively Op(1=J) and Op(J). We assume that our two sets of simulationdraws of individuals �r; r = 1; : : : ; R and of the individuals �t; t = 1; : : : ; T satisfy ondition S2.As stated above, the random oeÆient logit model has no losed-form solution to the inverseof H. However, under ondition S2, we an approximate it byH�1(�;�d; PR)= ��1(�;�d; PR) + 1�0(�;�d; PR) (1 +Op(1=J)) ii0; (131)where �(�;�d; P ) = diag(�1(�;�d; P ); : : : ; �J (�;�d; P )). In the appendix of Berry, Linton, andPakes (2004, pp.651-652), an approximation essentially same as this was used to show that, evenwhen we use the random oeÆient logit model, the limiting behavior of the residual term onthe sampling error in the demand side moment (46) is fundamentally similar to that for the logitmodel. As a result, the random oeÆient logit model requires the same rate J2 for n relativeto J as the logit model to guarantee the GMM estimator to follow asymptotially normal. Asfor the number R of simulation draws, they presumed that symmetri arguments hold for R.Furthermore, in the appendix of this paper, we show that the arguments above apply to oursupply side spei�ation too. Therefore, for Theorem 2 to hold for the random oeÆient logitmodel, the number n of the sample size for aluulating the observed market share must inreaseat the rate of J2 and the number R of the simulation draws must inrease at the rate of J2 aswell.Appliability of assumptions A5 and A6 in Theorem 1 to the random oeÆient logit modelwould have to be heked via numerial omputations on a ase-by-ase basis beause these35



assumptions require us to examine full-rankness of the matries that ontain the inverse of H .Assumption A7, on the other hand, an be veri�ed relatively easily using (131).Now we turn our attention to ases where we have at our disposal additional moment on-ditions on demographially-ategorized purhasing information. We suppose that we are nowinterested in estimating the parameter �ux in (127) more aurately by using the information ononsumers who hoose spei� sets of attributes in produts. Denote the set of produts havingthis attribute by Q. Hereinafter, assume that we have a onsistent estimate �N , whih wasonstruted from N independent onsumer draws from the population P 0, separate from the nindependent draws from P 0 for alulating the observed market share, with the expetation �0of �xi onditional on the individual hoosing a produt in Q. We further assume that �N satis�esassumption A10, that is, �N has the onditional expetation, orresponding to (83) but writtenin the spirit of (75), �0 = E[�xt jCt 2 Q;X ; �(�0d; s0; P 0)℄ (132)and the onditional variane of order Op(1=N) for (84). Given �N , we will draw T individualsfrom the population P 0 to onstrut an additional moment,GaJ;T (�d; sn; PR;�N ) = �N � 1T TXt=1 �xt  t(�(�d; sn; PR);�d; PR) (133)where  t(�;�d; P ) =Pj2Q �tj(�;�t;�d)=Pj2Q �j(�;�d; P ). In the following, we will derive theondition to guarantee that the spei�ation above satis�es the assumptions in Theorems 3 and4 under Condition S2.On assumption A8, we require that the 1 � 3 matrix �GaJ;T (�d; s0; P 0;�0)=��0d is of fullolmun rank. We an rewrite this matrix as�GaJ;T (�d; s0; P 0;�0)��0d= 1T TXt=1 �xt "� t(�;�d; P 0)��0 H�1(�;�d; P 0)��(�;�d; P 0)��0d +  t(�;�d; P 0)��0d # ������=�(�d;s0;P 0):Here, the omponent H�1 has no losed form expression, while we an approximate it withinOp(1=J)=�0 error by taking R ! 1 in (131). As a result, to verify assumption A8, we wouldhave to have the representative utility Æj , onsumer's random preferene �xi , and its assoiatedparameter value �ux �xed. We will hek the singularity of �GaJ;T =��0d in our omputationalexample in the next setion.For assumption A9, we assume the number of produts in Q inreases as fast as the numberof produts in the market, whih guarantees both ofPj2Q �j and 1=Pj2Q �j to be Op(1) underCondition S2.To hek assumption A11, we deomposeT�1=2jj	(�(�d; sn; PR);�d; PR)�	(�(�d; s0; P 0);�d; P 0)jj� T�1=2jj	(�(�d; sn; PR);�d; PR)�	(�(�d; s0; P 0);�d; PR)jj+T�1=2jj	(�(�d; s0; P 0);�d; PR)�	(�(�d; s0; P 0);�d; P 0)jj (134)where 	 = ( 1; : : : ;  T )0 is a T � 1 matrix. The square of the �rst term in (134) is bounded byT�1jj	(�(�d; sn; PR);�d; PR)�	(�(�d; s0; P 0);�d; PR)jj2= T�1 �����������	(��;�d; PR)��0 (�(�d; sn; PR)� �(�d; s0; P 0))����������236



� �JT � �����������	(��;�d; PR)��0 ����������2 � J�1jj�(�d; sn; PR)� �(�d; s0; P 0)jj2where �� is between �(�d; sn; PR) and �(�d; s0; P 0). In the proof of Theorem 1 (equation (A.6)),we have shown that J�1jj�(�d; sn; PR)� �(�d; s0; P 0)jj2 = op(1). Thus, it remains to show thatjj�	(��;�d; PR)=��0jj2 = Op(T=J) to guarantee this whole term to be op(1). For the randomoeÆient logit model, we obtain the jth element of �t asf�t(�;�d; P )gj � � t(�;�d; P )��j= �tj(1fj 2 Qg �Pk2Q �tk)Pk2Q �k�Pk2Q �tkPk2Q �k � 1fj 2 Qg R �rjdP �Pk2Q R �rj�rkdPPk2Q �k (135)where �rj = �rj(�;�r;�d), �tj = �tj(�;�t;�d) and �j = �j(�;�d; P ). Under Condition S2,both of �rj and �j are Op(1=J), while Pj2Q �j and 1=Pj2Q �j are both Op(1). Thus, we have� t(�;�d; P )=��j = Op(1=J), and so���������	(��;�d; P )��0 ��������2 = JXj=1 TXt=1 � t(��;�d; P )��j !2 = J � T � Op(1=J)2= Op(T=J):The square of the seond term of (134) isT�1jj	(�(�d; s0; P 0);�d; PR)�	(�(�d; s0; P 0);�d; P 0)jj2= T�1 TXt=1f t(�(�d; s0; P 0);�d; PR)�  t(�(�d; s0; P 0);�d; P 0)g2= T�1 TXt=1(Pj2Q �tj(�(�d; s0; P 0);� t;�d)Pj2Q �j(�(�d; s0; P 0);�d; PR) � Pj2Q �tj(�(�d; s0; P 0);�t;�d)Pj2Q �j(�(�d; s0; P 0);�d; P 0))2= ( Pj2Qf�j(�(�d; s0; P 0);�d; PR)� �j(�(�d; s0; P 0);�d; P 0)gPj2Q �j(�(�d; s0; P 0);�d; PR) �Pj2Q �j(�(�d; s0; P 0);�d; P 0))2�T�1 TXt=18<:Xj2Q�tj(�(�d; s0; P 0);�t;�d)9=;2= ( Pj2QOp(1=pRJ)Pj2QOp(1=J) �Pj2QOp(1=J))2 � T�1 TXt=18<:Xj2QOp(1=J)9=;2= Op(J=R)under assumption A1(b) and Condition S2. As a result, R is required to grow slightly fasterthan J .We next move on to assumptions in Theorem 4. For assumption B7(a), it is suÆient toshow that two omponents in the norm of (95) is respetively op(1). Write �Rj = �j(�;�d; PR)and �Tj = �j(�;�d; P T ) for notational simpliy, and then we approximate the jth element ofT�1PTt=1�t(�;�d; PR)H�1(�;�d; PR) by using H�1 in (131) and � t=��j in (135) as follows.(T�1 TXt=1�t(�;�d; PR)H�1(�;�d; PR))j 37



= T�1 TXt=1 JXl=1 � t(�;�d; PR)��l H�1lj (�;�d; PR)= "T�1PTt=1(Pl2Q �tl)�t0Pl2Q �Rl � (Pl2Q �Tl )R�1PRr=1(Pl2Q �rl)�r0(Pl2Q �Rl )2 # � 1�R0 (1 +Op(1=J))+"�Tj � 1fj 2 Qg � T�1PTt=1(Pl2Q �tl)�tjPl2Q �Rl�(Pl2Q �Tl )f�Rj � 1fj 2 Qg �R�1PRr=1(Pl2Q �rl)�rjg(Pl2Q �Rl )2 # � 1�Rj : (136)As for the �rst omponent of (95), under Condition S2, we obtain from (136),����������T�1 TXt=1�t(�;�d; PR)H�1�n����������= ������ JXj=1(T�1 TXt=1�t(�;�d; PR)H�1)j �nj ������= �����(T�1PTt=1(Pl2Q �tl)�t0Pl2Q �Rl � (Pl2Q �Tl )R�1PRr=1(Pl2Q �rl)�r0(Pl2Q �Rl )2 )�PJj=1(snj � s0j)�R0 (1 +Op(1=J))+ JXj=1(�Tj � 1fj 2 Qg � T�1PTt=1(Pl2Q �tl)�tjPl2Q �Rl�(Pl2Q �Tl )f�Rj � 1fj 2 Qg �R�1PRr=1(Pl2Q �rl)�rjg(Pl2Q �Rl )2 ) � snj � s0j�Rj �����= �����(T�1PTt=1Op(1) �Op(1=J)Op(1) � Op(1)R�1PRr=1Op(1) � Op(1=J)Op(1)2 )�PJj=1Op(1=pnJ)Op(1=J) (1 +Op(1=J))+ JXj=1(Op(1=J)Op(1)� T�1PTt=1Op(1) � Op(1=J)Op(1)�Op(1)fOp(1=J)Op(1)�R�1PRr=1Op(1) �Op(1=J)gOp(1)2 ) � Op(1=pnJ)Op(1=J) �����= Op �qJ=n� :We an also obtain for the seond omponent, jjT�1PTt=1�0tH�10 �njj = Op(pJ=n) using (131)and (135) with (�;�d; P ) = (�(�0d; s0; P 0);�0d; P 0). As a whole, we have����������T�1=2 TXt=1f�t(�;�d; PR)H�1(�;�d; PR)��0tH�10 )g�n����������� T 1=2 ����������T�1 TXt=1f�t(�;�d; PR)H�1(�;�d; PR)�n����������+ T 1=2 ����������T�1 TXt=1�0tH�10 )g�n����������= T 1=2Op �qJ=n�+ T 1=2Op �qJ=n�38



= Op �qT � J=n� :Therefore, we have to inrease n faster than TJ . We notie that the requirement above forassumption B7(a) is stronger than what is required for theorem 2, that is, n grows faster thanJ2, beause we assume the number T of onsumers used in evaluating the additional moment isgreater than the number J of the produts in the market.As for assumption B7(b), through a quite similar alulation as for assumption B7(a), wean show that the number R of simulation draws is needed to grow faster than TJ .We an easily see that assumption B7() requires R grows faster than TJ as follows.pT Xj2Q �Rj (�d) = pT Xj2Q(�j(�(�d; s0; P 0);�d; PR)� s0j)= pT Xj2QOp �1=pJR�= Op �qTJ=R� :In assumption B10(a), we need to keep the variane of Pni=1 Y a0J;T;i, whih is the residualomponent in the additional moment T 1=2GaJ;T (�0d) in terms of the sampling error, bounded.Write �0tj = �tj(�(�0d; s0; P 0);�t;�0d) and �0j = �j(�(�0d; s0; P 0);�0d; P 0), thenaa0j � aaj (�(�0d; s0; P 0);�0d; P 0)= f�PTt=1 �xt �0tH�10 gj= �PTt=1 �xt �0tj(1fj 2 Qg �Pl2Q �0tl)Pl2Q s0l � 1s0j � PTt=1 �xt �0t0Pl2Q �0tlPl2Q s0l � 1s00 (1 +Op(1=J))= �(1 + �j +Op(1=J)) (137)where� = �PTt=1 �xt �0t0Pl2Q �0tlPl2Q s0l � 1s00 ; �j = �PTt=1 �xt �0tj(1fj 2 Qg �Pl2Q �0tl)PTt=1 �xt �0t0Pl2Q �0tl � s00s0j :The � and � are respetively Op(T ) and Op(1) under Condition S2. Using aa0j alulatedabove, the expetation of the prinipal omponent of Y a0J;T;i with respet to �ji onditional on(X ; �(�0d; s0; P 0)) is alulated as follows.PJj=1(aa0j )2s0j � (PJj=1 aa0j s0j)2= PJj=1 �2(1 + �j +Op(1=J))2s0j � fPJj=1 �(1 + �j +Op(1=J))s0jg2= �2 hs00(1� s00)(1 +Op(1=J))2 + 2(PJj=1 �js0j)s00(1 +Op(1=J)) +PJj=1 �2j s0j � (PJj=1 �js0j)2i� �2 hs00(1� s00)(1 +Op(1=J))2 + 2maxj j�j j � (PJj=1 s0j)s00(1 +Op(1=J)) + maxj j�j j2 �PJj=1 s0ji= �2(1� s0) �s00(1 +Op(1=J))2 + 2maxj j�j js00(1 +Op(1=J)) + maxj j�j j2� :Substituting � = Op(T ) and �j = Op(1), we further obtainPJj=1(aa0j )2s0j � (PJj=1 aa0j s0j)2= Op(T )2(1�Op(1=J)) hOp(1=J)(1 +Op(1=J))2 + 2Op(1)Op(1=J)(1 +Op(1=J)) +Op(1)2i= Op(T 2): 39



