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Abstract The criteria used in location analysis have to be chosen according to the character of the facility.
The single facility location models addressed in this paper accommodate simultaneous multiple criteria in
a continuous space in the framework of ordered median problems, which generate and unify many standard
location problems. We demonstrate that tools of computational geometry such as Voronoi diagrams and
arrangements of curves and lines, enable us to identify the entire set of Pareto-optimal locations, when the
squared Euclidean distances between the facility and affected inhabitants are used. For two objectives this
works for any type of ordered median objectives and any polygonally bounded feasible region, but when
more than two criteria are present the objectives and the feasible region have to be convex. In order to
obtain this latter we use several recent structural results for unconstrained convex vector optimization,
which we show to remain valid under a convex and compact constraint. Several examples illustrate our
findings visually.

Keywords: location, multi-criteria, quadratic Euclidean distance, Pareto solutions, or-
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1. Introduction

Recently, a great deal of effort has been spent on ordered median problems in continuous
space, which considers the selection of the location of a facility. For example, rectilinear
distance is incorporated in the framework of ordered median problems by Kalcsics et al.[14],
Nickel and Puerto[17], Puerto and Fernández[30], Rodŕıguez-Ch́ıa et al.[31], Rodŕıguez-
Ch́ıa and Puerto[32]. Euclidean distances in the framework of ordered median problems are
used in Muñoz-Pérez and Saameño-Rodŕıguez[15]. A comprehensive and detailed overview
of ordered median problems can be found in the recent book by Nickel and Puerto[16].
Ordered median problems are formulated in a quite general way to enhance their practical
applicability. Many famous location problems can be regarded as special cases of this general
model. Examples for attractive facilities are Weber problems, center problems and cent-
dian problems. Examples for obnoxious facilities are anticenter problems and anti-Weber
problems. Examples for equity facilities are minimization of range and mean-difference. On
the other hand, there is a growing literature on multi-criteria approaches to optimize one
or more than one objective functions in location analysis with remarkable corresponding
progress in mathematical programming, as can be seen in the survey by Nickel et al.[18].

This paper provides a unified structure for the multi-criteria location model which is
generated by combining continuous ordered median criteria with squared Euclidean dis-
tances. In fact, the two-objective models examined by Ohsawa[21], Ohsawa[22], Ohsawa et
al.[23], Ohsawa et al.[24], Ohsawa and Tamura[25] can be regarded as special cases of our
formulation. Their results are generalized and unified in the present framework using the
subdivision of the feasible region into subregions where the objective function is either linear
or quadratic. We consider explicitly a bounded feasible region, which is not only necessary
to apply the models to practical problems but also to ensure that optimal locations for push
objectives exists. We present the computational complexity in terms of the total input size,
i.e. the number of fixed points and the number of edges of the feasible region.

Contrary to most existing planar location models, the research in this paper uses squared
Euclidean distances, as in Ehrgott et al.[6], Fernández et al.[8], Francis and White[9],
Ohsawa[21], Ohsawa et al.[23]. The main reason for choosing the squared Euclidean distance
distances is that as far as their mathematical form is concerned, we can obtain analytical so-
lutions for a lot of problems, while only few analytical results are available under Euclidean
distance, even for the simple Weber problem. Another reason is that quadratic formulations
generate simple circular level curves. This also enables us to have an easy geographical view
similar to that obtained by a formulation using rectilinear distance, but without the disad-
vantage of axes dependency inherent in this latter. Thus, our formulation is quite useful to
understand the essence of the ordered median problems.

First, we characterize the solution for single-objective ordered median problems based
on a Voronoi diagram. Muñoz-Pérez and Saameño-Rodŕıguez[15] examined undesirable
Euclidean ordered median problems, that is, the weights which are assigned to affected
inhabitants according to the ordered distances are all negative. Our solution method relaxes
this assumption in the sense that some weights can be positive and the others can be
negative.

Next, we present a procedure to identify the Pareto set and its related trade-off curves
for the two-objective problem generated by combining two types of ordered median crite-
ria, which may be both neither convex nor concave. As pointed out by, for example, Das
and Dennis[3], it is only under convexity assumptions that minimization of various convex
combinations of the original criteria succeeds in obtaining the whole set of Pareto-optimal
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locations. In fact, Hamacher and Nickel[11] and Nickel and Puerto[17] devote their discus-
sion to convex two-objective location problems, so they consider only restricted situations.
We are able to overcome this difficulty through tools of computational geometry such as
Voronoi diagrams and arrangements of curves and lines. We propose a solution method
to solve any quadratic distance two-objective ordered median problem, even though each
criterion and the feasible region might be non-convex.

Finally, we also develop an algorithm to produce all the two-dimensional Pareto-optimal
locations associated with more than two convex ordered median criteria. To our knowledge,
location models analytically dealing with more than two criteria are found only in Ehrgott
et al.[6], Puerto and Fernández[28][29], Rodŕıguez-Ch́ıa and Puerto[32]. The first three
works discuss only particular problems, while in the last work, only a generic algorithm is
exhibited, while concrete code and its computational complexity are not stated. In contrast
we describe fully an algorithm to generate the Pareto set for any quadratic distance convex
ordered median problem together with its computational complexity.

The plan of the paper is as follows. We begin to study single-objective ordered median
problems in Section 2. Section 3 is devoted to the two-objective models generated by
combining two ordered median problems. Section 4 describes the multi-objective models,
which are defined on a convex polygonal region by combining more than two convex ordered
median criteria. Finally, Section 5 gives a number of concluding remarks.

2. Single-Objective Models

2.1. Problem formulation

Consider a bounded region Ω on a Euclidean plane where a facility can be built. We assume
its boundary ∂Ω consists of a finite number |∂Ω| of straight-line segments. Let I and
{p1,p2, . . . ,p|I|} be the index and location sets of the affected inhabitants on the plane,
respectively. We will use a boldfaced letter to represent sites. Let ∥ · ∥ be the Euclidean
norm. The weights α1, α2, · · · , α|I|, which are assigned to the i-th nearest inhabitant from
the facility, are given. They can be negative values.

