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Abstract

We study the continuous trajectories for solving monotone nonlinear mixed complemen-
tarity problems over symmetric cones. While the analysis in [5] depends on the optimization
theory of convex log-barrier functions, our approach is based on the paper of Monteiro and
Pang [17], where a vast set of conclusions concerning continuous trajectories is shown for
monotone complementarity problems over the cone of symmetric positive semidefinite ma-
trices. As an application of the results, we propose a homogeneous model for standard
monotone nonlinear complementarity problems over symmetric cones and discuss its theo-
retical aspects.

Key words. Complementarity problem, symmetric cone, homogeneous algorithm, existence
of trajectory, interior point method

1 Introduction

Let V be an n-dimensional real vector space and (V, ◦) be a Euclidian Jordan algebra with an
identity element e. We denote by K a symmetric cone of V which is a self-dual closed convex
cone such that there exists an invertible map Γ : V → V such that Γ(K) = K and Γ(x) = y for
every x ∈ intK and y ∈ intK. It is known that a cone in V is symmetric if and only if it is the
cone of squares of V given by K = {x ◦ x : x ∈ V }.

Faybusovich [5] studied the linear monotone complementarity problem over symmetric cones
of the form

(LCP) Find (x, y) ∈ K ×K

s.t. (x, y) ∈ (a, b) + L, x ◦ y = 0
(1)

where (a, b) ∈ V × V and L ⊆ K × K is a linear subspace with dimL = dimV having the
monotonicity, i.e.,

〈x, y〉 ≥ 0 if (x, y) ∈ L.
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The author showed the existence of the central path of the form

{(x, y) ∈ intK × intK : x ◦ y = µe, µ > 0}
whenever the (LCP) has an interior feasible solution (x, y) ∈ ((a, b)+L)∩ (intK× intK), based
on primal-dual interior point methods for linear programs ([11, 15], etc).

Note that the first extension of primal-dual methods to a more general setting than linear
programs was achieved by Nesterov and Todd [19, 20] who developed the powerful theoretical
concept of self-scaled barrier functions. It is known that the self-scaled cones associated with
the self-scaled barriers are closely related to the symmetric cones ([1, 9, 10, 24]). See also
[6, 25, 22, 23] for other extensions of primal-dual methods to the symmetric cones or the self-
scaled cones.

In most of the papers cited above, the analyses depend on the optimization theory of convex
barrier functions. In this paper, apart from the theories of barrier functions, we will discuss
the trajectory of an interior point map in view of homeomorphisms of continuous maps. It
should be noted that there have been studied various types of central paths using the theory of
homeomorphisms for some special cases of symmetric cones, i.e., the non-negative orthant and
the cone of symmetric positive semidefinite matrices (see, [7, 12, 14, 18], etc). We will extend
these results and provide a set of properties concerning the existence of central paths for the
monotone nonlinear complementarity problems over symmetric cones. As an application of the
results, we will give a homogeneous model for solving the problems.

We consider the following nonlinear and mixed complementarity problem:

(CP) Find (x, y, z) ∈ K ×K ×	m

s.t. F (x, y, z) = 0, x ◦ y = 0
(2)

where F : K ×K ×	m → V ×	m is a continuous and differentiable map. We say that

- (CP) is asymptotically feasible if and only if there exists a bounded sequence {x(k), y(k), z(k)} ⊂
intK × intK ×	m such that

lim
k→∞

F (x(k), y(k), z(k)) = 0,

- (CP) is asymptotically solvable if and only if there exists a bounded sequence {x(k), y(k), z(k)} ⊂
intK × intK ×	m such that

lim
k→∞

F (x(k), y(k), z(k)) = 0 and lim
k→∞

x(k) ◦ y(k) = 0. (3)

As long as we discuss the asymptotical properties, the map F is required to be defined on the
set intK × intK ×	m rather than on K ×K ×	m. By this reason, together with our aim to
design a homogeneous model for (CP), we first consider that the map F is only defined on the
set intK × intK ×	m.

