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GAMES WITH LIMITED COMMUNICATION STRUCTURE

DOLF TALMAN AND YOSHITSUGU YAMAMOTO

ABSTRACT. In this paper we consider cooperative transferable utility games with limited
communication structure, called graph games. Agents are able to cooperate with each
other only if they can communicate directly or indirectly with each other. For the
class of acyclic graph games recently the average tree solution has been proposed. It
was proven that the average tree solution is a core element if the game exhibits super-
additivity. It will be shown that the condition of super-additivity can be relaxed to a
weaker condition, which admits for a natural interpretation. Moreover, the concept of
subcore is introduced. Under the same condition it is proven that the subcore is a subset
of the core and always contains the average tree solution and therefore is a non-empty
refinement of the core.

JEL code: CT71.

1. INTRODUCTION

In many economic situations agents are able to obtain more profits or save costs by
cooperation. For example, by sharing certain facilities (catering, security, communication
systems, transportation) firms may obtain higher total payoffs. The total maximum addi-
tional payoff a subgroup of agents, also called a coalition, can obtain from cooperation is
called its worth. If the worth of a coalition can be freely distributed amongst its members
(transferable utility), the problem becomes how much payoff every agent (player) should
get. A classical set-valued solution is the core, see Gillies [6], being the set of payoff distri-
butions (payoff vectors) at which the worth of the whole set of players (the grand coalition)
is distributed amongst the players (efficiency) and no coalition receives less than its worth
(non-domination). If a payoff vector is not an element of the core, some coalitions can
do better by their own. The most well-known single-valued solution is the Shapley value,
see Shapley [16]. At the Shapley value every agent receives the (weighted) average of all
his marginal contributions to any coalition that he is a member of. The Shapley value,
however, may not be an element of the core.

In this research we study cooperative games with limited communication structure
represented by undirected graph. These so-called graph games were introduced by Myerson
[13]. A group of players is only able to cooperate if they can communicate directly or
indirectly with each other. The best-known single-valued solution for such games is the
Myerson value, being characterized by efficiency and fairness. In Borm et al. [2] the so-
called positional value is proposed. This value is characterized by efficiency and balanced
total threats, see Slikker [17]. In Herings et al. [9] the average tree solution is introduced for
the class of acyclic graph games. The average tree solution is characterized by efficiency
and component fairness. Component fairness means that deleting a link between two
players yields for both resulting components the same average loss in payoff, whereas
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fairness says that deleting a link gives the same loss in payoff for both end points of
the link. The average tree solution is the average of some specific marginal contribution
vectors. For super-additive acyclic graph games all these vectors lie in the core and
therefore also the average tree solution is an element of the core. For this class of games
the Myerson value and the position value may not be elements of the core.

In this paper we give a weaker condition for the characteristic function than super-
additivity to guarantee that the average tree solution is an element of the core. Moreover,
we refine the core to a smaller subset, called the subcore, and show that for the class of
acyclic graph games satisfying this weaker condition for the characteristic function the
average tree solution is always an element of the subcore and therefore that the subcore is
a non-empty refinement of the core. Section 2 introduces the class of graph games. Section
3 relates the average tree solution to the core and Section 4 introduces the subcore.

2. PRELIMINARIES

We consider cooperative games with limited communication structure, called graph
games, as has been introduced by Myerson [13]. A graph game is represented by a triple
(N,v, E), where N is a finite set of n players, v is a characteristic function that assigns
the worth to coalitions, and E C {{i,j} | ¢,7 € N, i # j} is a collection of binary
communication links between players.

The pair (N, E) is called an (undirected) graph with N the set of nodes, being the
players of the game, and with E the collection of edges (links) between the nodes. In
case E = {{i,j} |i,j € N, i # j} the game (N, v, E) is said to have full communication
structure and is simply denoted by (N, v).

