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Abstract The stochastic volatility model of Heston [6] has been accepted by many
practitioners for pricing various financial derivatives, because of its capability to explain
the smile curve of the implied volatility. While analytical results are available for pricing
plain Vanilla European options based on the Heston model, there hardly exist any closed
form solutions for exotic options. The purpose of this paper is to develop computational
algorithms for evaluating the prices of such exotic options based on a bivariate birth-death
approximation approach. Given the underlying price process St, the logarithmic process
Ut = log St is first approximated by a birth-death process BU

t via moment matching. A
second birth-death process BV

t is then constructed for approximating the stochastic volatility
process Vt through infinitesimal generator matching. Efficient numerical procedures are
developed for capturing the dynamic behavior of {BU

t , BV
t }. Consequently, the prices of

any exotic options based on the Heston model can be computed as long as such prices
are expressed in terms of the joint distribution of {St, Vt} and the associated first passage
times. As an example, the prices of down-and-out call options are evaluated explicitly,
demonstrating speed and fair accuracy of the proposed algorithms.

Keywords: stochastic volatility, barrier option, birth-death process, Meixner polynomi-
als, uniformaization procedure
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1 Introduction

In the area of financial engineering, one of the most important and influential theoretical
results would be the celebrated Black-Scholes formula obtained by Black and Scholes [2] for
pricing options and other derivatives. The Black-Scholes model is built upon the following
stochastic differential equation:

dSt = µStdt + σStdWt . (1.1)
∗Mizuho
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Here, the price of the underlying financial asset follows the stochastic process St with µ and
σ describing the trend and the volatility of St respectively, and Wt is the standard Brownian
motion. When the structure of maturity, pay-off and strike price is specified, options and
other derivatives defined on St can be priced with no-arbitrage by solving (1.1) based on
Ito’s lemma and then applying the result to yield the desired pricing formula.

Since the development of the Black-Scholes model, many researchers have been trying
to extend the original model so as to accommodate a variety of peculiar phenomena often
observed in the market. For example, one of the major pitfalls of the original model can be
found in that it can deal with only constant volatility σ. In reality, however, it is well known
that the implied volatility ( which can be obtained by solving the Black-Scholes formula for
σ given the price, µ, maturity and strike price) forms a smile curve as a function of the strike
price, and it is impossible to explain this phenomenon under the assumption of the constant
volatility.

The problem of how to deal with stochastic volatility is first solved by Hull and White
[7], where σ2

t is assumed to follow a geometric Brownian motion. Subsequently, another
extension is studied by Stein and Stein [11], where σ2

t is considered to be an Ornstein-
Uhlenbeck process. A more challenging stochastic volatility model is introduced by Heston
[6] with a claim that the volatility of a price for many financial assets often follows a square-
root process. More specifically, let St be the price of the underlying financial asset at time t
governed by the Stochastic differential equation

dSt

St
= rdt + σ

√
VtdW

(1)
t , (1.2)

and the volatility process Vt itself is a diffusion process characterized by

dVt = (a− bVt)dt + δ
√

VtdW
(2)
t . (1.3)

Here {W (1)
t , W

(2)
t } is a bivariate Brownian motion, and other parameters r, σ, a, b and δ are

constant.
In studying these extended models, the focus has been to solve the associated stochastic

differential equation and then to derive a new pricing formula corresponding to the Black-
Scholes formula for plain Vanilla European options. In particular, the volatility smile men-
tioned before is constructed succesfully based on the theoretical pricing formula in Heston
[6]. Because of this reason, the squre-root volatility process of Heston [6] has become quite
prevalent among practitioners. To the best knowledge of the authors, however, no closed
form solution is available for a variety of exotic options such as barrier options involving the
Heston model. In other words, the study of the Heston model has been largely limited to
the pricing of plain Vanilla Eulopean options. A rare exception is a recent paper by Gunter,
Thomas and Uwe [5], where coputational procedures have been developed for evaluating the
prices of down-and-out call options. Their approach is based on discretization of the partial
differential equation satisfied by the time-dependent reward function defined on the under-
lying stochastic processes. The discretization is necessary in both state and time, and the
finite element methods are employed extensively for solving the resulting partial difference
equations. Because of this, their approach may not be necessarily appropriate when the
prices of various exotic options have to be evaluated repeatedly for many different sets of
parameter values.