We will impose the following assumption on F :

Assumption 1.1 (i) F is (x, y)-equilevel-monotone on its domain, i.e., for every (x, y, z) and
(x′, y′, z′) in the domain of F satisfying F (x, y, z) = F (x′, y′, z′), 〈x−x′, y−y′〉 ≥ 0 holds.
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(ii) F is z-bounded on its domain, i.e., for every {(x(k), y(k), z(k))} in the domain of F , if
{(x(k), y(k))} and {F (x(k), y(k), z(k))} are bounded then the sequence {z(k)} is also bounded.

(iii) F (x, y, z) is z-injective on its domain, i.e., if (x, y, z) and (x, y, z′) lie in the domain of F
and satisfy F (x, y, z) = F (x, y, z′) then z = z′.

The above assumption is the same as the one imposed by Monteiro and Pang [17] for the
case of the cone of symmetric matrices. The authors provided some optimization problems
whose optimality condition can be formulated into a (CP) satisfying the above assumption.
Note that, in contrast to the paper [17], the domain of the map F is not given explicitly in the
assumption.

The paper is organized as follows.
In Section 2, we will summarize well-known results for symmetric cones and give some

lemmas which are crucial in the succeeding discussions.
Section 3 is devoted to deriving a homeomorphism of the map H : intK × intK × 	m →

V ×	m given by

H :=


 x ◦ y
F (x, y, z)


 . (4)

The main result, Theorem 3.10, ensures that if Assumption 1.1 is satisfied with the domain
intK × intK ×	m then the system

H(x, y, z) = h

has a solution (x, y, z) ∈ U ×	m for every h ∈ intK ×H(U ×	m), where the set U is a subset
of intK × intK defined by (7).

Suppose that there exists a sequence {h(k)} ⊂ intK×H(U ×	m) satisfying h(k) → 0. Then
the result implies that there exists a sequence {(x(k), y(k), z(k))} ⊂ U × 	m which is the set of
solutions of the system

H(x(k), y(k), z(k)) = h(k)

for every k. It is easy to see that the sequence {(x(k), y(k), z(k))} ⊂ U×	m satisfies (3). Thus, if
{(x(k), y(k), z(k))} is bounded then (CP) is asymptotically solvable. In Section 4, we will discuss
the asymptotical solvability of (CP) under Assumption 1.1 with the domain K ×K×	m. The
obtained results are direct extensions of the ones in [17].

In Section 5, as an application of the results in Section 3, we will provide a homogeneous
model for a special class of (CP)s. The first homogeneous model for nonlinear complementarity
problems over the n-dimensional positive orthant was proposed by Andersen and Ye [3]. A
remarkable feature of their model is that the associated trajectory gives certifications on the
(strong) feasibility or the (strong) infeasibility of the original problem. We will show that the
model has the same property in the case of simple Euclidean Jordan algebras. To our knowledge,
this is a first homogeneous model having the property for (CP)s over the cone of symmetric
matrices and/or the ones over the second order cone, which are the symmetric cones in the
simple Euclidean Jordan algebras.

Some concluding remarks will be given in Section 6.
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2 Some key lemmas for the symmetric cone

In this section, we give a summary of the theory of Euclidean Jordan algebra, which are used in
the paper. Most of the results in this section can be found in the book of Faraut and Korányi[4]

Let V be n-dimensional real vector space and let (V, ◦) be a Jordan algebra with the identity
element e. Here u ◦ v is a bilinear map satisfying

(i) u ◦ v = v ◦ u,
(ii) u ◦ (v ◦ u2) = (u ◦ v) ◦ u2 where u2 = u ◦ u,
(iii) u ◦ e = e ◦ u = u

for every u and v in V . For u ∈ V , L(u) denotes the multiplication by u linear operator
satisfying

L(u)v = u ◦ v
for every v ∈ V . We introduce the scalar product of the form

〈u, v〉 = tr(u ◦ v).

Then, for every u ∈ V , the linear operator L(u) is self-adjoint with respect to 〈·, ·〉, i.e.,

〈v,L(u)w〉 = 〈L(u)v,w〉

holds for v,w ∈ V . The set
K := {x2 : x ∈ V }.

is the symmetric cone of V which has the following properties.