A sequence of nodes (i1, ...,ix4+1) is called a cycle in a graph (N, E) if (i) £ > 2, (ii)
all nodes i1, ...,1; are different elements of N, (iii) ix11 = i1, and (iv) {ip,ip41} € E for
h=1,...,k. A graph is said to be acyclic when it does not contain any cycle. A set of
nodes K C N is said to be connected in the graph (N, E), if for any two distinct nodes
i,7 € K there exists a sequence (i1, ...,i;) of nodes in K satisfying i1 = 4, i = j and
{in,iny1} € Efor all h = 1,...,k — 1. A subset K of N is called a component of the
graph (N, E) if K is connected in (N, E) and for any j € N \ K the set K U {j} is not
connected in (N, E). For the graph (N, E) and a subset H C N, the set E(H) is given
by E(H) ={e€ E | e C H}. The collection of connected subsets of K in the subgraph
(K,E(K)) of a graph (N, E) is denoted by C*(K) and the collection of components of
(K, E(K)) is denoted by C¥(K).

In this paper it is assumed without loss of generality that in a graph game (N, v, E)
the set N is always connected in the graph (N, E), i.e., N € C¥(N). Due to the limited
communication, members of a coalition S € 2V are able to cooperate only if all members
of S can communicate directly or indirectly with each other, i.e., S € C¥(N). For S €
C¥(N), the worth v(S) is the maximum amount of payoff a coalition S can obtain for
its members. Concerning the characteristic function v, the graph game is said to exhibit
super-additivity if

v(SUT) >v(S)+v(T)

for all S,T € CP(N) satisfying SNT = () and SUT € CF(N).

A payoff vector x is an n-dimensional vector giving payoff z; to player ¢ € N. For
simplicity we denote x(S) = >, gz for S € 2N, For a graph game (N, v, E) a payoff
vector x is said to be efficient if ©(N) = v(N). The core, denoted by C(N,v, E), of a
graph game (NV,v, E) is the set of efficient payoff vectors that are not dominated by any



connected coalition,
C(N,v,E)={z € R"| z(N)=v(N) and x(S) > v(S) for all S € CF(N)}.
The core of a game (N, v) with full communication is denoted by C(N,v), i.e.,
C(N,v)={z e R"| z(N)=v(N) and z(S) > v(S) for all S € 2V},

Notice that the core C(N,v, E) of a graph game (N, v, E) equals the core C(N,v") of the
so-called restricted game (N, v¥) with full communication, defined by Myerson [13] as

vF(S)= ) w(@) for Se2M.
TeCE(S)

For a permutation 7 = (7(1),...,m(n)) on N, the marginal contribution vector m”™(v) €
R™ assigns to every player i payoff mT(v) = v(r* U {i}) — v(n?), where 7' = {j € N |
7(7) < m(i) } is the set of players preceding 7 in the permutation 7. The most well-known
single-valued solution for the class of cooperative games with full communication is the
Shapley value, which assigns to game (N, v) the average (N, v) of all its marginal vectors.
Although the Shapley value is an efficient solution, it may, however, not be an element of
the core, even if the core is non-empty.

The most well-known single valued solution for the class of graph games is the Myerson
value p(N, v, E), due to Myerson [13]. The Myerson value assigns to a graph game (N, v, E)
the Shapley value of the corresponding restricted game, i.e., u(N,v, E) = (N, v"). The
Myerson value of a graph game (N, v, F) is not always an element of the core, even not
if the graph (N, E) is acyclic and the game itself is super-additive. From Demange [5]
it is known that the core of a super-additive acyclic graph game is non-empty because it
contains several specific marginal contribution vectors, but not always all.

3. THE AVERAGE TREE SOLUTION AND THE CORE

For the class of acyclic graph games the average tree solution was introduced by Herings
et al.[9]. To describe the average tree solution we first give some definitions concerning
directed graphs. A graph (N, D) is directed if D C N x N, i.e., D is a set of ordered pairs
of nodes. An ordered pair of nodes is called an arc. For D C N x N let D = {{i,j} |
(i,7) € D}. A directed graph (N, D) is said to be acyclic' if the undirected graph (N, D)
induced by D is acyclic and (N, D) is said to be connected if (N, D) is connected.

Definition 3.1. An acyclic connected directed graph (N, D) is an arborescence if each
node has at most one arc entering the node.