We deal with the following quadratic distance ordered median problem to place a facility
somewhere on the feasible region Ω:

min
x∈Ω

(
F (x) ≡

∑
i∈I

αi∥x − p(i)∥2

)
, (1)

where (i) is the index of the i-th nearest point from x among {p1, . . . ,p|I|}, implying that the
indices (i) depend on the location x; the explicit dependence of the (i)’s on x is suppressed
for notational simplicity. In location terminology, problem (1) seeks to minimize the sum
of weighted quadratic Euclidean distances between the facility and inhabitants, depending
on the order of the distances from x. Table 1 is based on the summary table of Nickel
and Puerto[16] and the examples presented in Muñoz-Pérez and Saameño-Rodŕıguez[15]
and includes several new proposals. As suggested by the problems in Table 1, the ordered
median location problem generalizes and unifies many standard location problems. As is
instantly recognizable, if α1 = α2 = · · · = α|I| = 1, then the ordered median problem (1)
reduces to the well-known Weber criterion. If α1 = α2 = · · · = α|I| = −1, problem (1)
becomes the anti-Weber criterion. Therefore, the problems with αi > 0 for all i ∈ I can be
applied to desirable facilities, and those with αi < 0 for all i ∈ I to undesirable facilities.
On the other hand, if α1 = −α|I| > 0 and α2 = · · · = α|I|−1 = 0, then the problem (1)
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becomes the equity maximization using the range. Therefore, we see that the problem (1)
is applicable to not only efficient location, but also to equity location.

Observe that when the set {α1, α2, · · · , α|I|} has only one nonzero element the problem
(1) is equivalent to optimizing the corresponding objective function using simple Euclidean
distance. Such problems are indicated by an asterisk in the second column of Table 1.

2.2. Properties

Voronoi diagrams are well studied concepts of Computational Geometry: see Okabe et
al.[19], Ohyama[26]. Let Vi1,i2,···,i|I| be the fully ordered Voronoi polygon associated with the
sequence pi1 ,pi2 , · · · ,pi|I| . It can be mathematically expressed as

Vi1,i2,···,i|I| ≡ {x ∈ R2 | ∥x − pi1∥ ≤ ∥x − pi2∥ ≤ · · · ≤ ∥x − pi|I|∥}. (2)

The fully ordered Voronoi diagram is defined by the union of all non-empty Vi1,i2,···,i|I| ’s: see
Ohsawa et al.[23]. This region is also called ordered region in Nickel and Puerto[16], Puerto
and Fernández[30], Rodŕıguez-Ch́ıa et al.[31]. The cell-boundaries of this diagram coincide
with the line tessellation generated by all the perpendicular bisectors of pairs pi,pj, which
is explicitly used in Muñoz-Pérez and Saameño-Rodŕıguez[15]. This diagram contains all
types of order Voronoi diagrams such as standard and farthest-point Voronoi diagrams as
its subsets. Denote by ∂V the collection of the boundaries of Vi1,i2,···,i|I| ’s within Ω.

Using the Voronoi region (2), F (x) in (1) can be rewritten as

F (x) ≡
∑
k∈I

αk∥x − pik∥2, x ∈ Vi1,i2,···,i|I| . (3)

If x is restricted to Vi1,i2,···,i|I| , then this problem becomes a squared Euclidean distance
problem, as examined by Drezner and Wesolowsky[5]. Within Vi1,i2,···,i|I| the indices ik are
independent of x, contrary to (1).

Define A by A ≡
∑

k∈I αk. When A = 0, we may rewrite (3) as

F (x) = 〈 x ; p̂i1,i2,···,i|I| 〉 +
∑
k∈I

αk∥pik∥2, x ∈ Vi1,i2,···,i|I| , (4)

where

p̂i1,i2,···,i|I| ≡ −2
∑
k∈I

αkpik . (5)

Thus, F (x) is piecewise linear, with contours within Vi1,i2,···,i|I| being parallel lines orthogonal
to p̂i1,i2,···,i|I| .
When A ̸= 0 an equivalent formulation of (3) is

F (x) = A∥x − pi1,i2,···,i|I|∥
2 +

∑
k∈I

αk∥pik − pi1,i2,···,i|I|∥
2, x ∈ Vi1,i2,···,i|I| , (6)

where

p̄i1,i2,···,i|I| ≡
1

A

∑
k∈I

αkpik = − 1

2A
p̂i1,i2,···,i|I| . (7)

This calculation can be found in Francis and White[9]. Accordingly, it will be convenient
to consider minimizing (when A > 0) or maximizing (when A < 0) ∥x− pi1,i2,···,i|I|∥

2 rather

than F (x).
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We have three remarks from the objective function (6). First, unless A = 0, the level
sets of F (x) within Voronoi polygon Vi1,i2,···,i|I| are circular arcs concentric with respect to
the center of gravity p̄i1,i2,···,i|I| and with a radius of√√√√F (x) −

∑
k∈I αk

(
∥pik − pi1,i2,···,i|I|∥

)2

|A|
.

Second, mathematically if A > 0, then F (x) is strictly convex within each Voronoi
polygon, and if A < 0, then F (x) is strictly concave within them. Thus, the sign of A plays
an important role in simply and geometrically determining the region-wise functional forms.
In addition, if A > 0 (A < 0), then F (x) rises (falls) with the distance ∥x − pi1,i2,···,i|I|∥.
Therefore, in the context of facility planning, F (x) with A > 0 may be regarded as a pull
objective, and that F (x) with A < 0 may be regarded as a push one. Some of the F (x) with
A = 0, e.g., range and mean difference, can be regarded as an equity criterion, as indicated
in Table 1. The mean difference and the range are examined in Ohsawa et al.[23], Drezner
et al.[4], respectively.

Finally, the function F (x) is in general non-convex. As pictorially pointed out in Ohsawa
et al.[24], partial center and partial anticenter problems can be non-convex. It is readily
verified that the trimmed mean and range problems can be neither convex nor concave.
However, if 0 ≤ α1 ≤ α2 ≤ · · · ≤ α|I|, then F (x) is strictly convex, based on Crouzeix
and Kebbour[2]. Thus, many pull objectives are strictly convex. The objective functions
of mean difference and range are both convex. This is because they can be rewritten as∑

i∈I

∑
j∈I |∥x − pi∥2 − ∥x − pj∥2| and maxi,j∈I |∥x − pi∥2 − ∥x − pj∥2|, respectively, and

|∥x − pi∥2 − ∥x − pj∥2| is convex.
Define P̄ as the set obtained by taking, for each permutation of the index set, the (unique)

point of Vi1,i2,···,i|I|∩Ω closest to p̄i1,i2,···,i|I| , i.e., p̄i1,i2,···,i|I| itself or its nearest projection point
on Vi1,i2,···,i|I| ∩ Ω.

Proposition 1 If A > 0, then the minimum point of F (x), denoted as f∗, is located at P̄ .
Otherwise, f∗ is located at a vertex of ∂V ∪ ∂Ω.