Therefore the variane of Pni=1 Y a0J;T;i isV�;�;x;�[Pni=1 Y a0J;T;i℄= Pni=1 E�;�;x;�[(1=n2T )(PJj=1 aa0j �ji)2℄= (1=nT ) E�;x;� hPJj=1(aa0j )2 E�jx;�[�2jijX; �(�0d; s0; P 0)℄+Pj 6=k aa0j aa0k E�jx;�[�ji�kijX ; �(�0d; s0; P 0)℄i= (1=nT ) E�;x;� hPJj=1(aa0j )2s0j(1� s0j)�Pj 6=k aa0j aa0k s0js0ki= (1=nT ) E�;x;� hPJj=1(aa0j )2s0j � (PJj=1 aa0j s0j)2i= (1=nT ) E�;x;�[Op(T 2)℄= E�;x;�[Op(J=n)℄:To keep this variane bounded, n is needed to grow as fast as J .Similar alulation holds for assumption B10() and derives that R is required to grow asfast as J .We assume in A10(a) that the additional information �N is pN onsistent with �0. Inassumption B10(d), we bound the variane of the residual term in the additional momentT 1=2GaJ;T (�0d) orresponding to the sampling error ontained in the additional information. Wesee N V�#;x;�[T 1=2N�1�#i0 ℄ = Ex;�[V�#jx;�[T 1=2(�N � �0)jX ; �(�0d; s0; P 0)℄℄= Ex;�[Op(T=N)℄:To hold B10(d), we require that the sample size N for additional information grows as fast asthe sample size T of our onsumer draws in onstruting the additional moment does.Assumption B10(f) gives the Lyapunov ondition the residual term Pni=1 Y a0J;T;i in the addi-tional moment follows. Sine aa0j in (137) is Op(T ) under Condition S2, we obtainnE�;�;x;�[jjY a0J;T;ijj2+Æ ℄= 1n1+ÆT (2+Æ)=2 E�;�;x;�[jPJj=1 aa0j �jij2+Æ ℄� 1n1+ÆT (2+Æ)=2 E�;x;�[22+Æmaxj jaa0j j2+Æ℄= E�;x;�[Op(n�(1+Æ)T (2+Æ)=2)℄:Substituting n = O(T k) and solving (2 + Æ)=2 � k(1 + Æ) < 0 gives k > 1 for any Æ > 0, whihmeans that n is neessary to grow faster than T .By similar argument for assumption B10(g) and B10(h), we obtain the fat that R and Nare required to grow faster than T respetively.In summary, for the random oeÆient logit model, the estimator with the additional momenthas onsisteny in Theorem 3 when n and R grow faster than J . The asymptoti normality inTheorem 4, on the other hand, requires that n and R to grow faster than TJ . Moreover, N hasto grow faster than T .6 Computational ResultsIn this setion, we run Monte Carlo experiments to evaluate the theorems derived in the previoussetions. By repeatedly estimating a demand and supply system with randomly generated datasets, we verify the asymptoti normality of the GMM estimator. Through experiments, we40



examine how the sampling and simulation errors in the observed data and the simulated marketshare a�et the results. Furthemore, we show that the use of additional onsumer purhasinginformation well ontributes the auray of the resulting random oeÆient estimate.The onsumer's utility funtion we speify here is the following random oeÆient logitmodel. uij = ��pj + �xj�oi + �j + �ij (138)where the unobserved quality �j and the exogenous produt harateristis xj are respetivelyrandom draws from N(0; 1) and N(1; 1). Unless otherwise stated, the random draws in thedata set are i.i.d. The prie of produt pj is, on the other hand, treated as endogenous and thendetermined in the market. The �oi is a onsumer's taste for xj and distributed from N(0; 1). The�ij's are i.i.d. extreme value draws. We set the demand side parameters � = 1:0 and � = 1:0.The market share �j is alulated by�j = Z exp(��pj + �xj�oi + �j)1 +PJl=1 exp(��pl + �xl�oi + �l)P (d�oi ): (139)The true market share s0j is obtained by evaluating (139) with the underlying distribution P 0of �oi . We draw 10,000 onsumers from N(0,1) as the underlying population.For the supply side, we assume there exist �ve oligopolisti suppliers in the market andthey produe the same number of produts. These suppliers are assumed to have the same ostfuntion j = xj + !j (140)where the unobserved ost shifter !j is a random draw from N(0; 1). For ost side parameter,we set  = 1:5. At the Bertrand-Nash equilibrium, the suppliers determine the prie of theirproduts to satisfy f(p) = � p���1� = 0 (141)under the population P 0. The (j; k) element of the J � J gradient matrix � is given by�jk = 8><>: ��k=�pj ; if the produts j and k areprodued by the same �rm;0; otherwise. (142)The true market share s0j and the prie pj are determined at the equilibrium, and thus the valuesof pj are obtained by solving (141), that is, J dimensional nonlinear simultaneous equations. Inpratie, an iteration algorithm is required to solve (141), and we adopt the Newton-Raphsonmethod.We �rst estimate the system of demand and supply given in (139) and (140) by the BLPframework. To estimate the models, we onstrut the three instrumental variables from xj , oneis xj itself, one is the ompany average of xj, and one is the average of xj over other ompanies.Table 2 gives the result for the mean estimated values aross 100 Monte Carlo experiments whenn =1 �xed, i.e., the observed market shares have no sampling error. Eah olumn orrespondsto the di�erent number J of produts, while eah row orresponds to the di�erent number R ofonsumer draws used in the simulation proess. The values in parenthesis show the simulatedstandard error|the standard error of the estimated parameters aross the simulation. In thetable, we an observe the simulated standard errors of parameters derease as J inreases. For J�xed, the inreasing R also ontributes the redution of the standard errors. The standard error41



Table 2: Monte Carlo Results for the BLP Framework, 100 repetitions, n =1�(1:0) �(1:0) (1:5)# of Consumer # of produts (J) # of Consumer # of produts (J) # of Consumer # of produts (J)Draws (R) 10 25 50 100 Draws (R) 10 25 50 100 Draws (R) 10 25 50 10010 0.974 0.953 0.952 0.934 10 1.303 1.385 1.223 1.177 10 1.558 1.543 1.546 1.518(0.266) (0.174) (0.138) (0.134) (1.207) (1.172) (0.909) (0.760) (0.388) (0.265) (0.191) (0.176)50 0.974 0.990 0.989 0.971 50 0.957 0.983 0.958 0.936 50 1.595 1.609 1.602 1.574(0.166) (0.110) (0.079) (0.060) (0.702) (0.539) (0.406) (0.306) (0.316) (0.164) (0.121) (0.089)100 0.982 0.997 0.989 0.979 100 0.909 0.981 0.912 0.935 100 1.583 1.613 1.605 1.582(0.156) (0.123) (0.058) (0.045) (0.749) (0.692) (0.363) (0.274) (0.246) (0.164) (0.101) (0.071)10J 0.982 0.993 0.994 0.982 10J 0.909 0.919 0.887 0.900 10J 1.583 1.614 1.610 1.586(0.156) (0.099) (0.056) (0.036) (0.749) (0.543) (0.347) (0.238) (0.246) (0.158) (0.097) (0.073)J2 0.982 0.988 0.992 0.982 J2 0.909 0.930 0.886 0.896 J2 1.583 1.610 1.608 1.587(0.156) (0.093) (0.055) (0.035) (0.749) (0.605) (0.325) (0.240) (0.246) (0.156) (0.098) (0.073)Standard error aross repetitions stands in the parenthesis.
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for � is muh larger than those for � and . This is beause � is the oeÆient for the randomterm depending on the onsumer taste �oi as well as the produt harateristis xj and thusthe unorrelated relationship between the unobserved quality �j and the instrumental variablesinvolves less information on �. In partiular, when the number of simulation draws is small(R = 10), the estimated value of � is upwardly biased.Table 3 gives the result for the ase where the observed market share snj ontains the samplingerror. Here, we �xed the number R = 100 for the simulation draws of onsumer. We onstrutthe observed market share snj from a multinomial sample of size n with the response probability(s00; : : : ; s0J). When n is not large enough, there are zero-share produts. We remove theseproduts in estimating parameters. In the table, we observe the larger n beomes, the smallerthe simulated standard error beomes for any �xed J .We next implement the Monte Carlo simulation for the extended framework with the ad-ditional moments. As the additional moment, we suppose to have the information on (1) theexpeted value of �oi over onsumers who hoose produts pried higher than the average prie;and (2) the expeted value of �oi over onsumers who hoose produts with xj greater than theaverage of xj. That is, the additional moments are�01 = E[�oi jCi 2 Qfpj � �pg; x; �℄; (143)�02 = E[�oi jCi 2 Qfxj � �xg; x; �℄ (144)where Qfpj � �pg and Qfxj � �xg represent respetively the set of produts pried higher thanthe average �p, and the set of produts with x greater than the average �x.Table 4 is the result for the ase where we know the expeted values in (143) and (144) exatlyand no sampling error in the additional information (N =1). To alulate the additional samplemoments, we draws T onsumers from the population and then alulate the onditional averageof �oi by using their purhasing probabilities. To make the e�et of the additional moments lear,we use the true market share s0j as the observed market share (n = 1) and �x R = 100. Theresult indiates if the number of onsumer draws T is large enough, the additional informationonsiderably redue the standard error of �. For the ase of J = 50; T = 1000, the standard errorof � with the additional moments dereases to 0.137 in table 4 from 0.363, whih is the valuewithout the additional moments in table 2 (R = 100 row, J = 50 olumn). On the other hand,if T is small, the standard error of � inreases rather than dereases by using the additionalmoments. The standard error of � at T = 50 and J = 50 inrease to 0.392 in table 4 from 0.363in table 2. Moreover, the additional moments have slight inuene on the standard errors of �and  in any value of T . This is beause the additional information is on the onsumer's taste�oi and ontains less information on � and .5We next onsider the ase where the additional information ontain the sampling error.Drawing N onsumers from the population, we use the following estimate �N instead of �0 asthe additional information, �N1 = NXi0=1 �oi0 � 1fCi0 2 Qfpj � �pggNp (145)�N2 = NXi0=1 �oi0 � 1fCi0 2 Qfxj � �xggNx : (146)where Np = PNi0=1 1fCi0 2 Qfpj � �pgg and Nx = PNi0=1 1fCi0 2 Qfxj � �xgg are respetivelythe number of onsumers who hoose produts pried higher than the average and the numberof onsumers who hoose the produt with x greater than the average. This estimators are5The �rst order derivatives of the additional moments in terms of � are almost zero, while that for  is justzero. 43