Clearly, an arborescence has exactly one node that no arc enters, which is called the root,
and there is a unique directed path from the root to each node. For a given arborescence
(N, D), for each node i € N we define its sets of successors and descendants as

(3.1) suc(i) = {j € N[ (i,j) € D},
and
(3.2) des(i) = {j € N | j =i or there is a directed path from i to j },

IThis usage of acyclic is not common.



respectively. We also define inductively the height 7(i) of node ¢ € N as follows:

(3.3) (i) = {0 if suc(i) = 0,

1 + max;jeguc() 7(j) otherwise.
For a given acyclic graph game (N, v, E) the tree solution, denoted by z", with respect to
node r € N, is defined as follows.

Step 1: Make an arborescence D" with node r as root. Set ¢t := 0.
Step 2: If there is no node i € N with 7(i) = ¢, then terminate.
Step 3: For each node i € N with 7(i) = ¢ set

(3.4) x; = v (des(i)) — Z .
jedes(i)\{i}
Step 4: Set t:=t+ 1 an go to Step 2.

Since the graph (IV, E) is acyclic, the arborescence (N, D") with node r as root is
uniquely determined. More precisely, if (i1,...,4x) is a path in (N, E) connecting node
i1 = r with node i, = j then (ip,ip41) € D" for all h =1,...,k — 1. Clearly, z] = v({i})
when node ¢ has no successor, and each term z’ on the right hand side of (3.4) has been

J
determined since 7(j) < 7(¢) when j € des(i) \ {i}. We can readily see by induction that
it holds that for all i € N

(3.5) 7 = v (des(i)) — Y w(des(f)),
jesuc(i)

and therefore

(3.6) x"(des(i)) = v (des(7)) .

See Figure 1. At allocation z" an agent gets what he contributes when he joins the
descendants of his successors in arborescence (N, D"). Therefore for each r € N, the tree
solution z” with respect to node r is a marginal contribution vector for some permutation.

F1GURE 1. Tree solutions



FIGURE 2. Connected node set

Definition 3.2. For an acyclic graph game (N, v, F), the average tree solution, denoted
AT(N,v, E), is the average of all tree solutions z" with respect to node r € N, i.e.,

1
AT(N,v,FE) = — "
CRNOEES oF
reN

It has been shown in Herings et al. [9] that the average tree solution can be axiomatized
by efficiency and component fairness. The latter property says that if an edge is deleted
the average loss for the two resulting components is the same, where the average is taken
over all players in the component.

For a given connected undirected graph (N, E), let §(S), S € C¥(N), be the set of
edges in F having one end node in S and the other end node outside S, i.e.,

0(S)={ecE|e={i,j},ieS,jeN\S}

Deleting an edge a of §(.5) results in two disjoint connected node sets, one containing the
set S. We denote the component that does not contain the set S by 7°(a). We call T (a)
a satellite of S. See Figure 2. The set S is connected to satellite 7' (a) through the edge
a. Notice that the union of S and all its satellites equals the set of all nodes. The next
theorem gives a sufficient condition such that the average tree solution is an element of
the core.

Theorem 3.3. Suppose the acyclic graph game (N,v, E) satisfies
(37)  w(N)Zw(S)+ > v(T5(a)) forall S € CE(N)
a€s(S)
and
(3.8)  w(N\T%) =v(S)+ Y _  v(T%e)) forall S € C¥(N) and a € §(S).
e€d(S)\{a}

Then the core C(N,v, E) is nonempty and the average tree solution AT(N,v, E) is an
element of the core.

Proof. We first prove that for every » € NV the tree solution " with respect to node r is an
element of C(N, v, E). Take any node r € N and let D" be the corresponding arborescence



with node r as root and let 2" be the tree solution with respect to this node r. Then we
have des(r) = N, which implies 2" (N) = v(N) from (3.6). We will show that
z"(S) > v(S) forall S € CF(N).

Take any S € CF(N). When the root r is an element of .S, by the construction of the tree
solution, x" satisfies

2" (T%(a)) = v(T"(a))
for all a € 6(5), see (3.5). By (3.7) the tree solution 2" then satisfies

(8 =o(N) = 3 (T @) =v(N) = 3 o(TS(@) > u(S).
a€d(S) a€d(S)
When the root r is not an element of S, r is in T%(a) for some unique a € §(S). By
construction
2" (N\T%(a)) = o(N \ T%(a))
and for all e € §(S) \ {a} it holds that
2" (T(e)) = v(T°(e)).