Proof If A > 0, then F (x) is strictly convex on Vi1,i2,···,i|I| , so the constrained minimum

f∗ of F (x) on Vi1,i2,···,i|I| ∩Ω is unique. The solution f∗ is given by an element of the set P̄ . If
A ≤ 0, then F (x) is concave. This means that the optimal value of F (x) on Vi1,i2,···,i|I| will
be reached at some extreme point of (the convex hull of) Vi1,i2,···,i|I| ∩ Ω. Such an extreme
point is always a vertex of ∂V ∪ ∂Ω.

Observe that concave vertices of Ω which are not on ∂V will never be an extreme point of
any Vi1,i2,···,i|I| ∩ Ω, so should not be considered.

This proposition states that the optimal solutions are located at either p̄i1,i2,···,i|I| or
∂V ∪∂Ω. Our result contains the findings for partial center and partial anticenter problems
formulated by Ohsawa et al.[24], and those for minimization problems of the mean-difference
examined by Ohsawa et al.[23] as special cases. Our result is analogous to Theorem 4.5 of
Nickel and Puerto[17] under rectilinear ordered median problems. The result for αi < 0 for
all i ∈ I is consistent with the finding using a simple Euclidean distance by Muñoz-Pérez
and Saameño-Rodŕıguez[15].

2.3. Solution procedure

It follows from Proposition 1 that we may restrict our search to a finite set of candidate
points, leading to the following method to obtain an optimal location:
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Table 1: Quadratic single-objective ordered median problems

criterion problem weights(α1, α2, · · · , α|I|) sign of A convexity
pull Weber (1, 1, · · · , 1, 1) + convex

center* (0, 0, · · · , 0, 1) + convex

k-centrum (0, · · · , 0,

k︷ ︸︸ ︷
1, · · · , 1) + convex

cent-dian (ω, ω, · · · , ω, 1), (0 ≤ ω ≤ 1) + convex

partial center* (0, · · · , 0, 1,

n+︷ ︸︸ ︷
0, · · · , 0) + —

trimmed mean (
m︷ ︸︸ ︷

0, · · · , 0, 1, · · · , 1,

m︷ ︸︸ ︷
0, · · · , 0) + —

push anti-Weber (−1,−1, · · · ,−1,−1) − concave
anticenter* (−1, 0, · · · , 0, 0) − —

anti-k-centrum (
k︷ ︸︸ ︷

−1, · · · ,−1, 0, · · · , 0) − —
anticenter-maxian (−1,−ω, · · · ,−ω,−ω), (0 ≤ ω ≤ 1) − —

partial anticenter* (
n−︷ ︸︸ ︷

0, · · · , 0,−1, 0, · · · , 0) − —

anti-trimmed mean (
m︷ ︸︸ ︷

0, · · · , 0,−1, · · · ,−1,

m︷ ︸︸ ︷
0, · · · , 0) − —

equity mean difference (1 − |I|, 3 − |I|, · · · , |I| − 3, |I| − 1) 0 convex
range (−1, 0, · · · , 0, 1) 0 convex

trimmed range (
m︷ ︸︸ ︷

0, · · · , 0,−1, 0, · · · , 0, 1,

m︷ ︸︸ ︷
0, · · · , 0) 0 —

Algorithm 1

Step 1. Set up the planar graph ∂V ∪ ∂Ω.

Step 2. Find the minimum point of F (x) from P̄ (the nodes of the graph ∂V ∪ ∂Ω) for
A > 0 (A ≤ 0).

Proposition 2 A solution f∗ can be found in O(|I|5 + |I|3|∂Ω|) time.

Proof The graph ∂V ∪ ∂Ω can be defined in O(|I|4 + |I|2|∂Ω|) time, so Step 1 takes
O(|I|4+|I|2|∂Ω|). The graph has O(|I|4+|I|2|∂Ω|) faces, and each center of gravity p̄i1,i2,···,i|I|
can be identified in O(|I|) based on (7). So all the nearest projection points can be identified
in O(|I|5 + |I|3|∂Ω|) time. There are O(|I|4 + |I|2|∂Ω|) candidate points for the optimal
solution. Using (3), each candidate can be evaluated in O(|I|). Therefore, Step 2 can be
done in O(|I|5 + |I|3|∂Ω|), which equals the total time complexity.

Note that if the feasible region Ω is convex, the complexity can be reduced to O(|I|5 +
|I||∂Ω|) time, as shown in by Ohsawa et al.[23].

2.4. Computational experiments

We will illustrate the intuition behind our models by use of a real-world example. Suppose
that Ibaraki Prefecture in Japan would construct one desirable and one undesirable facility
within it to serve its inhabitants. The desirable facility is built based on the following k-
centrum problem, which minimizes the sum of the squared Euclidean distances between the
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facility and the k farthest inhabitants: see Slater[33]. Its formulation is

min
x∈Ω

 max
I⊆I,|I|=k

∑
i∈I

∥x − pi∥2

 .

A generalization of this objective is examined in Ogryczak and Tamir[20], Tamir[34].
The undesirable facility is constructed according to the anti-k-centrum problem, which

is formulated in Muñoz-Pérez and Saameño-Rodŕıguez[15]. This problem is to maximize
the sum of the distances between the facility and the k closest inhabitants as follows:

max
x∈Ω

 min
I⊆I,|I|=k

∑
i∈I

∥x − pi∥2

 .

As indicated in Table 1, both problems belong to the quadratic ordered median problems.
As special cases, if k = |I|, then the former problem reduces the quadratic distance variant
of the well-known Weber problem, and the latter one reduces to the anti-Weber problem.
If k = 1, then the former problem reduces to the center problem, and the latter one reduces
to the anti-center problem. We analyze how changing k affects optimal locations.

The location data of our example is shown in Figure 1. The affected points are eight
municipalities with a population of more than 100,000 people in Ibaraki Prefecture on the
first April, 2006. They are expressed as bullets in Figure 1. The fully ordered Voronoi
diagram is also presented by lines. The optimal solutions f∗k for the k-centrum problem,
denoted as circles, are also given in this figure. The solution f∗1 coincides with the center,
which is the circumcenter of Hitachi, Koga and Toride. The solution f∗8 has to be the center
of gravity of those eight municipalities. We recognize from this figure that all the solutions
are located in the central area of the prefecture, even though an increase in k changes slightly
the solutions. Note that the solutions f∗4 and f∗8 are inner cell-points of V , and the others
are on the boundary ∂V . (f∗1 and f∗2 are on the vertices of the boundary ∂V .)

The solutions g∗
k for the anti-k-centrum problem, denoted as triangles, are also shown

in Figure 1. We see from this figure that the optimal solutions are restricted to only two
places, and that the solution moves suddenly from the southeast corner of the prefecture to
its northeast one as the parameter k is increased.