Table 3: Monte Carlo Results for the BLP Framework, 100 repetitions, R = 100�(1:0) �(1:0) (1:5)# of Consumer # of produts (J) # of Consumer # of produts (J) # of Consumer # of produts (J)Draws (n) 10 25 50 100 Draws (n) 10 25 50 100 Draws (n) 10 25 50 100500 0.978 0.978 0.891 0.857 500 1.004 1.206 1.029 1.209 500 1.495 1.471 1.362 1.276(0.180) (0.235) (0.107) (0.082) (0.824) (1.348) (0.476) (0.457) (0.274) (0.189) (0.178) (0.134)1000 0.987 0.988 0.935 0.918 1000 0.972 1.108 1.000 1.115 1000 1.528 1.529 1.458 1.396(0.160) (0.186) (0.088) (0.072) (0.829) (1.066) (0.505) (0.398) (0.241) (0.174) (0.134) (0.105)2000 0.980 0.991 0.961 0.959 2000 0.938 1.005 0.977 1.055 2000 1.536 1.554 1.520 1.484(0.164) (0.134) (0.078) (0.058) (0.787) (0.698) (0.454) (0.328) (0.241) (0.161) (0.110) (0.084)10J 0.917 0.925 0.891 0.918 10J 1.054 1.290 1.029 1.115 10J 1.329 1.377 1.362 1.396(0.194) (0.155) (0.107) (0.072) (0.913) (1.483) (0.476) (0.398) (0.365) (0.228) (0.178) (0.105)J2 0.917 0.974 0.963 0.984 J2 1.054 1.127 0.978 0.945 J2 1.329 1.493 1.520 1.570(0.194) (0.134) (0.086) (0.046) (0.913) (1.206) (0.557) (0.267) (0.365) (0.186) (0.124) (0.067)1 0.982 0.997 0.989 0.979 1 0.909 0.981 0.912 0.935 1 1.583 1.613 1.605 1.582(0.156) (0.123) (0.058) (0.045) (0.749) (0.692) (0.363) (0.274) (0.246) (0.164) (0.101) (0.071)Standard error aross repetitions stands in the parenthesis.
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Table 4: Monte Carlo Results for the Extended BLP framework, 100 repetitions, n =1; N =1; R = 100�(1:0) �(1:0) (1:5)# of Consumer # of produts (J) # of Consumer # of produts (J) # of Consumer # of produts (J)T 10 25 50 100 T 10 25 50 100 T 10 25 50 10010 0.985 0.978 0.989 0.993 10 0.930 1.039 0.954 0.999 10 1.630 1.594 1.620 1.607(0.139) (0.100) (0.071) (0.061) (0.568) (0.683) (0.469) (0.530) (0.229) (0.168) (0.110) (0.085)50 1.007 0.985 0.989 0.993 50 0.978 0.999 0.978 0.958 50 1.648 1.605 1.621 1.608(0.126) (0.089) (0.067) (0.055) (0.411) (0.356) (0.392) (0.316) (0.236) (0.163) (0.115) (0.080)100 1.019 0.988 0.997 0.996 100 0.974 0.991 0.953 0.933 100 1.677 1.610 1.629 1.610(0.135) (0.084) (0.066) (0.057) (0.336) (0.284) (0.317) (0.249) (0.250) (0.159) (0.107) (0.083)500 1.017 0.988 0.996 1.008 500 0.991 0.961 0.981 0.958 500 1.676 1.617 1.620 1.615(0.122) (0.075) (0.062) (0.057) (0.271) (0.227) (0.169) (0.148) (0.241) (0.134) (0.089) (0.083)1000 1.025 0.982 0.992 1.002 1000 0.989 0.929 0.956 0.967 1000 1.682 1.614 1.617 1.610(0.133) (0.072) (0.062) (0.054) (0.234) (0.134) (0.137) (0.134) (0.238) (0.139) (0.097) (0.087)10J 1.019 0.983 0.996 1.002 10J 0.974 0.967 0.981 0.967 10J 1.677 1.612 1.620 1.610(0.135) (0.078) (0.062) (0.054) (0.336) (0.233) (0.169) (0.134) (0.250) (0.143) (0.089) (0.087)J2 1.019 0.992 0.996 0.999 J2 0.974 0.959 0.954 0.955 J2 1.677 1.620 1.621 1.606(0.135) (0.079) (0.056) (0.062) (0.336) (0.184) (0.125) (0.087) (0.250) (0.142) (0.092) (0.087)Standard error aross repetitions stands in the parenthesis.
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unbiased for �0 onditional on x and �.6 Table 5 shows the result for this ase. In the table, wean observe the standard error of � is dereasing in N .Next, we evaluate the asymptoti theorem in the previous setions that gives the asymptotidistribution and the asymptoti variane of the parameter estimates. For J = 25; R = 2000; n =2000 �xed, we implement 1,000 Monte Carlo simulation using the BLP framework, and thenwe alulate the average and standard error of the estimate aross these di�erent simulationdata-set. We also obtain the asymptoti varianes of the GMM estimates given in (74). Foreah data-set, we alulate the moment onditions and their derivatives in terms of parameters(the parameters are �xed at true values). By averaging resulting values over data-sets, we obtainthe estimate for the expeted values �J;T and � respetively. For the extended framework, weimplement the same simulation with J = 25; R = 2000; n = 2000; N = 2000; T = 500 �xed. Thevarianes of the estimates are obtained using (108). Table 6 shows the result. In the table, thesimulated standard errors of estimates are relatively onsistent with the asymptoti standarderrors.Finally, we make density trae plots for the estimated parameters from the 1,000 estimatesused in table 6. (To make these plots, we use the ommand in the S-plus pakage with de-fault options.) The solid lines in Figure 1 and Figure 2 show the densities of the estimatedparameters, while the dotted lines show their asymptoti distributions using the true values ofparameters and the asymptoti variane in Table 6 as mean and variane. In the �gures, thesimulated distributions of the estimates for the demand parameters � and � look �tting well inthe asymptoti distributions, while that for the ost side parameter  does not seem so muh.However, the shape of the simulated distribution is relatively lose to that for the normal. Weonsider our asymptoti distribution in the theory is a relatively good approximation for theasymptoti distribution of the parameter estimates.Appendix ProofsProof of Theorem 1The onsisteny argument is established by showing that6All random variables inluded in �N1 are x, �, �oi0 , and 1fCi0 2 Qfpj � �pg. Abbreviate Cpi0 � 1fCi0 2 Qfpj ��pgg and then E�oi0 ;Cpi0 jx;�[�N1 � �01 jx; �℄ = ECpi0 jx;� hE�oi0 jx;�;Cpi0 [�N � �01��x; �; Cpi0 ℄���x; �i= ECpi0 jx;� "E�oi0 jx;�;Cpi0 " NXi0=1 �oi0Cpi0Np � �01�����x; �; Cpi0# �����x; �#= ECpi0 jx;� " NXi0=1E�oi0 jx;�;Cpi0 [�oi0 jx; �; Cpi0 ℄Cpi0Np � �01�����x; �#= ECpi0 jx;� "E�oi0 jx;�;Cpi0 [�oi0 jx; �; Cpi0 ℄PNi0=1 Cpi0Np � �01�����x; �#= ECpi0 jx;� "E�oi0 jx;�;Cpi0 [�oi0 jx; �; Cpi0 ℄� �01�����x; �#= ECpi0 jx;�[0jx; �℄= 0: 46



Table 5: Monte Carlo Results for the Extended BLP framework, 100 repetitions, n =1; R = 100; T = 1000�(1:0) �(1:0) (1:5)# of Consumer # of produts (J) # of Consumer # of produts (J) # of Consumer # of produts (J)N 10 25 50 100 N 10 25 50 100 N 10 25 50 100500 1.023 0.995 0.991 1.004 500 0.980 0.970 0.950 0.998 500 1.679 1.624 1.617 1.611(0.138) (0.079) (0.061) (0.054) (0.274) (0.241) (0.195) (0.216) (0.241) (0.138) (0.096) (0.080)1000 1.011 0.991 0.998 0.999 1000 0.974 0.949 0.953 0.956 1000 1.673 1.619 1.624 1.608(0.125) (0.075) (0.061) (0.054) (0.240) (0.185) (0.171) (0.169) (0.246) (0.135) (0.093) (0.084)2000 1.023 0.989 0.995 1.002 2000 0.994 0.967 0.946 0.967 2000 1.681 1.619 1.621 1.609(0.136) (0.075) (0.060) (0.052) (0.254) (0.199) (0.145) (0.167) (0.238) (0.141) (0.096) (0.081)10J 1.023 0.985 0.991 0.999 10J 1.022 0.953 0.950 0.956 10J 1.675 1.613 1.617 1.608(0.140) (0.081) (0.061) (0.054) (0.435) (0.283) (0.195) (0.169) (0.253) (0.141) (0.096) (0.084)J2 1.023 0.987 0.986 0.994 J2 1.022 0.926 0.944 0.955 J2 1.675 1.619 1.613 1.603(0.140) (0.065) (0.058) (0.051) (0.435) (0.210) (0.145) (0.127) (0.253) (0.136) (0.092) (0.086)1 1.025 0.982 0.992 1.002 1 0.989 0.929 0.956 0.967 1 1.682 1.614 1.617 1.610(0.133) (0.072) (0.062) (0.054) (0.234) (0.134) (0.137) (0.134) (0.238) (0.139) (0.097) (0.087)Standard error aross repetitions stands in the parenthesis.
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Figure 1: Kernel Density Estimate of Parameters, BLP Framework, J=25, n=2000, R=2000
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Figure 2: Kernel Density Estimate of Parameters, Additional Moment Framework, J=25,n=2000, R=2000, T=500, N=2000
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Table 6: Simulated and Estimated Standard Errors (J = 25; n = 2000; R = 2000; N = 2000; T =500) � � BLP framework Mean 0.976 0.900 1.552Monte Carlo Std. Error 0.090 0.533 0.157Asymptoti Std. Error 0.088 0.393 0.186Additional Moment Mean 0.996 1.022 1.570Method Monte Carlo Std. Error 0.077 0.254 0.149Asymptoti Std. Error 0.074 0.221 0.184(1-i) the estimator ~� de�ned as any sequene that satis�esjjGJ(~�; s0; P 0)jj = inf�2� jjGJ(�; s0; P 0)jj+ op(1) (A.1)is onsistent for �0, and(1-ii) sup�2� jjGJ(�; sn; PR)�GJ(�; s0; P 0)jj onverges to zero in probability.A onsequene of (1-ii) is that jjGJ(�; sn; PR)jj and jjGJ(�; s0; P 0)jj have a same asymptotidistribution uniformly in �, and thus the estimator �̂ whih minimizes the former is very loseto the ~� that minimizes the latter. Therefore �̂ is to be onsistent for �0 from (1-i).We �rst show (1-i) by using Theorem 3.1 of Pakes and Pollard (1989) whih gives a suÆientondition under whih an optimization estimator an be onsistent for the true parameter value.Their theorem guarantees that an estimator ~� that satis�es (A.1) is onsistent for �0 if(i-a) GJ(�0; s0; P 0) = op(1), and(i-b) sup� 62N�0 (Æ)jjGJ(�; s0; P 0)jj�1 = Op(1) for eah Æ > 0.Proof of (i-a)We show (i-a) by applying Bernoulli's weak law of large numbers to eah row ofGJ(�0; s0; P 0) =(GdJ(�0d; s0; P 0)0;GJ(�0; s0; P 0)0)0. We illustrate how this an be done using the demand-sidesample moments. The supply-side sample moments an be approahed similarly. The m-thelement of the demand side sample moments GdJ(�0; s0; P 0) is the average of zdjm�j(�0d; s0; P 0)over j where zdjm�j(�0d; s0; P 0) are not independent aross j due to the interdependene of zdjm|zdjm�j(�0d; s0; P 0) are just onditionally independent givenX1. Bernoulli's weak law of large num-bers does not require independene nor idential distributedness among the zdjm�j(�0d; s0; P 0),but requires the variane of J�1PJj=1 zdjm�j(�0d; s0; P 0) to onverge to zero as J goes to in�nity.Sine zdjm are funtions of X1 and the onditional expetation of �j(�0d; s0; P 0) given X1 is zeroin (1), the expetation and variane of J�1PJj=1 zdjm�j(�0d; s0; P 0) are respetivelyEx1;� hJ�1PJj=1 zdjm�j(�0d; s0; P 0)i= Ex1 hE�jx1 hJ�1PJj=1 zdjm�j(�0d; s0; P 0)���X1ii= Ex1 hJ�1PJj=1 zdjm E�jx1 h�j(�0d; s0; P 0)���X1ii= 0; 50



Vx1;�[J�1PJj=1 zdjm�j(�0d; s0; P 0)℄= Ex1 hV�jx1 hJ�1PJj=1 zdjm�j(�0d; s0; P 0)���X1ii+Vx1 hE�jx1 hJ�1PJj=1 zdjm�j(�0d; s0; P 0)���X1ii= Ex1 hV�jx1 hJ�1PJj=1 zdjm�j(�0d; s0; P 0)���X1ii= Ex1 hJ�2PJj=1(zdjm)2V�jx1 h�j(�0d; s0; P 0)���X1ii= Ex1 hJ�2PJj=1(zdjm)2 E�jx1 h�2j (�0d; s0; P 0)���X1ii :Sine the onditional variane of �j in (1) is bounded by some onstant M > 0 orE�jx1 [�2j (�0; s0; P 0)jX1℄ < M with probability one, we haveJ�2PJj=1(zdjm)2 E�jx1 h�2j (�0d; s0; P 0)���X1i � (1=J)(PJj=1(zdjm)2=J)M:We know that PJj=1(zdjm)2=J is Op(1) and uniformly integrable by A4(a). Uniform integrabilityguarantees that the order of magnitude does not hange after taking expetation, and this enableus to laim Ex1 [PJj=1(zdjm)2=J ℄ = O(1). HeneVx1;�[J�1PJj=1 zdjm�j(�0d; s0; P 0)℄= Ex1 hJ�2PJj=1(zdjm)2 E�jx1 [�2j (�0d; s0; P 0)jX1℄i� MJ Ex1 [PJj=1(zdjm)2=J ℄= MJ �O(1)! 0 as J !1:Bernoulli's weak law of large numbers ensures that the m-th element of GdJ(�0d; s0; P 0) onvergesto the orresponding element of Ex1;�[GdJ(�0d; s0; P 0)℄ = 0 in probability, i.e.,limJ!1Pr[jfGdJ(�0d; s0; P 0)gmj > �℄ = limJ!1Pr24������ JXj=1 zdjm�j(�0d; s0; P 0)=J ������ > �35� limJ!1 1�2 Vx1;� 24 JXj=1 zdjm�j(�0d; s0; P 0)=J35� 1�2 limJ!1MJ �O(1)= 0:Thus jjGdJ(�0d; s0; P 0)jj = op(1). Similarly, we an show that the supply side momentsGJ(�0; s0; P 0)onverge to Ew1;![GJ(�0; s0; P 0)℄ = 0 in probability by (12) and A4(b). Hene jjGJ(�0; s0; P 0)jj =op(1).Proof of (i-b)Next we show (i-b). For every (�; Æ) > (0; 0) and any positive funtion of Æ, C(Æ), followingrelationship holds in general.( inf� 62N�0(Æ) jjGJ(�; s0; P 0)�GJ(�0; s0; P 0)jj � C(Æ))� ( inf� 62N�0 (Æ) jjGJ(�; s0; P 0)jj+ jjGJ(�0; s0; P 0)jj � C(Æ))51