See for illustration the connected node sets circumscribed by a dotted circle in Figure 2.
Therefore, by (3.8), we obtain

2'(S) =2 (N\T%() — > " (T%(e)
e€d(9)\{a}
=o(N\T%@) = Y o(T%(e) = v(S).
e€d(S)\{a}
Hence 2" € C(N,v, E) for every r € N. Since AT(N,v,E) is the average of all tree

solutions, and the core is a convex set, the average tree solution AT(N,v, F) is also an
element of the core. O

Condition (3.7) states that the worth of the grand coalition should be at least equal
to the worth of any connected coalition plus the sum of the worths of all its satellites.
Condition (3.8) states that for any satellite of a connected coalition it holds that the
worth of the players outside this satellite is at least equal to the worth of this coalition
plus the sum of the worths of its other satellites. No other super-additivity requirements
are needed. Notice further that the tree solution x” with respect to any node r € N
satisfies n linearly independent inequalities out of those defining the core, and hence it is
an extreme point of the core.

Corollary 3.4. In an acyclic graph game (N,v, E) satisfying the conditions (3.7) and
(3.8), for each node r € N the tree solution x" with respect to node r is a marginal
contribution vector, being an extreme point of the core.

Take a node r € N as root. For j € N\ {r}, let a} be the unique edge of 5({j}) such

that j’s satellite T{j}(a;) contains node r. Then the tree solution z" = (z1,...,z]) with
respect to node r can be explicitly written as follows,

(3.9) zr=v(N)= Y u(Te),
ecd({r})
(3.10) 2 =o(N\TVa)) = Y o@Ve)) forj#r.
e€s({jh)\{a}}



Hence, for j € N, the jth component of the average tree solution of the graph game
(N, v, E) is equal to

(3.11) ATj(N,v,E):% oM = 3 w(THa))
aes(7})

,T{j}(a)‘ , A
DI PO ) ED SRR AIO)
aeé({s}) e€s({j})\{a}

The first term between brackets reflects how much node j contributes when he is joining
all his satellites, while the second term between brackets describes how much he contributes
for linking a node in one of his satellites to the other satellites. The number [T} (a)] is
the number of players in the satellite that is connected to node j through link a € §(j).

Herings et al. [9] show that for the class of super-additive acyclic graph games the average
tree solution is always an element of the core. The next lemma shows that super-additivity
implies conditions (3.7) and (3.8).

Lemma 3.5. A super-additive acyclic graph game (N,v, E) satisfies both conditions (3.7)
and (3.8).

Proof. Take any S € C¥(N) and let §(S) = {a1,...,ax}. Clearly, for each h = 1,... k,
it holds that S U T%(ay) € C¥(N). Therefore, letting T}, = U T9(a;), it holds that
SUTy, € CE(N) for h = 0,1,...,k, where we use the convention that Ty = (). From
super-additivity it follows that for h=1,...,k

V(S UTh_1) +0v(T%(az)) < v(SUT).

From this it follows that for all h =1,... k

k k
(3.12) V(SUTho1) + Y o(T%(a:) S v(SUTH) + Y v(T5(as)).
i=h i=h+1

Since S U T} = N, this implies
k

v(S) —i—Zv(TS(ai)) < <w(SUTE) =o(N),
i=1

from which (3.7) follows.

To prove condition (3.8), take any a € §(S5) and let the edges ai,...,ax in 6(S) be
indexed such that az = a. Then SUT}—1 = S U (UyZ17%(ay)) = N\ T%(a). From (3.12)
it follows that

0(8) + Y o(T%(an)) < o(N\T%(a)) + o(T%(a)),
h=1
which implies (3.8). O

Note that the conditions (3.7) and (3.8) do not impose any lower bound condition on
v(T) if the set N \ T' is not a satellite of any connected set. This fact is the reason that
conditions (3.7) and (3.8) are weaker than the condition of super-additivity. For example,
consider the case of four players and take E' = {{1,2}, {2,3},{3,4}}, then super-additivity
requires that it must hold that v({2}) + v({3}) < v({2,3}). Since {1,4} is not a satellite
of {2,3}, this condition is not present in (3.7) or (3.8). If £ = {{1,2},{1,3},{1,4}}, i.e,



a star graph, then super-additivity requires v({1})+v({j}) < v({1,5}) for all j # 1. Since
the set N\ {1, 7} is not a satellite for any j # 1, these conditions are not present in (3.7)
or (3.8), either.