The purpose of this paper is to develop computational algorithms for capturing the
dynamic behavior of the bivariate process {St, Vt} characterized by (1.2) and (1.3). The
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idea is to construct a bivariate birth-death process {BU
t , BV

t } approximating {Ut, Vt} where
Ut = log St. Prices of a variety of options including barrier options can then be readily
computed with speed and accuracy. Our approach may be more systematic and can tolerate
repeated computations better than the approach of Gunter, Thomas and Uwe [5] because of
the following reasons.

(1) In Gunter, Thomas and Uwe [5], the discretized partial differnce equation is devel-
oped directly for each reward process. Accordingly, the price computation has to be repeated
almost independently for each option and for each parameter set. In our approach, the dy-
namic behavior of {St, Vt} is first captured. The computational results for the dynamic
behavior are common in evaluating any option price and can be used repeatedly. Further-
more, changes due to different parameter values are restricted entirely to the change of two
birth-death stochastic matrices and the whole algorithmic procedures remain intact.

(2) In Gunter, Thomas and Uwe [5], both the state space and time have to be discretized.
This means that, given a discretized time interval [t, t + ∆], the value of the underlying
financial asset can move only in a lattice continuous manner. In contrast, our approach
requires to descretize only the state space, and the approximating birth-death process can
move from any state to any other state with positive probability in a time interval [t, t+∆].
This feature may be advantageous when the volatility level is high.

The structure of this paper is as follows. In Section 2, the square-root volatility model
of Heston [6] is formally introduced. The time dependent conditional transition probability
structure of Ut = log St is described explicitly. Section 3 discusses the birth-death process
approximation of Ut where BU

t is constructed explicitly via moment matching. In Section
4, the birth-death process BV

t is constructed similarly but based on infinitesimal generator
matching, approximating the square-root process Vt. The transition probability structure
of {BU

t , BV
t } is described in Section 5, and the volatility smile is evaluated as a function

of both the strike price and maturity in Section 6. Finally, numerical results are presented
in Section 7, demonstrating the computational efficiency for pricing down-and-call options
defined on St.

3



2 Square Root Process for Stock Price Volatility

In this section, we consider a stochastic process defined as the logarithm of St associated with
the stochastic volatility model of Heston [6] characterized by (1.2) and (1.3). We restrict

ourselves to the case that W
(1)
t and W

(2)
t are independent. Furthermore, the condition

2a > δ2 is imposed so that the square-root process Vt remains positive provided that the
initial value is positive, see e.g. Lamberton and Lapeyre [10]. Given Vt = v, by using Ito’s
Lemma, Equation (1.2) can be rewritten as

d(log St)|Vt=v = (r − σ2

2
v)dt + σ

√
vdW

(1)
t . (2.1)

With S0 = s0, this then leads to

log St|Vt=v = (r − σ2

2
v)t + σ

√
v(W

(1)
t −W

(1)
0 ) + log s0 . (2.2)

For notational convenience, let Ut = log St|Vt=v. Then (2.2) can be rewritten as

Ut = (r − σ2

2
v)t + σ

√
v(W

(1)
t −W

(1)
0 ) + u0, (2.3)

where U0 = u0 = log s0. Since W
(1)
t − W

(1)
0 follows the normal distribution N(0, t), the

distribution of Ut for each t ≥ 0 is also normal with its mean and variance given by{
E[Ut|U0 = u0] = u0 + (r − σ2

2
v)t

V ar[Ut|U0 = u0] = σ2vt .
(2.4)

Accordingly its conditonal density function g(u0, x, t) = d
dx

P [Ut ≤ x|U0 = u0] is given by

g(u0, x, t) =
1√

2πσ2vt
exp

−{x− (u0 + (r − σ2

2
v)t)}2

2σ2vt

 . (2.5)

For tail probabilities of g(u0, x, t) with respect to x, we define

G(u0, x, t) =
∫ ∞

x
g(u0, y, t)dy . (2.6)

Values of G(u0, x, t) can be computed with speed and accuracy, e.g. using the Laguerre
transform where 12 digit accuracy is achieved for such computations. The reader is referred
to Sumita [12], and Sumita and Kijima [13, 14] for further details.