3. Two-Objective Models

3.1. Problem formulation

In addition to the ordered median problem (1), we consider another ordered median problem
with weights β1, β2, · · · , β|I|:

min
x∈Ω

(
G(x) ≡

∑
i∈I

βi∥x − p(i)∥2

)
. (8)

In analogy to f∗, A, p̂i1,i2,···,i|I| and p̄i1,i2,···,i|I| , we define the notations g∗, B, q̂i1,i2,···,i|I| and
q̄i1,i2,···,i|I| for G(x) similarly.

We consider the following quadratic two-objective ordered median problem, which is ob-
tained by combining two types of ordered median problems (1) with (8):

min
x∈Ω

{F (x), G(x)} . (9)
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The Pareto-optimal locations are simultaneously at least as good for both criteria, and
strictly better for at least one criterion than any other feasible location. We call the set
of all Pareto-optimal locations Pareto set, denoted as E∗. As in much of the multi-criteria
literature, we state the location problem as a problem of deriving the Pareto set. As one
moves along the Pareto set E∗, one can identify the subsequent trade-off curve between the
extremes f∗, g∗ and all intermediate locations. Let (F,G)(S) ≡ {(F (x), G(x))|x ∈ S} for
any set S ⊆ Ω. We call (F,G)(E∗) trade-off curve in the objective space.

As shown in Table 2, some special cases of our formulation (9) have already been in-
vestigated. An interesting special case of this formulation is the cent-dian problem: see
Ohsawa[21]. Other interesting special cases are the partial anti-center and partial center
problems, where both criteria are neither convex nor concave: see Ohsawa et al.[24].

In order to restrict the number of possibilities that need to be considered, some useless
particular cases are eliminated by assuming that the points pi1,i2,···,i|I| are in general position
in the sense that
(a-1) any contour line of F (x) intersects any contour line of G(x) in isolated points only;

(a-2) both F (x) and G(x) have unique minimum solutions.
It follows from the assumption (a-1) that the Pareto set cannot contain two-dimensional
areas. These assumptions are expressed mathematically by that for any i1, i2, · · · , i|I|,
(a-1)’ if AB ̸= 0, then |A − B| + ∥p̄i1,i2,···,i|I| − q̄i1,i2,···,i|I|∥ ≠ 0, and if |A| + |B| = 0, then

cp̂i1,i2,···,i|I| ̸= q̂i1,i2,···,i|I| for any constant c(̸= 0);

(a-2)’ |A| + ∥p̂i1,i2,···,i|I|∥ ̸= 0, and |B| + ∥q̂i1,i2,···,i|I|∥ ̸= 0.
It goes without saying that not all of these assumptions are needed for all results. In real
applications using actual location data, our assumptions will almost always hold. Therefore,
we can make these assumptions without loss of real-world applicability.

3.2. Properties

For each Vi1,i2,···,i|I| , we define the line Li1,i2,···,i|I| as follows:

Li1,i2,···,i|I|

=


the line through p̄i1,i2,···,i|I| and q̄i1,i2,···,i|I| , if AB ̸= 0,
the line through q̄i1,i2,···,i|I| in the direction p̂i1,i2,···,i|I| , if A = 0 and B ̸= 0,
the line through p̄i1,i2,···,i|I| in the direction q̂i1,i2,···,i|I| , if A ̸= 0 and B = 0.

Define the line set L as the collection of Li1,i2,···,i|I| within Vi1,i2,···,i|I| ∩Ω for all permutations
of the index sets with Vi1,i2,···,i|I| ̸= φ.

Proposition 3 The Pareto set E∗ is given by a subset of ∂V ∪ L ∪ ∂Ω.

Proof Unless a Pareto-optimal location is situated at the boundary of the Voronoi region
∂V ∪ ∂Ω, it must be a position where the contour of F (x) and that of G(x) are tangent.
The former contour is either part of the circle with center at p̄i1,i2,···,i|I| or a linesegment
orthogonal to p̂i1,i2,···,i|I| . The latter is either a circular arc with center at q̄i1,i2,···,i|I| or
a linesegment orthogonal to q̂i1,i2,···,i|I| . Accordingly and because assumption (a-1), such
a tangent position, i.e., the touching point of two contours, has to lie on a line segment
Li1,i2,···,i|I| .

One may also observe more precisely that in case AB > 0, the candidates can be limited
to the line segments connecting p̄i1,i2,···,i|I| and q̄i1,i2,···,i|I| . When AB < 0 one may restrict
search to the parts of the connecting lines outside these line segments. However, this detailed
information does seem to be useful to reduce computational complexity. Proposition 3 states
that we may restrict our search to the edges of the planar graph ∂V ∪ L ∪ ∂Ω, indicating
the noteworthy property that the Pareto set E∗ has to be polygonal path.
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Table 2: Quadratic two-objective ordered median problems

criteria single-objective problems convexity reference
pull vs. pull Weber vs. center convex [21]
pull vs. push center vs. anti-center [22]

partial anti-center vs. partial center [24]
pull vs. equity Weber vs. mean difference convex [23]
push vs. equity anti-Weber vs. mean difference concave [23]

3.3. Solution procedure

Clearly, ∂V ∪∂Ω∪L may contain locations that cannot be Pareto-optimal. Accordingly, the
Pareto set has still to be constructed within ∂V ∪∂Ω∪L. The trade-off curve is given by the
lower-left envelope of (F,G)(∂V ∪ ∂Ω∪L). Hence, the Pareto set E∗ and its corresponding
trade-off curve can be specified by the following algorithm, which generalizes and unifies the
methods by Ohsawa[21][22], Ohsawa et al.[23], Ohsawa et al.[24].

Algorithm 2

Step 1. Construct the planar graph ∂V ∪ L ∪ ∂Ω.

Step 2. Delineate the loci of (F,G)(∂V ∪ L ∪ ∂Ω) for the graph in objective space.

Step 3. Detect the lower-left envelope of the loci.

Step 4. Specify the parts which lie in the envelope in the geographical space.

Proposition 4 The Pareto set E∗ and the trade-off curve (F,G)(E∗) can be found in
O((|I|4 + |I|2|∂Ω|)(|I| + log |∂Ω|) time.