Although all tree solutions are extreme points of the core, it is not the case that the
core is always equal to the convex hull of all tree solutions. For example, if the game
is convex, then all n! marginal contribution vectors are extreme points of the core and
the number of different marginal contribution vectors is typically much larger than the
number of different tree solutions, which is at most n.

4. SUBCORE

In this section we introduce a refinement of the core of an acyclic graph game. From
conditions (3.7) and (3.8) we see that when an acyclic graph game (V, v, F') satisfies these
conditions, then for every S € C¥(N) it holds that

v(N) — Zaeé(S) v(T%(a)), }

s mm{ minacs(s) {0V A\ T(@) = ey o750}

This motivates us to refine the core of an acyclic graph game as follows. Let us denote
the right hand side of (4.1) by w(S) with the convention that w(N) = v(N).

Definition 4.1. For an acyclic graph game (N, v, E), the subcore SC(N,v, E) is given by

2(N) = v(N) } |

SC(N,v, E) = {w €R" z(S) > max{v(S),w(S)} for all S € CF(N)

By definition it holds that the subcore is a subset of the core. More precisely, a payoff
vector is an element of the subcore if the grand coalition receives its worth (z(N) = v(N),
efficiency) and for every other connected coalition S it holds that (i) S receives at least
what it can get on its own (x(S) > v(.5), core), (ii) S receives at least what it contributes
when it joins its satellites to form the grand coalition (z(S) = v(N) = X ,e5() v(T%(a))),
and (iii) S receives at least what it contributes to the other satellites before a satellite of
S joins to form the grand coalition (z(S) > v(N \ T%(a)) — 2 ecs(S)\{a} v(T%(e)), for all
a € 0(S)). The idea is that the satellites of a connected set S of players need S to form
the grand coalition, so that S can claim a payoff at least equal to what it then contributes.
The lowest of these contributions (w(S)) is the least what coalition S wants to receive.
The next theorem states that all such claims can be honored in the sense that the subcore
of an acyclic graph game satisfying the conditions (3.7) and (3.8) is nonempty because it
always contains the average tree solution.

Theorem 4.2. For the class of acyclic graph games satisfying the conditions (3.7) and
(3.8) it holds that the average tree solution is an element of the subcore.

The theorem follows immediately from (4.1). Therefore on the class of acyclic graph
games satisfying the conditions (3.7) and (3.8) the subcore is a nonempty refinement of the
core. Moreover, the tree solution with respect to any node, which is an extreme point of
the core, remains an element of the subcore, and hence is an extreme point of the subcore.

The next example is a graph game with player set N = {1,2,3} having limited com-
munication structure represented by the graph in Figure 3. The characteristic function
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FiGURE 4. Core and tree solutions of example 1

values are given by
v({1}) = v({2}) = v({3}) = 0
o({1,2}) = a; v({2,3}) = b
v({1,2,3}) =1,
with 0 < a < b < 1. The core of this game is given by the linear system
x1,x2,23 > 0
r1+x2 >a; T2+ w3 >b
T1+x0+x3=1

and is shown in Figure 4 for ¢ = 0.8 and b = 0.9. The three tree solutions =", r € N, are

TABLE 1. Tree solutions

root r | 1 2 3
x 1-0b 0 0
x5 b 1 a
xh 0 0 l1—-a



given in Table 1 and are depicted in the figure by white circles. The average tree solution
is therefore ((1—10)/3,(1+a-+0b)/3,(1 —a)/3), which is shown by the white square in the
figure. The two black triangles show the marginal contribution vectors obtained for the
permutations (2,1,3) and (2,3,1). Both vectors are not elements of the core. The black
square in the figure denotes the Myerson value. The Myerson value is also outside the
core. Notice that the second player who is pivotal in the communication graph gets more
at the average tree solution than at the Myerson value. The dotted line is the additional
constraint of the subcore, which has a new extreme point, indicated in the figure by the
white triangle.
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