3 Birth-Death Process Approximation of Ut = log St via

Moment Matching

In order to develop computational procedures for evaluating the prices of European options
and other exotic options defined on St of (1.2), we attempt to approximate the bivariate
process {Ut, Vt} by a Markov chain defined on another Markov chain. For this purpose,
we first approximate the stochastic process Ut by a birth-death process BU

t via a moment
matching method. Let RU = [uBegin, uEnd] be a subset of the state space of Ut such that
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P [Ut ∈ RU ] is almost one. More formally, given a sufficently small ε > 0, there exist uBegin

and uEnd such that

1− P [Ut ∈ RU ] < ε for all t ≥ 0. (3.1)

A discrete state space N = {0, 1, 2, · · · , N} is then introduced where u0 = uBegin, uN = uEnd,
and

hU = ui − ui−1, i = 1, 2, · · · , N. (3.2)

Let RV = [vBegin, vEnd] be defined similarly for the process Vt with J = {0, 1, · · · , J} where
v0 = vBegin, vJ = vEnd,

1− P [Vt ∈ RV ] < ε for all t ≥ 0, (3.3)

and

hV = vj − vj−1, j = 1, 2, · · · , J. (3.4)

Given Vt = vj , j ∈ J , we now approximate the process Ut by a birth-death process BU
t

defined on N . Suppose that the approximating birth-death process is governed by a hazard
rate matrix

ν
U
(j) =



0 ν+
0 (j) 0 0 . . . 0 0 0

ν−
1 (j) 0 ν+

1 (j) 0 . . . 0 0 0
0 ν−

2 (j) 0 ν+
2 (j) . . . 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 . . . 0 ν+
N−2(j) 0

0 0 0 0 . . . ν−
N−1(j) 0 ν+

N−1(j)
0 0 0 0 . . . 0 ν−

N (j) 0


, (3.5)

where ν+
i (j) and ν−

i (j) denote the upward transition rate and the downward transiton rate
at state i ∈ N respectively. The idea behind the moment matching method proposed here
is to determine ν

U
(j) in such a way that the following equation holds true.

log E[e−θdUt |Ut = ui] = log E[e−θdBt |BU
t = i] + o(θ2)dt. (3.6)

The following theorem can then be shown.

Theorem 3.1 Given Vt = vj , j ∈ J , let BU
t be a birth-death process on N governed by

ν
U
(j) of (3.5) satisfying (3.6). One then has ν+

0 (j) = ν−
N(j) =

σ2vj

h2
U

and, for i ∈ N\{0, N},


ν+
i (j) =

σ2vj+hU (r−σ2vj
2

)

2h2
U

,

ν−
i (j) =

σ2vj−hU (r−σ2vj
2

)

2h2
U

.

(3.7)

Proof. Given Vt = vj , we first note that

log E[e−θdUt |Ut = ui] = −E[θdUt] +
1

2
V ar[θdUt] + o(θ2)dt (3.8)

= −θ(r − σ2

2
vj)dt +

1

2
θ2σ2vjdt + o(θ2)dt.
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On the other hand, under (3.6), one has

log E[e−θ(ut+∆t−ut)|Ut = ui]

= log[{1−∆t(ν−
i (j) + ν+

i (j))}+ ν−
i (j)∆te−θ(ui−1−ui) + ν+

i (j)∆te−θ(ui+1−ui) + o(∆t)]

+o(θ2)∆t.

Since hU = ui − ui−1, using the Talyor expansions of e−θhU and eθhU , the above equation
leads to

log
[
1− {ν−

i (j) + ν+
i (j)}∆t + ν−

i (j)∆t{1 + θhU +
1

2
θ2h2

U + o(θ2)}

+ν+
i (j)∆t{1− θhU +

1

2
θ2h2

U + o(θ2)}+ o(∆t)
]

+ o(θ2)∆t

= log
[
1 + ∆t

{
−(ν−

i (j)− ν+
i (j))hUθ + (ν−

i (j) + ν+
i (j))

1

2
h2

Uθ2 + o(θ2)
}

+ o(∆t)
]

+ o(θ2)∆t.

By employing the identity log(1 + x) =
∑∞

k=1(−1)k−1 xk

k
, it follows that

log E[e−θ(ut+∆t−ut)|Ut = ui] = ∆t
{
−(ν−

i (j)− ν+
i (j))hUθ + (ν−

i (j) + ν+
i (j))

1

2
h2

Uθ2 + o(θ2)
}

+ o(∆t),

or equivalently

log E[e−θdUt |Ut = ui] = lim
∆t→0

log E[e−θ(ut+∆t−ut)|Ut = ui]

∆t
dt (3.9)