� ( inf� 62N�0 (Æ) jjGJ(�; s0; P 0)jj � C(Æ)� �2) [ �jjGJ(�0; s0; P 0)jj � �2� : (A.2)Taking probability of both side of (A.2) givesPr" inf� 62N�0(Æ) jjGJ(�; s0; P 0)�GJ(�0; s0; P 0)jj � C(Æ)#� Pr "( inf� 62N�0 (Æ) jjGJ(�; s0; P 0)jj � C(Æ)� �2) [ �jjGJ(�0; s0; P 0)jj � �2�#� Pr " inf� 62N�0(Æ) jjGJ(�; s0; P 0)jj � C(Æ)� �2#+ Pr �jjGJ(�0; s0; P 0)jj � �2� :We thus obtain Pr " inf� 62N�0(Æ) jjGJ(�; s0; P 0)jj � C(Æ)� �2#� Pr" inf� 62N�0(Æ) jjGJ(�; s0; P 0)�GJ(�0; s0; P 0)jj � C(Æ)#�Pr �jjGJ(�0; s0; P 0)jj � �2� : (A.3)Sine jjGJ(�0; s0; P 0)jj = op(1), for any � there exists J1(�) suh that if J � J1(�),Pr[jjGJ(�0; s0; P 0)jj � �=2℄ � �=2. By assumption A5, for any (�; Æ) > (0; 0), there existsC(Æ) > 0 and J2(�; Æ) suh that when J � J2(�; Æ)Pr" inf� 62N�0(Æ) jjGJ(�; s0; P 0)�GJ(�0; s0; P 0)jj � C(Æ)# � 1� �2 :Therefore, from (A.3), for any (�; Æ) > (0; 0) there exists C(Æ) > 0, J1(�) and J2(�; Æ) suh thatwhen J � maxfJ1(�); J2(�; Æ)g,Pr " inf� 62N�0(Æ) jjGJ(�; s0; P 0)jj � C(Æ)� �2#� Pr" inf� 62N�0(Æ) jjGJ(�; s0; P 0)�GJ(�0; s0; P 0)jj � C(Æ)#�Pr �jjGJ(�0; s0; P 0)jj � �2�� 1� �2 � �2 = 1� �:Thus we have limJ!1Pr" inf� 62N�0(Æ) jjGJ(�; s0; P 0)jj � C�(�; Æ)# � 1� �by setting C�(�; Æ) = C(Æ)� �=2. This is equivalent to (i-b), i.e.,limJ!1Pr " sup� 62N�0(Æ) jjGJ(�; s0; P 0)jj�1 > C#(�; Æ)# < �52



with C#(�; Æ) = 1=C�(�; Æ).We next turn to show (1-ii), orsup�2� jjGJ(�; sn; PR)�GJ(�; s0; P 0)jj = op(1): (A.4)From the de�nitions of GJ(�; sn; PR) and GJ(�; s0; P 0) in (17), (18), (22), and (23), we havesup�2� jjGJ(�; sn; PR)�GJ(�; s0; P 0)jj2� sup�d2�d jjJ�1Z 0df�(�d; sn; PR)� �(�d; s0; P 0)gjj2+sup�2� jjJ�1Z 0f!(�; sn; PR)�!(�; s0; P 0)gjj2� J�1jjZ 0dZdjj � sup�d2�d J�1jj�(�d; sn; PR)� �(�d; s0; P 0)jj2+J�1jjZ 0Zjj � sup�2�J�1jj!(�; sn; PR)� !(�; s0; P 0)jj2 (A.5)where the terms jjZ 0dZdjj=J and jjZ 0Zjj=J are respetively Op(1) by assumptions A4(a) andA4(b). Thus it remains to show thatsup�d2�d J�1jj�(�d; sn; PR)� �(�d; s0; P 0)jj2 = op(1); (A.6)and sup�2�J�1jj!(�; sn; PR)� !(�; s0; P 0)jj2 = op(1): (A.7)In order to show (A.6), we �rst show thatsup�d2�d J� 12 jj� J(�(X ; �(�d; sn; PR);�d; P 0))� � J(�(X ; �(�d; s0; P 0);�d; P 0))jj= op(1) (A.8)and then show that (A.8) implies (A.6) by using assumption A6. The proof for (A.7) is diretlyderived from (A.6) and assumption A7.Proof of (A.6)Sine for any �d, sn = �(X ; �(�d; sn; PR);�d; PR) from (26) and s0 = �(X ; �(�d; s0; P 0);�d; P 0)from (27), the left-hand side of (A.8) is bounded bysup�d2�d J� 12 jj� J(�(X ; �(�d; sn; PR);�d; P 0))� � J(�(X; �(�d; s0; P 0);�d; P 0))jj= sup�d2�d J� 12 jj� J(�(X; �(�d; sn; PR);�d; P 0))� � J(s0)+f� J(sn)� � J(�(X ; �(�d; sn; PR);�d; PR))gjj� J� 12 jj� J(sn)� � J(s0)jj+ sup�d2�d J� 12 jj� J(�(X; �(�d; sn; PR);�d; PR))� � J(�(X; �(�d; sn; PR);�d; P 0))jj� J� 12 jj� J(sn)� � J(s0)jj+ sup�d2�d sup� J� 12 jj� J(�(X; �;�d; PR))� � J(�(X; �;�d; P 0))jj: (A.9)53



In the following we show that both the two terms in (A.9) are op(1) as J ! 1. By the meanvalue theorem, for some intermediate values �sj = s0j + qj(snj � s0j) (0 � qj � 1); j = 1; : : : ; J , thesquare of the �rst term isJ�1jj� J(sn)� � J(s0)jj2= J�1 JXj=1[log(snj =sn0 )� log(s0j=s00)℄2= J�1 JXj=1[log(snj )� log(s0j )� flog(sn0 )� log(s00)g℄2= J�1 JXj=124 ��sj log(sj)�����sj=�sj (snj � s0j)� ��s0 log(s0)����s0=�s0 (sn0 � s00)352= J�1 JXj=1 "snj � s0j�sj � sn0 � s00�s0 #2= J�1 JXj=1 snj � s0j�sj !2 � 2J�1 JXj=1 snj � s0j�sj ! sn0 � s00�s0 !+ J�1 JXj=1 sn0 � s00�s0 !2� J�1 JXj=1 s0j�sj!2 snj � s0js0j !2 + 2 s00�s0! �����sn0 � s00s00 ����� J�1 ������ JXj=1 s0j�sj! snj � s0js0j !������+ s00�s0!2  sn0 � s00s00 !2� max1�j�J  s0j�sj!2 � max1�j�J  snj � s0js0j !2 + 2 s00�s0! �����sn0 � s00s00 ����� max1�j�J  s0j�sj! max1�j�J �����snj � s0js0j �����+ s00�s0!2  sn0 � s00s00 !2= max1�j�J  s0j�sj! � max1�j�J  s0j�sj! � max1�j�J  snj � s0js0j ! � max1�j�J  snj � s0js0j !+2 s00�s0! �����sn0 � s00s00 ����� max1�j�J  s0j�sj! max1�j�J �����snj � s0js0j �����+ s00�s0! �  s00�s0! �  sn0 � s00s00 ! �  sn0 � s00s00 !� Op(1) � Op(1) � op(1) � op(1) +Op(1) � op(1) �Op(1) � op(1)+Op(1) �Op(1) � op(1) � op(1)= op(1) (A.10)where op(1) terms ome from A3(a), while Op(1) terms follow the next equation.max0�j�J  s0j�sj! = max0�j�J  s0js0j + qj(snj � s0j)! = max0�j�J  11 + qj(snj � s0j)=s0j != max0�j�J  11 + qj � op(1)! = Op(1):For the seond term of (A.9), by the mean value theorem, we obtain for given (X; �;�d),J�1jj� J(�(X; �;�d; PR))� � J(�(X ; �;�d; P 0))jj254



= J�1 JXj=1[log(�j(X; �;�d; PR)=�0(X; �;�d; PR))� log(�j(X; �;�d; P 0)=�0(X; �;�d; P 0))℄2= J�1 JXj=1[log(�j(X; �;�d; PR))� log(�j(X; �;�d; P 0))�flog(�0(X ; �;�d; PR))� log(�0(X ; �;�d; P 0))g℄2= J�1 JXj=1"�j(X ; �;�d; PR)� �j(X ; �;�d; P 0)��j��0(X; �;�d; PR)� �0(X ; �;�d; P 0)��0 #2= J�1 JXj=1 �j(X; �;�d; PR)� �j(X ; �;�d; P 0)��j !2�2J�1 JXj=1 �j(X; �;�d; PR)� �j(X ; �;�d; P 0)��j !� �0(X; �;�d; PR)� �0(X; �;�d; P 0)��0 !+J�1 JXj=1 �0(X ; �;�d; PR)� �0(X; �;�d; P 0)��0 !2� J�1 JXj=1 �j(X; �;�d; P 0)��j !2  �j(X; �;�d; PR)� �j(X; �;�d; P 0)�j(X ; �;�d; P 0) !2+2 �0(X ; �;�d; P 0)��0 ! ������0(X ; �;�d; PR)� �0(X; �;�d; P 0)�0(X ; �;�d; P 0) ������J�1 ������ JXj=1 �j(X; �;�d; P 0)��j ! �j(X; �;�d; PR)� �j(X; �;�d; P 0)�j(X ; �;�d; P 0) !������+ �0(X; �;�d; PR)� �0(X; �;�d; P 0)��0 !2� max0�j�J  �j(X; �;�d; P 0)��j !2 max0�j�J  �j(X ; �;�d; PR)� �j(X ; �;�d; P 0)�j(X; �;�d; P 0) !2+2 �0(X ; �;�d; P 0)��0 ! ������0(X ; �;�d; PR)� �0(X; �;�d; P 0)�0(X ; �;�d; P 0) ������ max0�j�J  �j(X ; �;�d; P 0)��j ! max0�j�J ������j(X; �;�d; PR)� �j(X ; �;�d; P 0)�j(X ; �;�d; P 0) �����+ �0(X; �;�d; PR)� �0(X; �;�d; P 0)��0 !2 (A.11)where ��j; j = 0; : : : ; J are values between �j(X; �;�d; PR) and �j(X; �;�d; P 0). We need toshow that (A.11) is op(1) uniformly over � and �d 2 �d. A straightforward appliation of A3(b)to the relative di�erene share terms in (A.11) yields that they are all of order op(1) uniformly55



over � and �d 2 �d. As for the relative share term,max0�j�J  �j(X ; �;�d; P 0)��j != max0�j�J  �j(X; �;�d; P 0)�j(X ; �;�d; P 0) + qj(�j(X ; �;�d; PR)� �j(X; �;�d; P 0))!= max0�j�J  11 + qj(�j(X ; �;�d; PR)� �j(X; �;�d; P 0))=�j(X ; �;�d; P 0)!= max0�j�J  11 + qj � op(1)! = Op(1) (A.12)where 0 � qj � 1. Again utilizing A3(b) yields that (A.12) holds uniformly over � and �d 2 �d.Thus sup�d2�d sup� J� 12 jj� J(�(X ; �;�d; PR))� � J(�(X ; �;�d; P 0))jj = op(1):Hene we obtain (A.8).By assumption A6, for all �d 2 �d, if J�1jj�(�d; sn; PR)��(�d; s0; P 0)jj2 � Æ for some Æ > 0,then there exists C(Æ) suh thatinf�d2�d J� 12 jj� J(�(X; �(�d; sn; PR);�d; P 0))� � J(�(X; �(�d; s0; P 0);�d; P 0))jj � C(Æ)with probability tending to one as J !1. In other words, its ontrapositive statement is thatwheneversup�d2�d J� 12 jj� J(�(X; �(�d; sn; PR);�d; P 0))� � J(�(X; �(�d; s0; P 0);�d; P 0))jj = op(1)holds, A6 implies sup�d2�d J�1jj�(�d; sn; PR) � �(�d; s0; P 0)jj2 � Æ, or in the presene of A6,(A.8) implies (A.6), i.e., for any �d 2 �d and Æ > 0,Pr[�(�d; sn; PR) 62 N�0(�d; Æ)℄! 0: (A.13)Proof of (A.7)By the Glivenko-Cantelli theorem,Pr[PR 62 NP 0(Æ)℄! 0 (A.14)for Æ > 0 as R!1. From (A.13) and (A.14) as J;R!1, for given Æ > 0, Pr[�(�d; sn; PR)℄ 2N�0(�d; Æ); PR 2 NP 0(Æ)℄! 1 orPr[(�(�d; sn; PR); PR) 2 N�0(�d; Æ) �NP 0(Æ)℄! 1:Thus assumption A7 guarantees that the di�erenes in the pro�t margin behave uniformly over�d 2 �d assup�d2�d J� 12 jjmg(�(�d; sn; PR);�d; PR)�mg(�(�d; s0; P 0);�d; P 0)jj = op(1): (A.15)56