Proof We can find the convex hull of Ω, denoted by CH(Ω) in O(|∂Ω| log |∂Ω|) time.
By applying Step 1 of Algorithm 2 in Ohsawa et al.[23] for the convex hull CH(Ω), the
graph ∂V ∪ L ∪ ∂CH(Ω) can be defined in O(|I|5 + |I||∂Ω|). We can cut off ∂V ∪ L ∪ Ω
from ∂V ∪L∪∂CH(Ω), by traversing along ∂Ω in O(|I|2|∂Ω|). Thus, Step 1 has complexity
O((|I|5 + |I|2|∂Ω|+ |∂Ω| log |∂Ω|). Since the graph ∂V ∪L∪∂Ω has O(|I|4 + |I|2|∂Ω|) edges,
while using (3), Step 2 can be accomplished in O(|I|5 + |I|3|∂Ω| + |∂Ω| log |∂Ω|) time.

To define the envelope of the loci (F,G)(∂V ∪ L ∪ ∂Ω), it is necessary to repeatedly
identify where a pair of loci intersect. We consider the case of AB ̸= 0. Let p′ and q′ be
the projections of p̄i1,i2,···,i|I| and q̄i1,i2,···,i|I| onto a line l on Vi1,i2,···,i|I| , respectively. It follows
from these definitions and equation (6) that for any location x on l ∩ Vi1,i2,···,i|I|

F (x) = A∥x − p′∥2 + C1, (10)

G(x) = B∥x − q′∥2 + C2, (11)

where

C1 ≡ A∥p′ − p̄i1,i2,···,i|I|∥
2 +

∑
k∈I

αk∥pik − pi1,i2,···,i|I|∥
2,

C2 ≡ B∥q′ − q̄i1,i2,···,i|I|∥
2 +

∑
k∈I

βk∥pik − qi1,i2,···,i|I|∥
2.

Parametrising the line l by x = (1 − t)p′ + tq′, and eliminating t from the two equations
(10) and (11), G(x) can be exprssed as a quadratic function with respect to F (x). This
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shows that two loci of the link within (F,G)(∂V ∪ L ∪ ∂Ω) intersect each other at most
twice. Thus, Step 3 requires O((|I|4 + |I|2|∂Ω|) log(|I|4 + |I|2|∂Ω|)) time.

Since the graph ∂V ∪ L ∪ ∂Ω has O(|I|4 + |I|2|∂Ω|) edges, the complexity of Step 4 is
O(|I|4+|I|2|∂Ω|). Noting that O(|I|5+|I|3|∂Ω|+|∂Ω| log |∂Ω|)+O((|I|4+|I|2|∂Ω|) log(|I|4+
|I|2|∂Ω|)) = O((|I|4 + |I|2|∂Ω|)(|I| + log |∂Ω|)), the proof is complete.

Three notes are in order. First, if Ω is a convex region, the complexity can be reduced to
O((|I|4 + |∂Ω|)(|I|+log |∂Ω|) time. Second, if F (x) and G(x) are both convex, an algorithm
with lower computational complexity than Algorithm 2 may be established along the lines
described in Ohsawa et al.[23]. This variant will also shortly be described in Section 4.
Finally, Algorithm 2 runs, irrespective of convexity of two objective functions. Accordingly,
the algorithm is applicable even to semi-obnoxious facility location, as examined by, for
example, Carrizosa and Plastria[1].

3.4. Computational experiments

We consider two types of semi-obnoxious facility location which both focus on the trade-off
between undesirable and desirable effects. For the sake of convenience, we use the location
data with Ohsawa et al.[24], where there are only five affected points. The first is given as
follows:

min
x∈Ω

{F 1(x), G1(x)}, (12)

where,

F 1(x) ≡ − max
Ī⊆I,|Ī|=|I|−2

(
min
i∈Ī

∥x − pi∥2

)
, (13)

G1(x) ≡
∑
i∈I

∥x − pi∥2 + max
i∈I

∥x − pi∥2. (14)

The former criterion (13) is a partial anti-center problem, in which two inhabitants are
neglected when determining facility location. Thus, the criterion seeks to maximize the
nearest distance from the facility to |I| − 2 inhabitants from an undesirable point of view.
On the other hand, the latter criterion (14) is the cent-dian problem with the parameter
ω = 0.5 in Table 1. This is a classical two-objective problem for locating a desirable facility,
whose idea is proposed by Halpern[10].

Next, we take up the following problem:

min
x∈Ω

{F 2(x), G2(x)}, (15)

where,

F 2(x) ≡ −

(∑
i∈I

∥x − pi∥2 + min
i∈I

∥x − pi∥2

)
, (16)

G2(x) ≡ min
Ī⊆I,|Ī|=|I|−2

(
max
i∈Ī

∥x − pi∥2

)
. (17)

The former criterion (16) is an anti-center-maxion problem with the parameter ω = 0.5 in
Table 1, which is proposed in Eiselt and Laporte[7]. This is applicable for the determination
of the location of an undesirable facility. On the other hand, the latter criterion (17) is the
partial center problem, where two inhabitants are set aside for decision making. Thus, the
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criterion seeks to minimize the farthest distance from the facility to |I|−2 inhabitants from
a desirable point of view.

Thus, in both problems (12) and (15), the facility location is determined based on the
trade-off between desirable and undesirable powers. There are several notes. First, F 1(x)
and G2(x) are both non-concave and non-convex, although G1(x) is convex and F 2(x) is
concave. Second, the Pareto set associated with F 1(x) and G2(x) is examined in Ohsawa et
al.[24], where only two types of Voronoi diagrams are used, but here the line tessellation is
necessary to solve the problem in order to use our solution method. This is because Weber
and anti-Weber criteria are calculated on all the inhabitant location data.

Five affected points are indicated by pi’s. The graph ∂V ∪ L ∪ ∂Ω for the first two-
objective problem (12) is delineated in Figure 2, where ∂V , L and ∂Ω are indicated by
thin, broken and chain lines, respectively. The loci of (F,G)(∂V ∪ L ∪ ∂Ω) are plotted in
Figure 3 with the horizontal and vertical axes measuring values of F and G, respectively.
As in Figure 2, the loci (F,G)(∂V ), (F,G)(L) and (F,G)(∂Ω) are shown by thin, broken
and chain lines, respectively. The lower envelope of the loci is indicated as solid curves.
The corresponding Pareto set E∗ is described by the solid locus in Figure 2. The set E∗

consists of one isolated point, which is the minimizer of G1(x), i.e., g∗
1, and two disconnected

curve-segments. The optimal solution of F 1(x), i.e., f∗1 is located at the endpoint of the
bent segment. As is evident on referring to Figure 3, the trade-off curve (F,G)(E∗), that is,
the conflicts between the criteria F and G, is discontinuous. One part contains (F,G)(f∗1 ),
and another contains (F,G)(g∗

1).
Similarly, the graph ∂V ∪ L ∪ ∂Ω and the Pareto set E∗ for the second two-objective

problem (15) are delineated in Figure 4. The loci of (F,G)(∂V ∪ L ∪ ∂Ω) and the trade-off
curves (F,G)(E∗) are depicted in Figure 5. The Pareto set comprises three polygonal paths.
The optimal solutions of F 2(x) and G2(x), denoted as f∗2 and g∗

2, are located at one extreme
of those paths. Contrary to Figure 3, the trade-off curve in Figure 5 is continuous between
(F,G)(f∗2 ) and (F,G)(g∗

2). A comparison of Figures 2 and 4 shows that the two Pareto sets
are rather different, though the corresponding two two-objective problems are applicable to
semi-obnoxious facility locations.