= −{ν−
i (j)− ν+

i (j)}hUθdt + {ν−
i (j) + ν+

i (j)}1
2
h2

Uθ2dt + o(θ2)dt,

where ν−
0 (j) = ν+

N (j) = 0. Comparing (2.8) with (2.9), one then has, for i ∈ N\{0, N},{
r − σ2

2
vj = hUν−

i (j)− hUν+
i (j),

σ2vj = h2
Uν−

i (j) + h2
Uν+

i (j),
(3.10)

and ν+
0 (j) = ν−

N(j) = σ2vj

h2
U

. The theorem now follows by solving (3.10) for ν−
i (j) and ν+

i (j).
�

It should be noted that

ν+
i (j) + ν−

i (j) =
σ2vj

h2
U

, (3.11)

so that ν+
i (j) + ν−

i (j) is independent of i and constant when σ, vj and hU are determined.
Given U0 = u0, the tail probability G(u0, x, t) of Ut at x is defined in (2.6) and can

be computed via the Laguerre transform with 12 digit accuracy. When Ut is approxi-
mated by the birth-death process BU

t , this tail probability is approximated accordingly by
G(im, in, t), im, in ∈ N , describing the sum of the transition probabilities of BU

t from im to
i for in ≤ i ≤ N at time t, where im and in in N correspond to the closest points to u0 and
x respectively. One then expects that

G(im, in, t)→ G(u0, x, t) as hU → 0. (3.12)

In Table 2.1 below, numerical results are presented for demonstrating the accuracy of the
birth-death approximation of Ut by BU

t based on (3.12). For necessary parameter values,
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we set r = 0.1, σ = 1, vj = 0.05, s0 = 100, t = 1 and N = 500. Values of G(im, in, t)
can be computed in a manner similar to Algorithm 3.1 of Gotoh, Jin and Sumita [4] with
little alteration. We note that the transition rates of BU

t should satisfy Equation (3.7).
Furthermore, in order to keep both ν+

i (j) and ν−
i (j) in (3.7) positive, hU should satisfy

hU <
σ2vj

r − σ2

2
vj

. (3.13)

In order to employ the uniformization procedure of Keilson [9], the underlying uniformization

constant is set to be ν =
σ2vj

h2
U

. As one can see, 4 digit accuracy below the desimal point is

observed throughout Table 2.1.

Table 2.1 Comparison of Tail Probabilities
(r = 0.1, σ = 1, vj = 0.05, S0 = 100, t = 1, N = 500)

Range : St = eUt in x G(im, in, t) G(u0, x, t) |G(im, in, t)−G(u0, x, t)|
93.5139 231 4.5381 0.737382 0.737387 0.000005
94.1431 232 4.5448 0.727511 0.727517 0.000006
94.7766 233 4.5515 0.717460 0.717466 0.000007
95.4143 234 4.5582 0.707233 0.707240 0.000007
96.0563 235 4.5649 0.696838 0.696846 0.000008
96.7026 236 4.5716 0.686281 0.686290 0.000009
97.3533 237 4.5783 0.675569 0.675579 0.000010
98.0083 238 4.5851 0.664710 0.664720 0.000010
98.6678 239 4.5918 0.653712 0.653723 0.000011
99.3316 240 4.5985 0.642582 0.642594 0.000012

S0 = 100.0000 im = 241 u0 = 4.6052 0.631329 0.631342 0.000013
100.6729 242 4.6119 0.619963 0.619977 0.000013
101.3502 243 4.6186 0.608493 0.608507 0.000014
102.0322 244 4.6253 0.596927 0.596942 0.000015
102.7187 245 4.6320 0.585276 0.585292 0.000016
103.4098 246 4.6387 0.573549 0.573566 0.000016
104.1056 247 4.6454 0.561757 0.561774 0.000017
104.8061 248 4.6521 0.549910 0.549928 0.000018
105.5113 249 4.6588 0.538019 0.538037 0.000018
106.2212 250 4.6655 0.526093 0.526112 0.000019
106.9360 251 4.6722 0.514144 0.514163 0.000020

4 Birth-Death Process Approximation of Vt via Infinites-

imal Generator Matching

For approximating the bivariate process {Ut, Vt} by a Markov chain defined on another
Markov chain, the second step is to find a birth-death process BV

t representing a discretized
version of Vt. Unlike the previous discussion concerning Ut, however, the moment matching
approach of Section 2 is not applicable here simply because E[e−θdVt |Vt = vj ] is not readily

7



available. As an alternative approach, following Albanese and Kuznetsov [1], the birth-death
process BV

t is constructed in such a way that the second order difference equations satisfied
by the orthogonal polynomials associated with BV

t parallel the second order differential
equations associated with the square-root process Vt.