Proposition 2.1 (i) The set K is a closed, pointed, convex and self-dual cone, and the set
intK is an open, convex and self-dual cone.

(ii) intK = {u ∈ V : L(u) � 0} where L(u) � 0 means that L(u) is positive definite.

(iii) intK is the connected component of e in the set

Inv := {x ∈ V : x is invertible } = {x ∈ V : det(x) �= 0}.

(iv) intK = {x2 : x ∈ Inv} = {P (x)e : x ∈ Inv}.

Proof: See Theorem III.2.1 of [4] for (i) and (ii), Propositions III.2.2 and II.2.4 of [4] for
(iii) and the proof of Theorem III.2.1 of [4] for (iv).

The following proposition is crucial in our analysis.

Proposition 2.2 For every y ∈ intK and η > 0, the set

{x ∈ K : 〈x, y〉 ≤ η}

is compact.
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Proof: See Corollary I.1.6 of [4].

Next we define the rank of a Jordan algebra and introduce the concept of Jordan frames.
For u ∈ V , the degree of u is the smallest integer q such that the set {e, u, u2, . . . , uq} is

linearly independent. The rank r of V is the maximum of the degree of u over all u ∈ V .
An idempotent c is an element of V such that c2 = c. An idempotent is primitive if it is

nonzero and not given by the sum of two nonzero idempotents. A complete system of orthogonal
idempotents is a set {c1, c2, . . . , cp}, where

cj ◦ cj = cj, cj ◦ ck = 0 (j �= k),
r∑

j=1

cj = e.

A complete system of orthogonal primitive idempotents is called a Jordan frame. The following
theorem shows that every Jordan frame has exactly r primitive idempotents.

Theorem 2.3 (i) For every u ∈ V , there exist real numbers λ1, . . . , λr and a Jordan frame
c1, . . . , cr such that

and

u =
r∑

j=1

λjcj .

Here the numbers λj (with their multiplicities) are uniquely determined by u and λj ’s are
called the eigenvalues (multiplicities included) of u.

(ii) For the eigenvalues λj (j = 1, 2, . . . , r) of u, we have

det(u) = Πr
j=1λj , tr(u) =

r∑
j=1

λj.

(iii) Let c be an idempotent in a Jordan algebra, c2 = c. The only possible eigenvalues of L(c)
are 0, 1

2 and 1.

Proof: See Theorem III.1.2 of [4] for (i) and (ii) and Proposition III.1.3 of [4] for (iii) .

For u ∈ V , let u =
∑r

j=1 λjcj be a decomposition described in the above theorem. Then we
can easily see that

u2 =
r∑

j=1

λ2
jcj

which implies that λ2
j (j = 1, 2, . . . , r) are the eiganvalues of u2. Thus (ii) of the above theorem

implies that

〈u, u〉 = tr(u ◦ u) =
r∑

j=1

λ2
j .

Throughout the paper, we employ the following Frobenius norm as a norm on V :

‖u‖ :=
√
〈u, u〉 =

√√√√ r∑
j=1

λ2
j . (5)
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Note that every eigenvalue of e is 1 and ‖e‖ =
√
r.

Let us observe the eigenvalues of u ∈ K. For every u ∈ K, there exists v ∈ V such that
u = v2. Let v =

∑r
j=1 λjcj be a decomposition of u given by Theorem 2.3. Then we have

u = v2 =
r∑

j=1

λ2
jc

2
j =

r∑
j=1

λ2
jcj

which implies that all the eigenvalues of u ∈ K are nonnegative. In addition, by (iii) of
Proposition 2.1 and by (ii) of Theorem 2.3, we can see that λ2

j �= 0 for every j whenever
u ∈ intK. Consequently, we obtain the following corollary.

Corollary 2.4 Let u ∈ V and let
∑r

j=1 λjcj be a decomposition of u given by Theorem 2.3.

(i) If u ∈ K then λj ≥ 0 (j = 1, 2, . . . , r).

(ii) If u ∈ intK then λj > 0 (j = 1, 2, . . . , r).