Sine _g(�) is assumed �nite for all realizable values of ost, we an derive (A.7) by using (A.15)in the following inequality with the de�nition of !j(�; s; P ) in (13).sup�2� J�1jj!(�; sn; PR)� !(�; s0; P 0)jj2= sup�d2�d J�1 JXj=1ng(pj �mgj(�(�d; sn; PR);�d; PR))� g(pj �mgj(�(�d; s0; P 0);�d; P 0))o2= sup�d2�d J�1 JXj=1 � _g(pj �mgj)nmgj(�(�d; sn; PR);�d; PR)�mgj(�(�d; s0; P 0);�d; P 0)o�2� sup�d2�d sup1�j�J j _g(pj �mgj)j2� sup�d2�d J�1 JXj=1nmgj(�(�d; sn; PR);�d; PR)�mgj(�(�d; s0; P 0);�d; P 0)o2= sup�d2�d sup1�j�J j _g(pj �mgj)j2� sup�d2�d J�1jjmg(�(�d; sn; PR);�d; PR)�mg(�(�d; s0; P 0);�d; P 0)jj2= op(1)where mgj are between mgj(�(�d; sn; PR);�d; PR) and mgj(�(�d; s0; P 0);�d; P 0). Notie thatpj�mgj generally represents the marginal ost. We should also note that the di�erene between!(�; sn; PR) and !(�; s0; P 0) inludes only the demand side parameters �d beause of the lineardependene of !(�; s; P ) on the supply side parameters � as seen in (13). 2Proof of Theorem 2To establish Theorem 2, we show that for the approximation GJ(�) = (GdJ(�d)0;GJ(�)0)0 de�nedin (47) and (57) to GJ(�; sn; PR),(2-i) supjj���0jj�ÆJ ������J 12 [GJ(�)�GJ(�; sn; PR)℄������ p! 0 when ÆJ ! 0, and(2-ii) an estimator that minimizes jjGJ(�)jj over � 2 � would be; (1) asymptotially normal atrate J 12 , and (2) have a variane-ovariane matrix whih is the sum of three mutuallyunorrelated terms (one resulting from randomness in the draws on exogenous variables(x1j; �j ;w1j ; !j), one from sampling error �nj , and one from simulation error �Rj (�d)).Given onsisteny, a onsequene of (2-i) is that the estimator obtained fromminimizing jjGJ(�)jj,has the same limiting distribution as our estimator that minimizes jjGJ(�; sn; PR)jj. Sine theformer is easier to analyze, we work with it.proof of (2-i)We show (2-i) by establishing that for any ÆJ ! 0,supjj�d��0djj�ÆJ ������J 12 [GdJ(�d)�GdJ(�d; sn; PR)℄������ = op(1); (A.16)supjj���0jj�ÆJ ������J 12 [GJ(�)�GJ(�; sn; PR)℄������ = op(1): (A.17)
57



We �rst show (A.16). From (46) and (47), jjJ 12 [GdJ(�d)�GdJ(�d; sn; PR)℄jj an be rewritten as������J 12 [GdJ(�d)�GdJ(�d; sn; PR)℄������= ������J� 12Z 0d hH�10 f�n � �R(�0d)g�fH�1(��;�d; PR)�n �H�1(�;�d; PR)�R(�d)gi ������� ������J� 12Z 0dfH�10 �H�1(��;�d; PR)g�n������+������J� 12Z 0dfH�10 �R(�0d)�H�1(�;�d; PR)�R(�d)g������: (A.18)We show the two terms in the right-hand side of (A.18) are respetively op(1) uniformly in�d within the shrinking neighborhood of �0d. We know that for eah �d both �(�d; sn; PR) and�(�d; s0; PR) onverge to �(�d; s0; P 0) in probability in terms of averaged Eulidean distane as nand R grow. Sine �� is intermediate between �(�d; sn; PR) and �(�d; s0; PR), it also onverges to�(�d; s0; P 0). Thus, for any sequene ÆJ ! 0, Pr[(��1; : : : ; ��J) 62 fN�0(�0d; ÆJ )gJ ℄! 0. Moreover,for any ÆJ ! 0, we have Pr[�P (PR; P 0) � ÆJ ℄! 0 as R grows by the Glivenko-Cantelli theorem.Therefore, by using assumption B5(a), we havePr � supjj�d��0djj�ÆJ ������J� 12Z 0dfH�10 �H�1(��;�d; PR)g�n������ > �� Pr � supjj�d��0djj�ÆJ sup(�;P )2fN�0 (�0d;ÆJ)gJ�NP0(ÆJ ) ������J� 12Z 0dfH�10�H�1(�;�d; P )g�n������ > �+Pr[(��1; : : : ; ��J) 62 fN�0(�0d; ÆJ )gJ ℄ + Pr[PR 62 NP 0(ÆJ )℄! 0: (A.19)Notie that in the expression of H(��;�d; PR), as mentioned before, we have suppressed thefat there exist di�erent ��s for di�erent rows in H(��;�d; PR). Therefore, in (A.19), we have toevaluate H(�;�d; P ) row by row with distint ��j ; j = 1; : : : ; J .For the intermediate vetors �j ; j = 1; : : : ; J between �(�d; s0; PR) and �(�d; s0; P 0), wehave Pr[(�1; : : : ; �J) 62 fN�0(�0d; ÆJ )gJ ℄! 0 for any ÆJ ! 0. Thus for the seond term in (A.18),by assumption B5(b),Pr � supjj�d��0djj�ÆJ ������J� 12Z 0dfH�10 �R(�0d)�H�1(�;�d; PR)�R(�d)g������ > �� Pr � supjj�d��0djj�ÆJ sup(�;P )2fN�0 (�0d;ÆJ )gJ�NP0 (ÆJ ) ������J� 12Z 0dfH�10 �R(�0d)�H�1(�;�d; P )�R(�d)g������ > �+Pr[(�1; : : : ; �J) 62 fN�0(�0d; ÆJ)gJ ℄ + Pr[PR 62 NP 0(ÆJ )℄! 0: (A.20)We next show (A.17). From (56) and (57), we know thatjjJ 12 [GJ(�)�GJ(�; sn; PR)℄jj= ������� J� 12Z 0L0M0H�10 f�n � �R(�0d)g�J� 12Z 0hg(p�mg(�(�d; s0; P 0);�d; PR))� g(p�mg(�(�d; s0; P 0);�d; P 0))58



�L(���;�d; PR)M(���;�d; PR)H�1(��;�d; PR)�n+L(�;�d; PR)M(�;�d; PR)H�1(�;�d; PR)�R(�d)i������� ������J� 12Z 0 hg(p�mg(�(�d; s0; P 0);�d; PR))� g(p�mg(�(�d; s0; P 0);�d; P 0))i ������+������J� 12Z 0fL0M0H�10 �L(���;�d; PR)M(���;�d; PR)H�1(��;�d; PR)g�n������+������J� 12Z 0fL0M0H�10 �R(�0d)�L(�;�d; PR)M (�;�d; PR)H�1(�;�d; PR)�R(�d)g������:(A.21)We need to show that the three terms in the right-hand side of (A.21) are respetively op(1)within the ÆJ neighborhood of �0d, From assumption B5(e), we know thatsupjj�d��0djj�ÆJ ������J� 12Z 0[g(p�mg(�(�d; s0; P 0);�d; PR))�g(p�mg(�(�d; s0; P 0);�d; P 0))℄������ = op(1): (A.22)With the argument similar to obtain (A.19), we an derive for the seond term on the right-handside of (A.21) by using B5(),Pr � supjj�d��0djj�ÆJ ������J� 12Z 0fL(���;�d; PR)M (���;�d; PR)H�1(��;�d; PR)�L0M0H�10 g�n������ > �� Pr � supjj�d��0djj�ÆJ sup(�1;�2;P )2fN�0 (�0d;ÆJ )g2J�NP0(ÆJ ) ������J� 12Z 0�fL(�1;�d; P )M (�1;�d; P )H�1(�2;�d; P )�L0M 0H�10 g�n������ > �+Pr[(���1; : : : ; ���J) 62 fN�0(�0d; ÆJ )gJ ℄ + Pr[(��1; : : : ; ��J) 62 fN�0(�0d; ÆJ )gJ ℄+Pr[PR 62 NP 0(ÆJ )℄! 0:For the third term on the right-hand side of (A.21), we obtain by assumption B5(d)Pr � supjj�d��0djj�ÆJ ������J� 12Z 0fL(�;�d; PR)M (�;�d; PR)H�1(�;�d; PR)�R(�d)�L0M0H�10 g�R(�0d)g������ > �� Pr � supjj�d��0djj�ÆJ sup(�1;�2;P )2fN�0 (�0d;ÆJ)g2J�NP0 (ÆJ ) ������J� 12Z 0�fL(�1;�d; P )M (�1;�d; P )H�1(�2;�d; P )�R(�d)�L0M0H�10 �R(�0d)g������ > �+Pr[(�1; : : : ; �J) 62 fN�0(�0d; ÆJ)gJ ℄ + Pr[(�1; : : : ; �J) 62 fN�0(�0d; ÆJ)gJ ℄+Pr[PR 62 NP 0(ÆJ )℄! 0:proof of (2-ii)We now turn to show (2-ii). In order to show that the estimator that minimizes the normof GJ(�) is asymptotially normally distributed we apply a version of Theorem 3.3 in Pakes59



and Pollard (1989). A di�erene here is that the expetation of GJ(�) ould vary with J .This is beause the derivative of (�(�d; s; P );!(�; s; P )) with respet to � and the instrumentalvariables (Zd;Z) both depend on the number and harateristis of the all produts marketed.The version of the theorem we use is:Let �� be a onsistent estimator of �0, the unique point of � for whih E[GJ(�0)℄ = 0. If:(i) jjGJ(��)jj � op(J� 12 ) + inf� jjGJ(�)jj;(ii) E[GJ(�)℄ is di�erentiable at �0 with a derivative matrix �J of full rank, and �J ! � asJ !1;(iii) for every sequene fÆJg of positive numbers that onverges to zero,supjj���0jj�ÆJ jjGJ(�)� E[GJ(�)℄� GJ(�0)jjJ� 12 + jjGJ(�)jj+ jjE[GJ(�)℄jj = op(1);(iv) J 12GJ(�0) w; N(0;�);(v) �0 is an interior point of �;then J 12 (�� � �0) w; N(0; (�0�)�1�0��(�0�)�1):The set of assumptions, E�jx1 [�j(�0d; s0; P 0)jx1j ℄ = 0 given in (1),E!jw1 [!j(�0d; s0; P 0)jw1j ℄ = 0 given in (12), E�jx;�[�njX ; �(�0d; s0; P 0)℄ = 0 given in A1(a), andE��jx;�[�R(�d)jX ; �(�d; s0; P 0)℄ = 0 for eah �d given in assumption A1(b) ensures that theunonditional expetation E[GdJ(�0d)℄ = 0 and E[GJ(�0)℄ = 0. Noting the fat that under(�0; s0; P 0), E[GdJ(�0d; s0; P 0)℄ = 0 and E[GJ(�0; s0; P 0)℄ = 0.E[GdJ(�0d)℄= E hJ�1Z 0d�(�0d; s0; P 0) + J�1Z 0dH�10 �n � J�1Z 0dH�10 �R(�0d)i= Ex1;� hJ�1Z 0d�(�0d; s0; P 0)i+E�;x1;� hJ�1Z 0dH�10 �ni� E��;x1;� hJ�1Z 0dH�10 �R(�0d)i= Ex1;� hJ�1Z 0d�(�0d; s0; P 0)i+E�;x;� hJ�1Z 0dH�10 �ni� E��;x;� hJ�1Z 0dH�10 �R(�0d)i= Ex1 hE�jx1 hJ�1Z 0d�(�0d; s0; P 0)���X1ii+Ex;� hE�jx;� hJ�1Z 0dH�10 �n���X; �(�0d; s0; P 0)ii�Ex;� hE��jx;� hJ�1Z 0dH�10 �R(�0d)���X; �(�0d; s0; P 0)ii= Ex1 hJ�1Z 0d E�jx1 h�(�0d; s0; P 0)���X1ii+Ex;� hJ�1Z 0dH�10 E�jx;� h�n���X; �(�0d; s0; P 0)ii�Ex;� hJ�1Z 0dH�10 E��jx;� h�R(�0d)���X; �(�0d; s0; P 0)ii= 0;E[GJ(�0)℄= E[J�1Z 0!(�0; s0; P 0)� J�1Z 0L0M0H�10 f�n � �R(�0d)g℄= Ew1;![J�1Z 0!(�0; s0; P 0)℄� E�;x1;�;w1 [J�1Z 0L0M0H�10 �n℄+E��;x1;�;w1[J�1Z 0L0M 0H�10 �R(�0d)℄= Ew1;![J�1Z 0!(�0; s0; P 0)℄� E�;x;�;w1[J�1Z 0L0M0H�10 �n℄60