Let f(x0, x, t) be the conditional density function of the square-root process Vt defined
in (1.3), i.e.

f(x0, x, t) =
d

dx
P [Vt ≤ x|V0 = x0]. (4.1)

For R+ = (0,∞), let

L = {q : R+ → R+|
∫ ∞

0
f(x0, x, t)q(x)dx <∞ for any t ≥ 0, x0 ≥ 0} (4.2)

and define an operator Pt : L× {t} → R+ by

(Ptq)(x0) = Ex0 [q(Vt)] =
∫ ∞

0
f(x0, x, t)q(x)dx. (4.3)

Given a, b and δ associated with Vt in (1.3), let L be an operator defined by

L def.
= (a− bx)

d

dx
+

δ2x

2

d2

dx2
. (4.4)

It is then known, see e.g. Schoutens [15], that the operators Pt and L are related to each
other by the Kolmogorov forward equation

∂

∂t
(Ptq)(x0) = L(Ptq)(x0) = Pt(Lq)(x0), (4.5)

or equivalently

∂

∂t

∫ ∞

0
f(x0, x, t)q(x)dx =

∫ ∞

0
f(x0, x, t)Lq(x)dx. (4.6)

Because of the commutativity of L and Pt in (4.5), the operator Pt may be written symbol-
ically as

Pt = etL =
∞∑

k=0

tkLk

k!
, (4.7)

where L0 is the identity operator and Lk for k ≥ 1 means that the operator L is applied
k times repeatedly. In this sense, the operator L can be interpreted as the infinitesimal
generator of the square-root process Vt.

In order to find the birth-death process BV
t representing a discrete version of Vt, our ap-

proach is to find an infinitesimal generator matrix Q of a birth-death process which parallels

the operator L. For this purpose, following Albanese and Kuzentsov [1], we exploit the fact
that a discrete operator generated by Meixner polynomials associated with a linear birth-
death process is similar to L. More specifically, a linear birth-death process is considered
where upward transition rates λj (j ≥ 0) and downward transtion rates µj (j ≥ 1) are given
by

λj = βc + jc, j ≥ 0; µj = j, j ≥ 1, (4.8)
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with β > 0 and 0 < c < 1. It is known, see Karlin and McGregor [8], that the set of
orthogonal polynomials, called Meixner polynomials, associated with this birth-death process
can be generated by the recurrsive formula

Mn+1(x; β, c) =
1

c(n + β)
[{(c− 1)x + n + (n + β)c}Mn(x; β, c)− nMn−1(x; β, c)] (4.9)

for n ≥ 1 starting with M0(x; β, c) = 1 and M1(x; β, c) = {(c−1)x+n+(n+β)c}/{c(n+β)}.
We recall that, given a sufficiently small ε > 0, RV = [vBegin, vEnd] is determined so that

(3.3) is satisfied. By discretizing RV with J equal intervals, one has hV as given in (3.4).
Corresponding to L in (4.2), let

L̂ = {q̂ = [q̂(0), · · · , q̂(J)] | q̂(j) = q(vj), q ∈ L, j ∈ J }, (4.10)

where J = {0, 1, · · · , J}. In parallel with the continuum operator L : L→ R given in (4.4),
a discrete operator L̂ : L̂→ R is introduced as

L̂ def.
= M ×

{
(βc− (1− c)j)∇+ j∇2

}
, j ∈ {0, 1, · · · , J}, (4.11)

where M is a positive constant and, for a vector q̂ = [q̂(0), · · · , q̂(J)], ∇ and ∇2 are defined
in the following manner. We first define

∇+q̂(j) = q̂(j + 1)− q̂(j); ∇−q̂(j) = q̂(j)− q̂(j − 1), (4.12)

where q̂(j) = 0 whenever j /∈ J . Based on (4.12), ∇ and ∇2 are now given as{ ∇q̂(j) = ∇+q̂(j) = q̂(j + 1)− q̂(j) ;
∇2q̂(j) = ∇+∇−q̂(j) = q̂(j + 1) + q̂(j − 1)− 2q̂(j).

(4.13)

By comparing L[q(vj)] with L̂[q̂(j)], and matching the coefficients of d/dx and (d/dx)2

with those of ∇ and ∇2, one finds that
M = δ2

2hV
,

c = 1− 2hV b
δ2 ,

β = 2a
cδ2 .

(4.14)

Consequently, the square-root process Vt can be approximated by the linear birth-death
process BV

t defined on J = {0, 1, · · · , J} govened by upward transition rates Mλj (j ≥ 0)
and downward transition rates Mµj (j ≥ 1) where λj and µj are as given in (4.8) with M, c
and β as defined in (4.14).