4. Convex Multicriteria Models

4.1. Problem formulation

In this section we consider that there are more than two convex quadratic ordered median
criteria to be evaluated to determine the location of a facility on the feasible convex region
Ω. Let Q be the index set of the quadratic ordered median criteria. So, |Q| is the number
of objectives. We will use superscript q to denote the q-th criteria for q ∈ Q. Here the
following different quadratic convex ordered median problems are given:

min
x∈Ω

F q(x) ≡
∑
i∈I

αq
i∥x − p(i)∥2, q ∈ Q, (18)

where αq
1, α

q
2, · · · , α

q
|I| are the weights for the q-th criterion. We define Aq ≡

∑
i∈I αq

i . The
convexity assumption then means that Aq ≥ 0 for any q ∈ Q.

By combining these |Q| single-objective problems in (18), we have the following quadratic
distance convex multi-criteria ordered median problem:

min
x∈Ω

{
F 1(x), F 2(x), · · · , F |Q|(x)

}
. (19)
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As before, we would like to construct the set of Pareto solutions E∗ for (19), but this
goal does not seem to be easily reachable directly in general. Instead, we will rather show
how to construct the set of weak-Pareto solutions, i.e. the set of points x ∈ Ω such that
for any y ∈ Ω we have F q(y) ≥ F q(x) for some q ∈ Q. Under the mild condition that
there cannot be equivalent solutions (i.e. when F q(y) = F q(x) for all q ∈ Q implies x = y)
these two sets coincide. In what follows we will assume that this holds. It is easy to see
that this will be the case in particular when all the objectives F q(x) are strictly convex (i.e.
Aq > 0), or when the points pi’s are in general position, in the following sense (extending
the assumptions of previous section):
(b-1) contour lines of any two objectives intersect in isolated points only;

(b-2) all F q have unique minimum solutions in Ω, denoted by f∗q .
Therefore the (weak) Pareto set for the problem (19) is still denoted as E∗. The Pareto

set for the two-objective problem associated with F q(x) and F r(x) is likewise denoted as
E∗

qr, while for the three-objective problem associated with F q(x), F r(x) and F s(x) it is
denoted as E∗

qrs.

4.2. Properties

Consider the following unconstrained convex vector minimization problem:

min
x∈R2

{
F 1(x), F 2(x), · · · , F |Q|(x)

}
. (20)

The following facts about the set of weak-Pareto solutions WE(F 1, F 2, · · · , F |Q|) for this
unconstrained problem with inf-compact objectives (i.e. having compact lower level sets)
defined on the plane R2 are known from literature:

(r-1) for two objectives: WE(F q, F r) is a connected set connecting the minimal solutions f∗q
and f∗r of each single objective problem. Under the assumptions made above it will be
more precisely a continuous curve connecting these two points (see Hansen et al.[12]).

(r-2) for three objectives: WE(F q, F r, F s) is the part of the plane enclosed by the weak-
Pareto sets of each two-objective sub-problem, WE(F q, F r), WE(F r, F s) and WE(F s, F q),
see Rodŕıguez-Ch́ıa and Puerto[32].

(r-3) for more than three objectives: we have (see Plastria and Carrizosa[27], Rodŕıguez-
Ch́ıa and Puerto[32])

WE(F 1, F 2, · · · , F |Q|) =
⋃

Q′⊂Q,|Q′|=3

WE(F q, q ∈ Q′).

However, the same results hold also for such multiple objective problems constrained to
some convex compact subset S ⊂ R2, as readily follows from the following technical lemma.
The proof makes use of several notions and results of convex analysis, for which we refer in
general to the book of Hiriart-Urruty and Lemaréchal [13]

Lemma 4.1 Let S be a compact and convex subset of Rd. Consider the constrained multi-
objective problem (P):

min{F 1, F 2, · · · , F |Q||x ∈ S}
where all F q(x) are convex inf-compact functions defined on Rd. Then one can find convex
inf-compact functions Gq(x) on Rd, such that the (weak-)Pareto set for the unconstrained
multi-objective problem (P’):

min{G1, G2, · · · , G|Q||x ∈ Rd}

equals the (weak-)Pareto set of (P).

12



Proof For every q ∈ Q we will construct a convex inf-compact function Gq(x) defined
on Rd, such that Gq(s) = F q(s) for all s ∈ S, and any point x /∈ S is strictly dominated by
some point x′ ∈ S, i.e. Gq(x) > Gq(x′) = F q(x′). This will clearly prove the claimed result.

We may choose a compact C ⊂ Rd containing S in its interior. Since C is compact, each
F q(x) is Lipschitz on C; call L > 0 a common strict Lipschitz constant for all F q(x) on C,
i.e. for all x ̸= y ∈ C we have F q(x) − F q(y) < L∥x − y∥.

For every F q(x), each a ∈ S and each subgradient p ∈ ∂F q(a), we may now consider
the following function:

fa,p
q (x) ≡ 〈 x − a ; p 〉 + F q(a).

By definition of subgradients we know that fa,p
q (x) ≤ F q(x) for all x ∈ Rd. If we choose

in particular x = a + ϵp for some ϵ > 0 sufficiently small to have x ∈ C, we obtain
ϵ∥p∥2 = 〈 x − a ; p 〉 ≤ F q(x) − F q(a) < L∥x − a∥ = Lϵ∥p∥ from which we immediately
obtain ∥p∥ < L. Let us then define

Hq(x) ≡ sup
a∈S;p∈∂F q(a)

fa,p
q (x)

which is well defined at all x ∈ Rd because it is bounded above by F q(x). Note that we also
have Hq(s) = F q(s) for any s ∈ S.