+E��;x;�;w1 [J�1Z 0L0M0H�10 �R(�0d)℄= Ew1 [E!jw1 [J�1Z 0!(�0; s0; P 0)jW 1℄℄�Ex;�;w1 [E�jx;�;w1[J�1Z 0L0M0H�10 �njX ; �(�0d; s0; P 0);W 1℄℄+Ex;�;w1 [E��jx;�;w1 [J�1Z 0L0M0H�10 �R(�0d)jX ; �(�0d; s0; P 0);W 1℄℄= Ew1 [J�1Z 0 E!jw1 [!(�0; s0; P 0)jW 1℄℄�Ex;�;w1 [J�1Z 0L0M0H�10 E�jx;�;w1[�njX; �(�0d; s0; P 0);W 1℄℄+Ex;�;w1 [J�1Z 0L0M0H�10 E��jx;�;w1[�R(�0d)jX ; �(�0d; s0; P 0);W 1℄℄= Ew1 [J�1Z 0 E!jw1 [!(�0; s0; P 0)jW 1℄℄�Ex;�;w1 [J�1Z 0L0M0H�10 E�jx;�[�njX ; �(�0d; s0; P 0)℄℄+Ex;�;w1 [J�1Z 0L0M0H�10 E��jx;�[�R(�0d)jX ; �(�0d; s0; P 0)℄℄= 0:We on�rm that under the assumptions we give in the theorem eah of the onditions (i){(v) issatis�ed. Any estimator that minimizes jjGJ(�)jj satis�es (i). Sine E[J�1Z 0dH�10 f�n��R(�0d)℄ =0, we have from (47) E[GdJ(�d)℄ = E[GdJ(�d; s0; P 0)℄:Similarly, sine E[J�1Z 0L0M0H�10 f�n � �R(�0d)g℄ = 0, we obtain from (57)E[GJ(�)℄ = E[GJ(�; s0; P 0)℄:Thus ���0 E[GJ(�)℄ = ���0 E[GJ(�; s0; P 0)℄ =  (� E[GdJ(�d)℄��0 )0 ;�� E[GJ(�)℄��0 �0!0= (�dJ 0;�J 0)0 (A.23)by assumption B2 and ondition (ii) is satis�ed. We an show (iii) as follows.supjj���0jj�ÆJ jjGJ(�)� E[GJ(�)℄� GJ(�0)jjJ� 12 + jjGJ(�)jj+ jjE[GJ(�)℄jj� supjj���0jj�ÆJ J 12 jjGJ(�)� E[GJ(�)℄� GJ(�0)jj� supjj�d��0djj�ÆJ J 12 jjGdJ(�d)� E[GdJ(�d)℄� GdJ(�0d)jj+ supjj���0jj�ÆJ J 12 jjGJ(�)� E[GJ(�)℄� GJ(�0)jj= op(1) + op(1)= op(1)where the �rst op(1) term omes fromsupjj�d��0djj�ÆJ J 12 jjGdJ(�d)� E[GdJ(�d)℄� GdJ(�0d)jj= supjj�d��0djj�ÆJ J 12 ������GdJ(�d; s0; P 0) + J�1Z 0dH�10 n�n � �R(�0d)o�E�;��;x1;� hGdJ(�d; s0; P 0) + J�1Z 0dH�10 n�n � �R(�0d)oi61



�GdJ(�0d; s0; P 0)� J�1Z 0dH�10 n�n � �R(�0d)o������= supjj�d��0djj�ÆJ J 12 ������GdJ(�d; s0; P 0)� Ex1;� hGdJ(�d; s0; P 0)i�GdJ(�0d; s0; P 0)������= op(1)by assumption B3(a), and the seond op(1) term omes fromsupjj���0jj�ÆJ J 12 jjGJ(�)� E[GJ(�)℄� GJ(�0)jj� supjj�d��0djj�ÆJ J 12 ������GJ(�; s0; P 0)� J�1Z 0L0M0H�10 f�n � �R(�0d)g�E�;��;x1;�;w1;![GJ(�; s0; P 0)� J�1Z 0L0M0H�10 f�n � �R(�0d)g℄�GJ(�0; s0; P 0) + J�1Z 0L0M0H�10 f�n � �R(�0d)g������= supjj�d��0djj�ÆJ J 12 ������GJ(�; s0; P 0)� Ew1;![GJ(�; s0; P 0)℄�GJ(�0; s0; P 0)������= op(1)by assumption B3(b). Assumption B1 ensures ondition (v). Let us turn to show (iv). We set(ad1(�;�d; P ); : : : ;adJ(�;�d; P )) � Z 0dH�1(�;�d; P ); (A.24)(a1(�;�d; P ); : : : ;aJ(�;�d; P )) � �Z 0L(�;�d; P )M (�;�d; P )H�1(�;�d; P ): (A.25)Deompose J 12GJ(�0) into the tree terms:J 12GJ(�0)= J 12GJ(�0; s0; P 0) + J� 12  Z 0dH�10�Z 0L0M0H�10 !n�n � �R(�0d)o= JXj=1 J� 12zdj�j(�0d; s0; P 0)J� 12zj!j(�0; s0; P 0) !+ J� 12  Z 0dH�10�Z 0L0M0H�10 !n�n � �R(�0d)o= JXj=1 J� 12zdj�j(�0d; s0; P 0)J� 12zj!j(�0; s0; P 0) !+ nXi=1Y Ji(�(�0d; s0; P 0);�0d; P 0)� RXr=1Y �Jr(�(�0d; s0; P 0);�0d; P 0) (A.26)where Y Ji(�;�d; P ) = 1nJ 12 JXj=1 adj (�;�d; P )�jiaj(�;�d; P )�ji ! ;Y �Jr(�;�d; P ) = 1RJ 12 JXj=1 adj (�;�d; P )��jr(X ; �;�d)aj(�;�d; P )��jr(X ; �;�d) ! :Note that the �rst term on the right-hand side of (A.26) is random beause of the produtharateristis (X1; �) and the ost shifter (W 1;!). However, at (�0; s0; P 0), these �j's and!j's are independent as stated in page 5. This fores us to ondition only on (X1;W 1) tomake the eah omponent on the term independent. On the other hand, the seond term on62



the right-hand side of (A.26), originating from the sampling error in alulating the observedmarket share, is dependent on (X; �;W ;!). Similarly for the third term orresponding to thesimulation error in alulating the market share. We show thatnV hb0J 12GJ(�0)io�1=2 b0J 12GJ(�0) (A.27)is asymptotially normal with mean zero and variane one for any real onstant vetor b suhthat b0b = 1. Then the Cram�er-Wold devie says that J 12GJ(�0) onverges to multivariate nor-mal. Sine the three terms in (A.26), denoted T J1;T J2;T J3, have mean zero and are mutuallyunorrelated, it is suÆient to show that eah of fV[b0T Jl℄g�1=2b0T Jl; l = 1; 2; 3 is asymptoti-ally normal.7 Notie that eah element of T Jl is the sum of non-independent, but onditionallyindependent random sequene. Thus we have to use a version of entral limit theorem whihis appliable to onditionally independent random sequenes. In appendix ??, we derive theversion for Lyapunov entral limit theorem.The �rst term b0T J1:Given (X1;W 1), (zdj�j(�0d; s0; P 0);zj!j(�0; s0; P 0)) are onditionally independent aross j. Set�i = 8<:V 24b0J� 12 JXj=1 zdj�j(�0d; s0; P 0)zj!j(�0; s0; P 0) !359=;�1=2 b0J� 12  zdj�j(�0d; s0; P 0)zj!j(�0; s0; P 0) !and Z = (X1;W 1) for the entral limit theorem in the appendix. Then, by assumption B4(a)and B4(d), we an show that the Lyapunov ondition is satis�ed for the �rst term as follows.limJ!1 JXj=1E2664�������8<:V24b0J� 12 JXj=1 zdj�j(�0d; s0; P 0)zj!j(�0; s0; P 0) !359=;�1=2 b0J� 12  zdj�j(�0d; s0; P 0)zj!j(�0; s0; P 0) !�������2+Æ3775= limJ!1 JXj=18<:V 24b0J� 12 JXj=1 zdj�j(�0d; s0; P 0)zj!j(�0; s0; P 0) !359=;�(2+Æ)=2 E24�����b0J� 12  zdj�j(�0d; s0; P 0)zj!j(�0; s0; P 0) !�����2+Æ35� limJ!1 JXj=18<:b0V 24J� 12 JXj=1 zdj�j(�0d; s0; P 0)zj!j(�0; s0; P 0) !35 b9=;�(2+Æ)=2�jjb0jj2+Æ E24����������J� 12  zdj�j(�0d; s0; P 0)zj!j(�0; s0; P 0) !����������2+Æ35= fb0�1bg�(2+Æ)=2jjb0jj2+Æ limJ!1 JXj=1E24����������J� 12  zdj�j(�0d; s0; P 0)zj!j(�0; s0; P 0) !����������2+Æ35= 0for some Æ > 0. Thus we have8<:V 24b0J� 12 JXj=1 zdj�j(�0d; s0; P 0)zj!j(�0; s0; P 0) !359=;�1=2 JXj=1 b0J� 12  zdj�j(�0d; s0; P 0)zj!j(�0; s0; P 0) !w; N(0; 1)whih is equivalent to saying thatb0 JXj=1J� 12  zdj�j(�0d; s0; P 0)zj!j(�0; s0; P 0) ! w; N(0; b0�1b): (A.28)7These three terms are not mutually independent due to inlusion of the ommon random variables X and �.63



The seond term b0T J2 = b0Pni=1 Y Ji(�(�0d; s0; P 0);�0d; P 0):Abbreviate Y 0Ji = Y Ji(�(�0d; s0; P 0);�0d; P 0). Given (X ; �(�0d; s0; P 0);W ;!(�0; s0; P 0)), Y 0Jiare onditionally independent aross i.Set �i = fV [b0Pni=1 Y 0Ji℄g� 12b0Y 0Ji and Z = (X; �(�0d; s0; P 0);W ;!(�0; s0; P 0)) for the entrallimit theorem in the appendix. The Lyapunov ondition for this term islimn!1 nXi=1E264������(V "b0 nXi=1Y 0Ji#)� 12 b0Y 0Ji������2+Æ375= limn!1(V "b0 nXi=1 Y 0Ji#)�(2+Æ)=2 nXi=1E[jb0Y 0Jij2+Æ ℄� limn!1(b0V " nXi=1 Y 0Ji# b)�(2+Æ)=2 jjb0jj3 nXi=1 E[jjY 0Jijj2+Æ℄= fb0�2bg�(2+Æ)=2jjb0jj2+Æ limn!1 nXi=1E[jjY 0Jijj2+Æ ℄= 0by assumption B4(b) and B4(e). Thus we haveb0 nXi=1Y 0Ji w; N(0; b0�2b): (A.29)The third term b0T J3 = b0PRr=1 Y �Jr(�(�0d; s0; P 0);�0d; P 0):The argument is ompletely same as that for the seond term.Abbreviate Y �0Jr = Y �Jr(�(�0d; s0; P 0);�0d; P 0). Then, by using the entral limit theorem withB4() and B4(f), we have b0 nXr=1Y �0Jr w; N(0; b0�3b): (A.30)Sine the three terms in b0J 12GJ(�0) onverges respetively to normal eah of them are unor-related, so is b0J 12GJ(�0). b0J 12GJ(�0) w; N(0; b0�b) (A.31)where � = �1 +�2 +�3. This ompletes the proof for the theorem 2. 2Proof of Theorem 3We will show that(1-i)' the estimator ~� de�ned as any sequene that satis�esjjGJ;T (~�; s0; P 0;�0)jj = inf�2� jjGJ;T (�; s0; P 0;�0)jj+ op(1)is onsistent for �0, and(1-ii)' sup�2� jjGJ;T (�; sn; PR;�N )�GJ;T (�; s0; P 0;�0)jj = op(1).To show (1-i)', Theorem 3.1 of Pakes and Pollard (1989) requires(i-a)' GJ;T (�0; s0; P 0;�0) = op(1), and(i-b)' sup� 62N�0 (Æ)jjGJ;T (�; s0; P 0;�0)jj�1 = Op(1) for eah Æ > 0.64



Proof of (i-a)'Sine we have shown that GdJ(�0d; s0; P 0) = op(1) and GJ(�0; s0; P 0) = op(1), the remainingis to show that GaJ;T (�0d; s0; P 0;�0) = op(1). We apply Bernoulli's weak law of large numberto eah row of GaJ;T (�0d; s0; P 0;�0). We denote the element of GaJ;T (�d; s; P;�) orrespond-ing to onsumer's demographi d and disriminating attribute q as fGaJ;T (�d; s; P;�)gd;q; d =1; : : : ;D; q = 1; : : : ; Np. By the de�nition of �0dq given in (76), the expetation and the varianeof fGaJ;T (�0d; s0; P 0;�0)gd;q are respetivelyE[fGaJ;T (�0d; s0; P 0;�0)gd;q℄= Ex;� hE�jx;� hfGaJ;T (�0d; s0; P 0;�0)gd;q���X ; �(�0d; s0; P 0)ii= Ex;� "�0dq � 1T TXt=1E�jx;� "�otdPj2Qq �tj(X; �(�d; s0; P 0);�t;�0d)Pj2Qq �j(X ; �(�d; s0; P 0);�0d; P 0) �����X; �(�0d; s0; P 0)##= Ex;� "�0dq � 1T TXt=1 �0dq#= 0;V[fGaJ;T (�0d; s0; P 0;�0)gd;q℄= Ex;� hV�jx;� hfGaJ;T (�0d; s0; P 0;�0)gd;q���X; �(�0d; s0; P 0)ii+Vx;� hE�jx;� hfGaJ;T (�0d; s0; P 0;�0)gd;q���X; �(�0d; s0; P 0)ii= Ex;� hV�jx;� hfGaJ;T (�0d; s0; P 0;�0)gd;q���X; �(�0d; s0; P 0)ii= Ex;� "V�jx;� "�0d;q � 1T TXt=1 �otdPj2Qq �tj(X; �(�0d; s0; P 0);� t;�0d)Pj2Qq �j(X ; �(�0d; s0; P 0);�0d; P 0) �����X ; �(�0d; s0; P 0)##= 1T Ex;� "V�jx;� "�otdPj2Qq �tj(X; �(�0d; s0; P 0);� t;�0d)Pj2Qq �j(X; �(�0d; s0; P 0);�0d; P 0) �����X; �(�0d; s0; P 0)##= 1T Ex;� 24E�jx;� 24(�otdPj2Qq �tj(X; �(�0d; s0; P 0);�t;�0d)Pj2Qq �j(X ; �(�0d; s0; P 0);�0d; P 0))2 �����X; �(�0d; s0; P 0)35� ��0dq�235= 1T Ex;� �1�nPj2Qq �j(X ; �(�0d; s0; P 0);�0d; P 0)o2� E�jx;� �n�otdPj2Qq �tj(X; �(�0d; s0; P 0);�t;�0d)o2 ����X ; �(�0d; s0; P 0)��� 1T Ex;� ���0dq�2�= 1T Ex;� �1�nPj2Qq �j(X ; �(�0d; s0; P 0);�0d; P 0)o2�E�jx;� �(�otd)2 ����X; �(�d0; s0; P 0)��� 1T Ex;� ���0dq�2�Sine the distributional support of onsumer's demographi is assumed bounded, its seondmoment is �nite, i.e., E�jx;�[(�otd)2jX; �(�0d; s0; P 0)℄ = E� [(�otd)2℄ �M for some onstantM <1.Assumption A9 guarantees thatEx;� �1.nPj2Qq �j(X ; �(�0d; s0; P 0);�0d; P 0)o2� = O(1):65