5 Transition Probability Structure of {BU
t , BV

t }
Based on the previous discussions, one now sees that the bivariate birth-death process
{BU

t , BV
t } approximates the bivariate process {Ut, Vt}, where the transition probability struc-

ture of {BU
t , BV

t } is characterized by the following transition rate matrix ν:

ν =



ν
U
(0) λ0I 0 . . . 0 0 0 . . . 0 0 0

µ1I ν
U
(1) λ1I . . . 0 0 0 . . . 0 0 0

...
...

...
. . .

. . .
. . .

. . .
. . .

...
...

...
0 0 0 . . . µjI ν

U
(j) λjI . . . 0 0 0

...
...

...
. . .

. . .
. . .

. . .
. . .

...
...

...
0 0 0 . . . 0 0 0 . . . µJ−1I ν

U
(J − 1) λJ−1I

0 0 0 . . . 0 0 0 . . . 0 µJI ν
U
(J)


.(5.1)
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Here λj and µj are given in (4.8) with ν
U
(j) as in (3.5).

Let P (t) = [p(im,jk),(in,jl)(t)], im, in ∈ N ; jl, jk ∈ J be the transiton probability matrix
of {BU

t , BV
t }. In what follows, we show how to evaluate P (t) based on the uniformization

procedure of Keilson [9]. Given a matrix l = [lij ], let li =
∑

j lij and define the diagonal
matrix l

D
by l

D
= [δ{i=j}li], where δ{P} = 1 if statement P holds true and δ{P} = 0 otherwise.

For ν of (5.1), the block diagonal matrices of ν
D

are then given by
ν

U :D
(0) + λ0I j = 0,

ν
U :D

(j) + (µj + λj)I j = 1, 2, · · · , J − 1,
ν

U :D
(J) + µJI j = J.

(5.2)

We note that ν
U :D

(j) is the diagonal matrix generated by the row sums of ν
U
(j). From the

Kolmogorov forward equation
d

dt
P (t) = P (t)Q, one has

P (t) = e
tQ

; Q = −ν
D

+ ν. (5.3)

Let ν be a positive number which is larger than or equal to the maximum diagonal element
of ν

D
and define a matrix a

ν
by

a
ν

def
= I − 1

ν
ν

D
+

1

ν
ν. (5.4)

It can be readily seen that a
ν

is a stochastic matrix. From (5.3) and (5.4), one has a
ν

= I+ 1
ν
Q

so that Q = −ν[I − a
ν
]. Substituting this into (5.3), it then follows that

P (t) = e−νt[I−a
ν
] =

∞∑
k=0

e−νt (νt)k

k!
ak

ν
(5.5)

where a0
ν

= I. Since the series representation of (5.5) involves only nonnegative numbers,
the computational procedure is stable and a fairly large size of matrices can be incorporated
with speed and high accuracy. In addition, for the application of this paper, it is possible
to exploit the underlying block tridiagonal structure for reducing the computational burden
substantially, as we will see next.

Let a
U :ν

(j) be defined by

a
U :ν

(j) = I − 1

ν
ν

U :D
(j) +

1

ν
ν

U
(j), j = 0, 1, · · · , J. (5.6)

Furthermore, we also introduce

â
U :ν

(j) =


a

U :ν
(0)− λ0

ν
I j = 0,

a
U :ν

(j)− µj+λj

ν
I j = 1, 2, · · · , J − 1,

a
U :ν

(J)− µJ

ν
I j = J.

(5.7)

The stochastic matrix a
ν

of (5.4) for the application of this paper can then be given as

a
ν

=



â
U :ν

(0) λ0

ν
I 0 . . . 0 0 0 . . . 0 0 0

µ1

ν
I â

U :ν
(1) λ1

ν
I . . . 0 0 0 . . . 0 0 0

...
...

...
. . .

. . .
. . .

. . .
. . .

...
...

...

0 0 0 . . .
µj

ν
I â

U :ν
(j)

λj

ν
I . . . 0 0 0

...
...

...
. . .

. . .
. . .

. . .
. . .

...
...

...

0 0 0 . . . 0 0 0 . . . µJ−1

ν
I â

U :ν
(J − 1) λJ−1

ν
I

0 0 0 . . . 0 0 0 . . . 0 µJ

ν
I â

U :ν
(J)


.