On the other hand we may define the function

J(x) ≡ sup
b∈bd S;q∈NS(b):∥q∥=L

〈 x − b ; q 〉

which considers every boundary point b ∈ bd S combined with every vector q in the normal
cone NS(b) of the convex set S at b with ∥q∥ = L (note that such q always exist). This
supremum exists for any fixed x ∈ Rd since it may be bounded above as follows: choose any
fixed s ∈ S and let R = maxb∈bd S ∥s − b∥ (which exists by compactness of bd S), then we
have 〈 x− b ; q 〉 ≤ ∥x− b∥∥q∥ ≤ L(∥x− s∥+ ∥s− b∥) ≤ L∥x− s∥+ LR. Note also that
by definition of normal cone, for any b ∈ bd S and q ∈ NS(b) we have that 〈 s−b ; q 〉 ≤ 0
for all s ∈ S, and therefore J(s) ≤ 0 for all s ∈ S.

We now finally define for every q ∈ Q and x ∈ Rd

Gq(x) = Hq(x) + max(0, J(x))

and proceed by proving all the claimed properties of these functions.
First, as a pointwise supremum of affine functions, each Hq(x) is convex on Rd. For the

same reason J(x) is convex on Rd, and therefore also max(0, J(x)). So Gq(x) is a sum of
convex functions, and therefore convex.

Second, let us show that Gq(x) is inf-compact, for which it will be sufficient to prove that
any lower level set {x ∈ Rd | Gq(x) ≤ K} is bounded. To this end choose any fixed a ∈ S.
On the one hand, choosing any subgradient p ∈ ∂F q(a), for which it was noted before that
∥p∥ < L, we have H(x) ≥ fa,p

q (x) = 〈 x − a ; p 〉 + F q(a) ≥ F q(a) − ∥p∥∥x − a∥. On
the other hand it is well-known that any x /∈ S has a (unique) projection point x′ ∈ S, i.e.
such that ∥x′ − x∥ ≤ ∥s − x∥ for all s ∈ S, and moreover x′ ∈ bd S and x′ − x ∈ NS(x′).
Choosing b = x′ and q = L x′−x

∥x′−x∥ we obtain 〈 x − b ; q 〉 = L∥x′ − x∥, which proves that

J(x) ≥ L∥x′ − x∥ ≥ L(∥x − a∥ − ∥x′ − a∥). Summing we obtain Gq(x) ≥ F q(a) − L∥x′ −
a∥ + (L − ∥p∥)∥x − a∥. Therefore, as soon as Gq(x) ≤ K we have ∥x − a∥ ≤ K+LR−F q(a)

L−∥p∥ ,
which proves inf-compactness.
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Third, for any s ∈ S we have already noted that Hq(s) = F q(s) and J(s) ≤ 0, from
which one immediately obtains Gq(s) = F q(s).

Finally, let us show that any x /∈ S is strictly dominated by its projection x′ on S.
Choosing p ∈ ∂F q(x′), we have for every q ∈ Q, by definition of Hq(x), that Hq(x) ≥
fx′,p

q (x) = 〈 x−x′ ; p 〉+F q(x′) ≥ F q(x′)−∥p∥∥x′−x∥. We saw above that J(x) ≥ L∥x′−x∥
and that ∥p∥ < L, so we have

Gq(x) ≥ Hq(x) + J(x) ≥ F q(x′) + (L − ∥p∥)∥x′ − x∥ > F q(x′) = Gq(x′)

which terminates the proof.

For convex two-objective problems defined by q, r ∈ Q, the results of Section 3, writing
now Lqr for the line set L defined there, show that the (weak) Pareto set E∗

qr consists of edges
of the graph ∂V ∪ Lqr ∪ ∂Ω. The additional information in the result (r-1), that for convex
objectives E∗

qr forms a continuous curve joining f∗q with f∗r , allows for the following direct
determination of the line segments forming this curve, by generalization of the ‘steepest
descent path’ idea pointed out in Ohsawa et al.[23].

Starting from f∗q , and later on more generally from some reached vertex a of the graph
∂V ∪Lqr∪∂Ω, we have to choose which edge to follow in order to finally reach f∗r , and in this
process the value of F r(x) must steadily decrease, while that of F q(x) must increase. Each
edge incident with the vertex a will correspond to some curve in the (F q(x), F r(x))-diagram
starting from (F q(a), F r(a)) and it is the non-dominated one we have to choose. Comparing
with Figures 3 and 5 (where we measure F q(x) on the horizontal axis, and F r(x) on the
vertical one) we see that this latter is the edge yielding the steepest downward slope in the
(F q(x), F r(x))-diagram. Every edge incident with the vertex a is a line segment parallel
to some direction e ̸= 0, and the slope of its (F q, F r)-image at (F q(a), F r(a)) equals the
change of F r(x) relative to that of F q(x) when moving from a in the direction e, which is
given by the expression

DF r(a)(e)

DF q(a)(e)
(21)

where DF q(a)(e) denotes the directional derivative of F q(x) at the point a in the direction
e. Therefore at the vertex a we must always choose the edge of direction e that minimizes
(21) among the e satisfying DF r(a)(e) < 0 and DF q(a)(e) > 0. In the exceptional case
where the minimum is reached by several edges at a, one can find the steepest direction by
using the directional derivative of F q(x) of the second order at the point a because of F q(x)
is quadratic. In what follows we will call the so constructed path the steepest descent path
from f∗q to f∗r .

Note finally that the directional derivatives are easy to calculate: each point a and edge,
given by direction e, to consider lies in (or on the boundary of) some region Vi1,i2,···,i|I| in
which the expressions (4) for Aq = 0 and (6) for Aq > 0 are valid, yielding

DF q(a)(e) =

{
〈 e ; p̂q

i1,i2,···,i|I| 〉, if Aq = 0,

2Aq〈 e ; pq
i1,i2,···,i|I| − a 〉, if Aq > 0,

where the definitions (5) and (7) are adapted to F q(x) by using the αq
k’s.

Proposition 5 The Pareto set E∗ consists of some connected faces of the planar graph

∂V ∪
(⋃

q∈Q

⋃
r∈Q,q>r Lqr

)
∪ ∂Ω.
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Proof Combining the results (r-2) and (r-3) implies that the Pareto set E∗ has to be
enclosed by Pareto sets of type E∗

qr. This together with Proposition 3 means that E∗ has

to consist of connected faces of the planar graph ∂V ∪
(⋃

q∈Q

⋃
r∈Q,q>r Lqr

)
∪ ∂Ω.

Proposition 5 indicates that the Pareto set E∗ has to be a polygonal region, whose
boundary is given by edges of the fully ordered Voronoi diagram.

4.3. Solution procedure

Proposition 3 together with the proof of Proposition 5 yields the following algorithm to
construct the geometrical description of the Pareto set E∗ for the convex multi-criteria
ordered median problem (19):

Algorithm 3

Step 1. Construct the planar graph ∂V ∪ ∂Ω, and identify the solutions f∗q ’s for all q ∈ Q .