Moreover, we have Ex;� ���0dq�2� = O(1) from assumption A10(b). Thus the variane offGaJ;T (�0d; s0; P 0;�0)gd;q isV[fGaJ;T (�0d; s0; P 0;�0)gd;q℄� 1T Ex;� �M.nPj2Qq �j(X; �(�0d; s0; P 0);�0d; P 0)o2�� 1T Ex;� ���0dq�2�� Op(1=T ) +Op(1=T ) = op(1):Thus Bernoulli's weak law of large number ensures that fGaJ;T (�0d; s0; P 0;�0) = op(1)gd;q asT !1 (and hene J !1).Proof of (i-b)'From argument similar to deriving (A.3), for any (�; Æ) > (0; 0) and C(Æ), the relationshipPr " inf� 62N�0(Æ) jjGJ;T (�; s0; P 0;�0)jj � C(Æ)� �=2#� Pr " inf� 62N�0 (Æ) jjGJ;T (�; s0; P 0;�0)�GJ;T (�0; s0; P 0;�0)jj � C(Æ)#�Pr hjjGJ;T (�0; s0; P 0;�0)jj � �=2i (A.32)holds in general. Sine GJ;T (�0; s0; P 0;�0) = op(1), for any � > 0, there exist J1(�) and T1(�)suh that when J > J1 and T > T1Pr hjjGJ;T (�0; s0; P 0;�0)jj � �=2i � �=2: (A.33)From assumption A5, for the � and for any Æ > 0, there exist C2(Æ) and J2(�; Æ) suh that whenJ > J2 Pr h inf� 62N�0 (Æ) jjGJ(�; s0; P 0)�GJ(�0; s0; P 0)jj2 < C2(Æ)i < �4 :From assumption A8, for the (�; Æ), there exists C3(Æ), J3(�; Æ) and T3(�; Æ) suh that whenJ > J3 and T > T3Pr24 inf�d 62N�0d(Æ) jjGaJ;T (�d; s0; P 0;�0)�GaJ;T (�0d; s0; P 0;�0)jj2 < C3(Æ)35 < �4 :Thus when J > min(J2; J3) and T > T3Pr " inf� 62N�0 (Æ) jjGJ;T (�; s0; P 0;�0)�GJ;T (�0; s0; P 0;�0)jj2 < C2(Æ) + C3(Æ)#= Pr � inf� 62N�0 (Æ) njjGJ(�; s0; P 0)�GJ(�0; s0; P 0)jj2+jjGaJ;T (�d; s0; P 0;�0)�GaJ;T (�0d; s0; P 0;�0)jj2o < C2(Æ) + C3(Æ)�� Pr " inf� 62N�0(Æ) jjGJ(�; s0; P 0)�GJ(�0; s0; P 0)jj2+ inf� 62N�0(Æ) jjGaJ;T (�d; s0; P 0;�0)�GaJ;T (�0d; s0; P 0;�0)jj2 < C2(Æ) + C3(Æ)#66



� Pr " inf� 62N�0(Æ) jjGJ(�; s0; P 0)�GJ(�0; s0; P 0)jj2 < C2(Æ)#+Pr" inf� 62N�0(Æ) jjGaJ;T (�d; s0; P 0;�0)�GaJ;T (�0d; s0; P 0;�0)jj2 < C3(Æ)#� �4 + �4 = �2 :By setting C(Æ) = fC2(Æ) + C3(Æ)g 12 , we havePr " inf� 62N�0 (Æ) jjGJ;T (�; s0; P 0;�0)�GJ;T (�0; s0; P 0;�0)jj � C(Æ)# � 1� �2 : (A.34)By substituting (A.33) and (A.34) for (A.32), when J > max(J1; J2; J3) and T > max(T1; T2; T3),Pr " inf� 62N�0 (Æ) jjGJ;T (�; s0; P 0;�0)jj � C(Æ) � �=2# � 1� �2 � �2 = 1� �:Then we have lim supJ;T Pr " inf� 62N�0(Æ) jjGJ;T (�; s0; P 0;�0)jj > C�(�; Æ)# � 1� � (A.35)for C�(�; Æ) = C(Æ)� �=2 and hene (i-b)' is shown.Proof of (1-ii)'We show sup�2� jjGJ;T (�; sn; PR;�N )�GJ;T (�; s0; P 0;�0)jj = op(1):From (1-ii) in the proof of Theorem 1, we know that the �rst term of the right-hand side in thefollowing inequality onverges to zero in probability as J goes to in�nity.sup�2� jjGJ;T (�; sn; PR;�N )�GJ;T (�; s0; P 0;�0)jj� sup�2� jjGJ(�; sn; PR)�GJ(�; s0; P 0)jj+ sup�d2�d jjGaJ;T (�d; sn; PR;�N )�GaJ;T (�d; s0; P 0;�0)jj: (A.36)In the following, we see the seond term in (A.36) to be op(1).sup�d2�d jjGaJ;T (�d; sn; PR;�N )�GaJ;T (�d; s0; P 0;�0)jj= sup�d2�d jj�N � T�1PTt=1 �ot 
 t(�(�d; sn; PR);�d; PR);�d; PR)�f�0 � T�1PTt=1 �ot 
 t(�(�d; s0; P 0);�d; P 0);�d; P 0)gjj� jj�N � �0jj+ sup�d2�d ������T�1PTt=1 �ot 
 f t(�(�d; sn; PR);�d; PR)� t(�(�d; s0; P 0);�d; P 0)g������= jj�N � �0jj 67



+ sup�d2�d T�1jj(�o)0f	(�(�d; sn; PR);�d; PR)�	(�(�d; s0; P 0);�d; P 0)gjj� jj�N � �0jj+T�1=2jj�0jj � sup�d2�d T�1=2jj	(�(�d; sn; PR);�d; PR)�	(�(�d; s0; P 0);�d; P 0)jj;= Op(N�1=2) +Op(1) � op(1) = op(1)where 	(�;�d; P ) = ( 1(�;�d; P ); : : : ; T (�;�d; P ))0 and �o = (�o1; : : : ;�oT )0. In the last equal-ity above, jj�N � �0jj = Op(N�1=2) omes from A10(a), and T�1=2jj�ojj = Op(1) is beause theobserved onsumer demographis �ot are assumed bounded. The op(1) term follows the nextinequaility with assumption A11:Pr � sup�d2�d T�1=2jj	(�(�d; sn; PR);�d; PR)�	(�(�d; s0; P 0);�d; P 0)jj > Æ�� Pr � sup�d2�d sup(�;P )2N�0(�d;Æ)�NP0(Æ) T�1=2jj	(�;�d; P )�	(�(�d; s0; P 0);�d; P 0)jj > Æ�+Pr[�(�d; sn; PR) 62 N�0(�d;Æ)℄ + Pr[PR 62 NP 0(Æ)℄! 0;where Pr[�(�d; sn; PR) 62 N�0(�d;Æ)℄! 0 and Pr[PR 62 NP 0(Æ)℄! 0. 2Proof of Theorem 4In the proof of Theorem 2, we shown that the di�erene between GJ(�; sn; PR) and GJ(�) isop(J� 12 ) near �0, or supjj���0jj�ÆJ J 12 jjGJ(�; sn; PR) � GJ(�)jj = op(1). We show below thatGaJ;T (�d; sn; PR;�N ) in (92) and GaJ;T (�d) in (93) is op(T� 12 ) within the ÆJ;T neighborhood of�0. This makes the di�erene between GJ;T (�; sn; PR;�N ) in (81) and GJ;T (�d) in (94) isstohastially small enough near �0.For the element of GaJ;T (�d; sn; PR;�N ) orresponding to onsumer demographis d anddisriminating attribute q, we havesupjj�d��0djj<ÆJ;T T 12 ����fGaJ;T (�d)�GaJ;T (�d; sn; PR;�N )gd;q����= supjj�d��0djj<ÆJ;T T 12 ���� 1T TXt=1 �otdf tq(�(�d; s0; P 0);�d; PR)�  tq(�(�d; s0; P 0);�d; P 0)g� 1T TXt=1 �otdh�tq�(�(�0d; s0; P 0);�0d; P 0)H�10 f�n � �R(�0d)g��tq�(�y;�d; PR)H�1(��;�d; PR)�n +�tq�(�z;�d; PR)H�1(�;�d; PR)�R(�d)i����� supjj�d��0djj<ÆJ;T ����T�1=2 TXt=1 �otdf tq(�(�d; s0; P 0);�d; PR)�  tq(�(�d; s0; P 0);�d; P 0)g����+ supjj�d��0djj<ÆJ;T ����T�1=2 TXt=1 �otdh�tq�(�(�0d; s0; P 0);�0d; P 0)H�10 �n��tq�(�y;�d; PR)H�1(��;�d; PR)�ni����+ supjj�d��0djj<ÆJ;T ����T�1=2 TXt=1 �otdh�tq�(�(�0d; s0; P 0);�0d; P 0)H�10 �R(�0d)68



��tq�(�z;�d; PR)H�1(�;�d; PR)�R(�d)i���� (A.37)where �tq� is the qth row vetor of �t. Thus, it is suÆient to show that the three terms in theright-hand side of (A.37) are respetively op(1) or,supjj�d��0djj<ÆJ;T ����T�1=2 TXt=1 �otdf tq(�(�d; s0; P 0);�d; PR)�  tq(�(�d; s0; P 0);�d; P 0)g����= op(1); (A.38)supjj�d��0djj<ÆJ;T ����T�1=2 TXt=1 �otdh�tq�(�(�0d; s0; P 0);�0d; P 0)H�10 �n��tq�(�y;�d; PR)H�1(��;�d; PR)�ni���� = op(1); (A.39)supjj�d��0djj<ÆJ;T ����T�1=2 TXt=1 �otdh�tq�(�(�0d; s0; P 0);�0d; P 0)H�10 �R(�0d)��tq�(�z;�d; PR)H�1(�;�d; PR)�R(�d)i���� = op(1): (A.40)We an obtain (A.38) as follows.supjj�d��0djj<ÆJ;T ����T�1=2 TXt=1 �otdf tq(�(�d; s0; P 0);�d; PR)�  tq(�(�d; s0; P 0);�d; P 0)g����= supjj�d��0djj<ÆJ;T �����T�1=2 TXt=1 �otd�Pj2Qq �tj(�(�d; s0; P 0);� t;�d)Pj2Qq �j(�(�d; s0; P 0);�d; PR)�Pj2Qq �tj(�(�d; s0; P 0);�t;�d)Pj2Qq �j(�(�d; s0; P 0);�d; P 0))�����= supjj�d��0djj<ÆJ;T �����T�1=2 TXt=1 �otd�Pj2Qq �tj(�(�d; s0; P 0);�t;�d)Pj2Qq �j(�(�d; s0; P 0);�d; P 0)��Pj2Qq n�j(�(�d; s0; P 0);�d; P 0)� �j(�(�d; s0; P 0);�d; PR)oPj2Qq �j(�(�d; s0; P 0);�d; PR) �����= supjj�d��0djj<ÆJ;T �����T�1=2 TXt=1 �otd tq(�(�d; s0; P 0);�d; P 0)� Pj2Qqf��Rj (�d)gPj2Qq �j(�(�d; s0; P 0);�d; PR) ������ supjj�d��0djj<ÆJ;T �����T�1 TXt=1 �otd tq(�(�d; s0; P 0);�d; P 0)������ supjj�d��0djj<ÆJ;T ����� Pj2Qq T 1=2�Rj (�d)Pj2Qq �j(�(�d; s0; P 0);�d; PR) �����= supjj�d��0djj<ÆJ;T �����T�1 TXt=1 �otd tq(�(�d; s0; P 0);�d; P 0)������ supjj�d��0djj<ÆJ;T ����� Pj2Qq T 1=2�Rj (�d)Pj2Qq n�j(�(�d; s0; P 0);�d; P 0) + �Rj (�d)o�����69