(5.8)
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For evaluating the implied volatility and exotic option prices associated with (1.2) and (1.3),
what we actually need is the state probability vector given an initial state probability vector,
not the transition probability matrix itself. In this regard, we define the state probability
vector p�(t) by

p�(t) = [p�
0
(t), · · · , p�

j
(t), · · · , p�

J
(t)] (5.9)

where p�
j
(t) = [p(0,j)(t), · · · , p(N,j)(t)] and

p(i,j)(t) = P [Ut = i, Vt = j|p�(0)]. (5.10)

According to (5.5), p�(t) = p�(0)× P (t) can be evaluated by

p�(t) =
∞∑

k=0

e−νt (νt)k

k!
p�(0)ak

ν︸ ︷︷ ︸
A

, (5.11)

where the underbraced part A can be evaluated by
p�

0
(t) = p�

0
(0)â

U :D
(0) + µ1

ν
p�

1
(0) j = 0,

p�
j
(t) =

λj−1

ν
p�

j−1
(0) + p�

j
(k)â

U :D
(j) +

µj+1

ν
p�

j+1
(0) j = 1, 2, · · · , J − 1,

p�
J
(t) = λJ−1

ν
p�

J−1
(0) + p�

J
(0)â

U :D
(J) j = J.

(5.12)

Consequently, for each i ∈ N , we can evaluate the probability p̃i(t) that Ut = i given an
initial state probability vector p�(0) by

p̃i(t)=
∑
j∈J

p(i,j)(t). (5.13)

6 Computational Assessment of Volatility Smile for

European Call Options Defined on St

Based on [p̃i(t)]i∈N given in (5.13), it is now possible to evaluate the price Ĉ(K, T ) of an
European call option defined on St ∈ eRU for 0 ≤ t ≤ T with strike price K and maturity
time T as

Ĉ(K, T ) = e−rT E[{ST −K}+] = e−rT
N∑

i=0

{eui −K}+p̃i(T ) (6.1)

where {a}+ = max{a, 0}. Substituting this price of (6.1) into the Black-Scholes formula,
one sees that

Ĉ(K, T ) = S0Φ

 log S0

K
+ (r + σ̂2(K,T )

2
)T

σ̂(K, T )
√

T

− e−rT KΦ

 log S0

K
+ (r − σ̂2(K,T )

2
)T

σ̂(K, T )
√

T

 ,(6.2)

where Φ(x) =
1√
2π

∫ x

−∞
exp(−y2

2
)dy. Of particular interest is the implied volatility obtained

by solving (6.2) for σ̂(K, T ).
In what follows, we develop an algorithmic procedure for evaluating σ̂(K, T ) as a function

of K and T . For notational convenience, the following functions are introduced:

h+(σ)
def
=

log S0

K
+ (r + σ2

2
)T

σ
√

T
; h−(σ)

def
= h+(σ)− σ

√
T , (6.3)

and

g(σ)
def
= S0Φ(h+(σ))− e−rT KΦ(h+(σ)− σ

√
T ) . (6.4)
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Algorithm 6.1 (Implied Volatility of the European Call Option)

Input :

 r : interest rate


 K : strike price of the option


 T : maturity time of the option


 [ui]i∈N : discrete state space of BU
t


 [σ−, σ+ ] : the range of implied volatility satisfying g(σ−) < Ĉ(K, T ) < g(σ+).


 ε : parameter for stopping the search of implied volatility

Output:
� σ̂(K, T ) : Implied Volatility

Procedure:

1. Compute [p̃i(T )]i∈N and Ĉ(K, T ) based on (5.13)and (6.1) respectively.

2. Loop: Let σ ← σ−+σ+

2
and calculate g(σ) by (6.4).

3. If g(σ) < Ĉ(K, T ), set σ− ← σ and g(σ−) ← g(σ); otherwise, set σ+ ← σ and
g(σ+)← g(σ).

4. Calculate |g(σ+)−g(σ−)|. If |g(σ+)−g(σ−)| < ε, set σ̂(K, T )← σ and stop; otherwise
go to 2.

Numerical results for Ĉ(K, T ) and σ̂(K, T ) are plotted in Figures 6.1 and 6.2 respecitvely,
where the parameters are set as r = 0.1, σ = 1, a = 0.09, b = 0.1 and δ = 0.8 with
initial values S0 = s0 = 100 and V0 = 0.05. The range for the strike price is taken to be
60 ≤ K ≤ 200 and the range for the maturity time is 1 ≤ T ≤ 2.5. The discrete state space
of St is set to be [eui ]i∈N = [20, 30, · · · , 490, 500] and that of Vt is [vj ]j∈J = [0.05, 0.1, · · · , 2.0].
It should be noted that the well-known smile curve can be observed along the K-axis, and
the smile curve rises monotonically as T increases.
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Figure 6.1: Price of European Call Option
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Figure 6.2: Volatility Smile of European Call
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Also of interest are the ∆ and Γ of the European call options defined as