Step 2. For each q and r( ̸= q), define the planar graph ∂V ∪ Lqr ∪ ∂Ω, and then find E∗
qr,

i.e., the steepest descent path from f∗q to f∗r on ∂V ∪ Lqr ∪ ∂Ω.

Step 3. For each q, r and s, find E∗
qrs, i.e., the area enclosed by E∗

qr, E∗
rs and E∗

sq.

Proposition 6 Under the assumption of strict convexity or general position, the Pareto set
E∗ can be found in O(|I|5 + |I||∂Ω|) time.

Proof Step 1 can be done in O(|I|5 + |I||∂Ω|) by applying Algorithm 1 for the convex
region Ω, as noted in Section 2. For each pair of q and r, the graph ∂V ∪ Lqr ∪ ∂Ω can
be established in O(|I|5 + |I||∂Ω|) time because Ω is convex, as implicitly noted in Section
3. Since there are O(|I|4 + |∂Ω|) edges in the graph, the steepest descent path can be
found in O(|I|4 + |∂Ω|). Thus, Step 2 can be done in O(|I|5 + |I||∂Ω|). Since each steepest
descent path has O(|I|4 + |∂Ω|) edges, the area enclosed by three paths can be determined
in O(|I|4 + |∂Ω|). In conclusion, Algorithm 3 requires O(|I|5 + |I||∂Ω|).

4.4. Computational experiments

For the sake of convenience, we use almost the same location data as Ohsawa et al.[23],
shown in Figure 6, where five affected points are indicated as pi’s. The boundaries ∂V
and ∂Ω are indicated by thin and chain lines, respectively. Here we examine the following
four-objective problem

min
x∈Ω

{F 1(x), F 2(x), F 3(x), F 4(x)}, (22)

where

F 1(x) ≡
∑
i∈I

∥x − pi∥2,

F 2(x) ≡
∑
i∈I

∑
j∈I

∣∣∥x − pi∥2 − ∥x − pj∥2
∣∣ ,

F 3(x) ≡ max
i∈I

∥x − pi∥2,

F 4(x) ≡ max
Ī⊆I,|Ī|=3

(∑
i∈Ī

∥x − pi∥2

)
.

The first and second criteria correspond respectively to Weber and minimization of mean
difference problems. Hence they can be regarded as efficiency and equity criteria, respec-
tively. The third is a simple center criterion, so it can be considered either as an efficiency
or an equity criterion. As a fourth criterion, we consider the k-centrum problem with k = 3.
As indicated in Table 1, these four criteria are all convex.
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In order to solve the four-objective problem (22) according to Algorithm 3, first, following
six two-objective sub-problems have to be separately solved:

min
x∈Ω

{F 1(x), F 2(x)}, min
x∈Ω

{F 1(x), F 3(x)},
min
x∈Ω

{F 1(x), F 4(x)}, min
x∈Ω

{F 2(x), F 3(x)},
min
x∈Ω

{F 2(x), F 4(x)}, min
x∈Ω

{F 3(x), F 4(x)}.

It should be noted that the first two problems are formulated in Ohsawa et al.[23] and in
Ohsawa[21], respectively.

As shown in Figure 6, the optimal solutions f∗1 , f∗2 , f∗3 and f∗4 are located within the
Voronoi polygon V5,1,2,3,4.

Figures 7, 8, 9 and 10 give different increased views of Figure 6. Here the thick lines
indicate the two-objective Pareto sets connecting the corresponding one-objective optimal
points.

The Pareto set E∗
12 (E∗

13 and E∗
23) is given by the polygonal path from f∗1 to f∗2 through

the point v (the polygonal path from f∗1 to f∗3 through the point w, and the line between
f∗2 and f∗3 ). The Pareto set E∗

14 (E∗
24 and E∗

34) is given by the edge between f∗1 and f∗4 (the
polygonal path from f∗2 to f∗4 through the points t and r, the polygonal path from f∗3 to f∗4
through the points u and s). Note that the segment f∗1v (f∗1w, rt, st) is a subset of L12(L13,
L24, L34), and the segments f∗1v and rt are parallel to each other.

Second, based on the two-objective Pareto sets E∗
12, E∗

13, E∗
14, E∗

23, E∗
24 and E∗

33, we can
find the Pareto sets associated with each of the following four sub-problems:

min
x∈Ω

{F 1(x), F 2(x), F 3(x)}, min
x∈Ω

{F 1(x), F 2(x), F 4(x)},
min
x∈Ω

{F 1(x), F 3(x), F 4(x)}. min
x∈Ω

{F 2(x), F 3(x), F 4(x)}.

The Pareto set associated with minx∈Ω{F 1(x), F 2(x), F 3(x)}, which is enclosed by E∗
12, E∗

13

and E∗
23, is given by the segment f∗2 t, the segment f∗3w

∗, and the triangle with vertices f∗1 ,
v, w, as shown in Figure 7. As exhibited in Figure 8, the Pareto set E∗

124 consists of the
pentagon with vertices f∗1 , f∗4 , r, t, v, and the segment f∗2 t. Figure 9 shows that the set E∗

134

is given by the pentagon with vertices f∗1 , f∗4 , s, u, w, and the segment f∗3w. The Pareto set
E∗

234 is given by the quadrilateral with vertices s, r, t, u and the three segments f∗2 t, f∗3u
and f∗4 s, as shown in Figure 10.

The shaded area displayed in Figure 6 is the union of E∗
123, E∗

124, E∗
134 and E∗

234 and gives
the Pareto set E∗.

That is, the four-objective Pareto set is given by two segments f∗2 t, f
∗
3w, and the pentagon

with vertices f∗1 , f∗4 , r, t, w.
Figure 6 clearly illustrates the well-known fact that the Pareto set expands as more

criteria are used. For example, the optimal solution f∗1 is an element of the polygonal path
E∗

12. This path is located within the Pareto area associated with E∗
123. This three-objective

Pareto area is a subset of the four-objective Pareto area E∗.

5. Conclusions

Much attention has been given to ordered median location models, but relatively little to
multi-objective formulations, in particular, non-convex cases. We present a polynomial-time
algorithm to produce the Pareto-optimal solutions associated with many ordered median
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problems with the help of computational geometry such as Voronoi diagrams and arrange-
ments of curves and lines. We devoted our discussion of ordered median problems to the
squared Euclidean distances, but we expect that our results may quite easily be extended
to other distances such as rectilinear distances, although more care will be needed in order
to handle the difference between weak-Pareto and Pareto solutions.
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