= supjj�d��0djj<ÆJ;T �����T�1 TXt=1 �otd tq(�(�d; s0; P 0);�d; P 0)������ supjj�d��0djj<ÆJ;T ����� Pj2Qq T 1=2�Rj (�d)Pj2Qq s0j +Pj2Qq �Rj (�d) �����= supjj�d��0djj<ÆJ;T �����T�1 TXt=1 �otd tq(�(�d; s0; P 0);�d; P 0)������ supjj�d��0djj<ÆJ;T ����� �Pj2Qq s0j��1Pj2Qq T 1=2�Rj (�d)1 + �Pj2Qq s0j��1 T�1=2Pj2Qq T 1=2�Rj (�d) �����= supjj�d��0djj<ÆJ;T �����T�1 TXt=1 �otd tq(�(�d; s0; P 0);�d; P 0)������ supjj�d��0djj<ÆJ;T ����� Op(1) � op(1)1 +Op(1) � T�1=2op(1) �����= supjj�d��0djj<ÆJ;T �����T�1 TXt=1 �otd tq(�(�d; s0; P 0);�d; P 0)����� � op(1)= op(1) (A.41)where we use assumption A9 for (Pj2Qq s0j)�1 = Op(1) and assumption B7() forPj2Qq T 1=2�Rj (�d) =op(1). For the last equality in (A.41), we use the law of large number as follows.supjj�d��0djj<ÆJ;T �����T�1 TXt=1 �otd tq(�(�d; s0; P 0);�d; P 0)����� p! j�0dqj = jOp(1)jwhere �0dq = Op(1) follows from assumption A10(b). For (A.39), we havePr " supjj�d��0djj<ÆJ;T ����T�1=2 TXt=1 �otdh�tq�(�(�0d; s0; P 0);�0d; P 0)H�10 �n��tq�(�y;�d; PR)H�1(��;�d; PR)�ni���� > #� Pr "maxt j�otdj � supjj�d��0djj<ÆJ;T ����T�1=2 TXt=1 h�tq�(�(�0d; s0; P 0);�0d; P 0)H�10 �n��tq�(�y;�d; PR)H�1(��;�d; PR)�ni���� > #� Pr "maxt j�otdj � supjj�d��0djj<ÆJ; T sup(�1;�2;P )2fN�0 (�0d;ÆJ; T )g2J�NP0(ÆJ; T ) ����T�1=2� TXt=1 h�tq�(�(�0d; s0; P 0);�0d; P 0)H�10 �n��tq�(�1;�d; PR)H�1(�2;�d; PR)�ni���� > #+Pr[�y 62 fN�0(�0d; ÆJ;T )gJ ℄ + Pr[�� 62 fN�0(�0d; ÆJ;T )gJ ℄+Pr[PR 62 NP 0(ÆJ;T )℄= o(1) 70



where we use assumption that maxt j�otdj < M(onstant), B7(a) and the fatsPr[�y 62 fN�0(�0d; ÆJ;T )gJ ℄ ! 0, Pr[�� 62 fN�0(�0d; ÆJ;T )gJ ℄ ! 0, Pr[PR 62 NP 0(ÆJ;T )℄ ! 0. We analso obtain (A.40) by similar argument as for (A.39) by using assumption B7(b).What we next show is the asymptoti normality of the estimator �� that minimizes the normof GJ;T (�) in (94). To do this, we use a version of Theorem 3.3 in Pakes and Pollard (1989)desribed in appendix ??, whih gives asymptoti normality to the estimator indexed by twodistint indies. From the theorem, if we an show the following �ve onditions,(i)' jjGJ;T (��)jj = op(J� 12 ) + op(T� 12 ) + inf� jjGJ;T (�)jj;(ii)' E[GJ;T (�)℄ is di�erentiable at �0 with a derivative matrix �J;T = (�0J ;�aJ;T )0 of full rankwhere �J;T onverges to (�0;�a)0 as J; T !1;(iii)' for every sequene fÆJ;T g of positive numbers that onverges to zero as J; T goes to in�nity,(a) supjj���0jj�ÆJ;T jjGJ(�)� E[GJ(�)℄� GJ(�0)jjJ� 12 + jjGJ(�)jj+ jjE[GJ(�)℄jj = op(1);(b) supjj�d��0djj�ÆJ;T jjGaJ;T (�d)� E[GaJ;T (�d)℄� GaJ;T (�0d)jjT� 12 + jjGaJ;T (�d)jj+ jjE[GaJ;T (�d)℄jj = op(1);(iv)'  J 12GJ(�0)T 12GaJ;T (�0d) ! w; N  0; � 00 �a !! ;(v)' �0 is an interior point of �,(vi)' The size index T grows faster than J (T=J !1 as J !1),then, we have �� w; N(0;V ) whereV = (�0�+ �a0�a)�1�0��(�0�+ �a0�a)�1:We are onsidering the situation where the number T of onsumer draws used to evaluatethe additional moments is larger and grows faster than the number J of produts, and thus (vi)'is satis�ed. Our estimator �� satis�es (i)'. Sine the three random variables �ji, ��jr and �#i0 inGJ;T (�) have respetively zero means given the set of produt harateristis (X; �(�0d; s0; P 0)),we have E[GJ;T (�; s0; P 0;�0)℄ = E[GJ;T (�)℄. Thus ondition (ii)' follows from assumptions B2and B8. We shown ondition (iii)'(a) in the proof of Theorem 2. For ondition (iii)'(b), we havesupjj�d��0djj�ÆJ;T jjGaJ;T (�d)� E[GaJ;T (�d)℄� GaJ;T (�0d)jjT� 12 + jjGaJ;T (�d)jj+ jjE[GaJ;T (�d)℄jj� supjj�d��0djj�ÆJ;T T 12 jjGaJ;T (�d)� E[GaJ;T (�d)℄� GaJ;T (�0d)jj= supjj�d��0djj�ÆJ;T T 12 ��������GaJ;T (�d; s0; P 0;�0)� 1T TXt=1 �ot 
�0tH�10 f�n � �R(�0d)g+ �N � �0�E[GaJ;T (�d; s0; P 0;�0)℄ + 1T TXt=1E h�ot 
�0tH�10 f�n � �R(�0d)gi� E[�N � �0℄�GaJ;T (�0d; s0; P 0;�0) + 1T TXt=1 �ot 
�0tH�10 f�n � �R(�0d)g � �N � �0��������71



= supjj�d��0djj�ÆJ;T T 12 ��������GaJ;T (�d; s0; P 0;�0)� E[GaJ;T (�d; s0; P 0;�0)℄�GaJ;T (�0d; s0; P 0;�0)��������= op(1)from assumption B9. Assumption B1 guarantees ondition (v)'. Let us show (iv)'. Theadditional moments GaJ;T (�d) inludes two random draws of onsumer �ot ; t = 1; : : : ; T and�#i0 ; i0 = 1; : : : ; N , whih are not inluded in GJ(�). Thus GaJ;T (�d) and GJ(�) are onditionallyindependent, onditional on the set of produt harateristis (X ; �(�0d; s0; P 0)), and then un-orrelated eah other. Sine we also know that J 12GJ(�0) w; N(0;�) as J !1, what we haveto show is T 12GaJ;T (�0d) w; N(0;�a) as J; T !1. Set(aa1(�;�d; P ); : : : ;aa1(�;�d; P )) � � TXt=1 �ot 
�t(�;�d; P )H�1(�;�d; P ): (A.42)Deompose T 12GaJ;T (�0d) into the four terms:T 12GaJ;T (�0d)= T 12GaJ;T (�0d; s0; P 0;�0)� T� 12 TXt=1 �ot 
�0tH�10 f�n � �R(�0d)g+T 12 (�N � �0)= TXt=1 T� 12 (�0 � �ot 
 t(�(�0d; s0; P 0);�0d; P 0) + nXi=1Y aJ;T;i(�(�0d; s0; P 0);�0d; P 0)� RXr=1Y �aJ;T;r(�(�0d; s0; P 0);�0d; P 0) + NXi0=1 T 12N�1�#i0 (A.43)where Y aJ;T;i(�;�d; P ) = 1nT 12 JXj=1aaj (�;�d; P )�ji;Y �aJ;T;r(�;�d; P ) = 1RT 12 JXj=1aaj (�;�d; P )��jr:Sine the four terms of T 12GaJ;T (�0d) in (A.43) are onditionally independent given (X ; �(�0d; s0; P 0))and thus mutually unorrelated, we will show that eah of them, denoted by T aJ;T;1, T aJ;T;2, T aJ;T;3and T aJ;T;4, are respetively asymptotially multivariate normal by using the Cram�er-Wold de-vie. We show that for any onstant vetor b suh that b0b = 1, fV[b0T aJ;T;l℄g�1=2b0T aJ;T;l forl = 1; 2; 3; 4 is respetively asymptotially standard normal.The �rst term b0T aJ;T;1 = b0PTt=1 T� 12 (�0 � �ot 
 t(�(�0d; s0; P 0);�0d; P 0):Given (X ; �(�0d; s0; P 0)), b0T� 12 (�0 � �ot 
  t(�(�0d; s0; P 0);�0d; P 0)) have zero mean and areonditionally independent aross t. Write  0t �  t(�(�0d; s0; P 0);�0d; P 0) and set�i = fV[b0T� 12 PTt=1(�0 � �ot 
  0t )℄g�1=2b0T� 12 (�0 � �ot 
  0t ) and Z = (X ; �(�0d; s0; P 0))) inthe entral limit theorem given in appendix ??. Then, the Lyapunov ondition for this term islimT!1 TXt=1E264������(V "b0T� 12 TXt=1(�0 � �ot 
 0t )#)�1=2 b0T� 12 (�0 � �ot 
 0t )������2+Æ37572



= limT!1(V "b0T� 12 TXt=1(�0 � �ot 
 0t )#)�(2+Æ)=2 TXt=1E ����b0T� 12 (�0 � �ot 
 0t )���2+Æ�� limT!1(b0V "T� 12 TXt=1(�0 � �ot 
 0t )# b)�(2+Æ)=2 TXt=1 jjb0jj2+Æ E �������T� 12 (�0 � �ot 
 0t )������2+Æ�= �b0�a1b	�(2+Æ)=2 jjb0jj2+Æ limT!1 TXt=1E �������T� 12 (�0 � �ot 
 0t )������2+Æ�= 0for some Æ > 0 by assumption B10(a) and B10(e). Thus we obtain(V "b0T� 12 TXt=1(�0 � �ot 
 0t )#)�1=2 TXt=1 b0T� 12 (�0 � �ot 
 0t ) w; N(0; 1);whih is equivalent to TXt=1 b0T� 12 (�0 � �ot 
 0t ) w; N(0; b0�a1b): (A.44)The seond term b0T aJ;T;2 = b0Pni=1 Y aJ;T;i(�(�0d; s0; P 0);�0d; P 0):Abbreviate Y a0J;T;i � Y aJ;T;i(�(�0d; s0; P 0);�0d; P 0). Given (X; �(�0d; s0; P 0); f�otgTt=1), Y a0J;T;i havezero mean and onditionally independent aross i. Suppose �i = fV[b0Pni=1 Y a0J;T;i℄g�1=2b0Y a0J;T;iand Z = (X ; �(�0d; s0; P 0)) in the entral limit theorem in appendix ??. Then the Lyapunovondition for this term islimn!1 nXi=1 E264������(V "b0 nXi=1Y a0J;T;i#)�1=2 b0Y a0J;T;i������2+Æ375= limn!1(b0V " nXi=1Y a0J;T;i# b)�(2+Æ)=2 nXi=1E ����b0Y a0J;T;i���2+Æ�� fb0�a2bg�(2+Æ)=2jjb0jj2+Æ limn!1 nXi=1 E �������Y a0J;T;i������2+Æ�= 0by assumption B10(b) and B10(f). Thus we obtainnXi=1 b0Y a0J;T;i w; N(0; b0�a2b): (A.45)The third term b0T aJ;T;3 = b0PRr=1 Y a�J;T;r(�(�0d; s0; P 0);�0d; P 0):For this term, we an obtain the asymptoti normality from a similar argument as for theseond term. Abbreviate Y a�0J;T;r � Y a�J;T;r(�(�0d; s0; P 0);�0d; P 0). By using assumption B10()and B10(g), we obtain RXr=1 b0Y a�0J;T;r w; N(0; b0�a3b): (A.46)The forth term b0PNi0=1 T 12N�1�#i0 :Given (X; �(�0d; s0; P 0)), �#i0 have zero mean and onditionally independent aross i0. Suppose73



�i = nV hb0PNi0=1 T 1=2N�1�#i0 io�1=2 b0T 1=2N�1�#i0 and Z = (X; �(�0d; s0; P 0)) in the entrallimit theorem in appendix ??. The Lyapunov ondition for this term islimN!1 NXi0=1E264������(V "b0 NXi0=1T 12N�1�#i0 #)�1=2 b0T 12N�1�#i0 ������2+Æ375= limN!1(V "b0 NXi0=1T 12N�1�#i0 #)�(2+Æ)=2 NXi0=1E ����b0T 12N�1�#i0 ���2+Æ�� limN!1(V "b0 NXi0=1T 12N�1�#i0 #)�(2+Æ)=2 jjb0jj2+Æ NXi0=1E �������T 12N�1�#i0 ������2+Æ�= fb0�a4bg�(2+Æ)=2jjb0jj2+Æ limN!1 NXi0=1E �������T 12N�1�#i0 ������2+Æ�= 0by assumption B10(d) and B10(h). Thus we obtainNXi0=1 b0T 12N�1�#i0 w; N(0; b0�a4b): (A.47)The four terms in b0T 12GaJ;T (�0d) respetively onverge to the normal. Aordingly, b0T 12GaJ;T (�0d)onverges to the normal. Then the Cram�er-Wold devie leads us to obtainT 12GaJ;T (�0d) w; N(0;�a) (A.48)where �a = �a1 +�a2 +�a3 +�a4. Therefore ondition (iv)' is satis�ed and thus this ends theproof of Theorem 4.2
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