∂Ĉ(K, T )

∂S0
≈ Ĉ(K, T )|s0+∆s0 − Ĉ(K, T )|s0

∆s0
(6.5)

and

∂2Ĉ(K, T )

∂S2
0

≈ Ĉ(K, T )|s0+∆s0 + Ĉ(K, T )|s0−∆s0 − 2Ĉ(K, T )|s0

(∆s0)2
, (6.6)

respectively. These values are plotted as functions of K in Figures 6.3 and 6.4.
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Figure 6.3: Delta of European Call
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Figure 6.4: Gamma of European Call

7 Down-and-Out Call Option Pricing

We now turn our attention to how to evaluate the prices of exotic options defined on St.
As a representative of the exotic options, we consider a down-and-out call option maturing
at time T with strike price K and a lower barrier level H < K. Under the down-and-out
call option, starting from s0 = eu0 > H , the option right would be nullified if St reaches the
level H or below by time T . Otherwise the option functions as a plain Vanilla European
call option having the strike price K at time T . Then the price of the down-and-out call
option at time t = 0, denoted by πKO(0|T ), can be expressed in terms of the first passage
time Tu0,log H = inf{t : Ut = log H|U0 = u0} as

πKO(0|T ) = e−rT E[{ST −K}+1{Tu0,log H>T}], (7.1)

where

1{A} =

{
1, if A is true,
0, otherwise.

(7.2)

Evaluating πKO(0|T ) requires the joint distribution of P [Ut ≤ x, Tu0,log H > T |U0 = u0].
Since Ut is approximated by BU

t , from the state conversion between {Ut : t ≥ 0} and
{BU

t : t ≥ 0}, the condition Ut ≥ log H, 0 ≤ t ≤ T can be written as

BU
t ≥ iH , 0 ≤ t ≤ T, (7.3)

13



where iH = min{i ∈ N|ui ≥ log H}. With little alteration, the numerical approach for com-
puting (5.11) can be employed by making (iH , j) absorbing for all j ∈ J . The corresponding
transition probability vector p∗�(t) = [p∗�

0
(t), · · · , p∗�

j
(t), · · · , p∗�

J
(t)] can then be obtained

accordingly, which in turn leads to

p∗i (T ) =
∑
j∈N

p∗(i,j)(T ) for i ∈ {iH , · · · , N}. (7.4)

Then from Equation (7.1), the down-and-out call option price can be obtained as

πKO(0|T ) = e−rT
N∑

i=iH

{eui −K}+p∗i (T ). (7.5)

In order to demonstrate the above numerical procedure, the following down-and-out call
option is considered where the strike price is K = 100 and the barrier price is H = 90. Other
parameters are set similarly as those for Figures 5.1 through 5.4. When Vt is constant with
Vt = V , the Black-Scholes formula for the price BSKO of the down-and-out call option is
available, where BSKO is given by

BSKO =
[
S0Φ(d)− e−rT KΦ(d− σ̃

√
T )

]
−

S0

(
S0

H

)−1−2r/σ̃2

Φ(η)− e−rT K
(

S0

H

)1−2r/σ̃2

Φ(η − σ̃
√

T )

 . (7.6)

Here, one has
d =

log S0

K
+ (r + σ̃2

2
)T

σ̃
√

T
,

η =
log H2

S0K
+ (r + σ̃2

2
)T

σ̃
√

T
,

(7.7)

and σ̃ = σ
√

V . In the second and third columns of Table 6.1, the prices FVKO of the down-
and-out call option with Vt = V caculated by our approach are compared with BSKO for
V = 0.05 and σ = 0.95, 1.00, 1.05, demonstrating fair accuracy of the proposed algorithms.
For Vt being a square-root process, no analytical results are available to evaluate the price
SVKO of the down-and-out call option. However, the computational algorithms proposed in
this paper enables one to evaluate SVKO for a variety of parameter values with speed. These
prices are given in the fourth column of Table 6.1.

Table 6.1 Comparison of Option Prices (S0 = 100, K = 100, H = 90)
σ BSKO FVKO SVKO

0.95 11.2236 11.2725 11.6912
1.00 11.2449 11.2971 11.6987
1.05 11.2591 11.3143 11.7005

The prices of other exotic options can be computed in a similer manner, provided that
such prices are expressed in terms of the joint distribution of {St, Vt} and some of the
associated first passage times.
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