Here we introduce the notion of the quadratic representation of (V, ◦). Given x ∈ V , we
define

P (x) := 2L(x)2 − L(x2).

and

P (x, y) :=
1
2
DyP (x)

=
1
2
(P (x+ y) − P (x) − P (y))

= L(x)L(y) + L(y)L(x) − L(x ◦ y). (6)

Proposition 2.5 For every x, y ∈ V ,

(i) P (x)e = x2,

(ii) P (x) is invertible if and only if x is invertible,

(iii) P (P (y)x) = P (y)P (x)P (y).

If x, y ∈ V are invertible then

(iv) P (x)x−1 = x,

(v) P (x)−1 = P (x−1),

(vi) P (x)y is invertible,

(vii) (P (x)y)−1 = P (x−1)y−1,

(viii) P (x)intK = intK.

For every x ∈ intK,

(ix) P (x)−1/2 = P (x−1/2).
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Proof: (i) follows from the definition of P (x).
See Proposition II.3.1 of [4] for the proofs of (ii), (iv) and (v), Proposition II.3.3 of [4] for

(iii), (vi) and (vii), and Proposition III.2.2 of [4] for (viii).
Using the results (i), (iii) and (v), we obtain (ix) as follows:

[P (x)−1/2]2 = P (x)−1

= P (x−1) (by (v) )

= P (P (x−1/2e)) (by (i) )

= P (x−1/2)P (e)P (x−1/2) (by (iii) )

= [P (x−1/2)]2.

The following is a collection of technical facts which will be often used in the succeeding
sections. Before we proceed, we give a definition of the star-shaped set in a vector space.

Definition 2.6 A subset C of a vector space is said to be star-shaped if there exists c0 ∈ C
such that the line segment connecting to c0 to any other point in C is contained entirely in C.

Lemma 2.7 (i) u ∈ K if and only if 〈u, v〉 ≥ 0 for every v ∈ K.

(ii) For every u ∈ K and v ∈ K, 〈u, v〉 = 0 if and only if u ◦ v = 0.

(iii) For every u ∈ intK and v ∈ K, 〈u, v〉 = 0 if and only if v = 0.

(iv) Define
U := {(x, y) ∈ intK × intK : x ◦ y ∈ intK}. (7)

Then
U = {(x, y) ∈ K ×K : x ◦ y ∈ intK}.

(v) For every (x, y) ∈ U , L(x)L(y) + L(y)L(x) � 0.

(vi) For every (x, y) ∈ U and (∆x,∆y) ∈ V × V , if

〈∆x,∆y〉 ≥ 0, (8)
x ◦ ∆y + y ◦ ∆x = 0 (9)

hold then ∆x = ∆y = 0.

(vii) U is a nonempty and open subset of intK × intK which is star-shaped.

(viii) For every x ∈ intK, (x, x) ∈ U .

(ix)

intK × {αe : α ∈ 	++} ⊂ U , {αe : α ∈ 	++} × intK ⊂ U ,
K × {αe : α ∈ 	+} ⊂ cl(U), {αe : α ∈ 	+} ×K ⊂ cl(U)

where
	+ := {α ∈ 	 : α ≥ 0} and 	++ := {α ∈ 	 : α > 0}.
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Proof: (i): Since the set K is self-dual, we obtain (i).
(ii): By the definition of the scalar product, it is clear that 〈u, v〉 = 0 if u ◦ v = 0. Suppose that
〈u, v〉 = 0. Since u, v ∈ K ⊂ V , by (i) of Theorem 2.3 and (i) of Corollary 2.4, there exist Jordan
frames ei (i = 1, . . . , r) and fj (j = 1, . . . , s) and nonnegative real numbers λi ≥ 0 (i = 1, . . . , r)
and µj ≥ 0 (j = 1, . . . , s) such that

u =
r∑

i=1

λiei, v =
s∑

j=1

µjfj.

Then 〈u, v〉 = 0 implies that
0 = 〈u, v〉 =

∑
i,j

λiµj〈ei, fj〉

and we have
λiµj = 0 or 〈ei, fj〉 = 0 (10)

for every (i, j), since λiµj ≥ 0 and 〈ei, fj〉 ≥ 0. Note that

〈ei, fj〉 = 〈ei, f2
j 〉 = 〈ei ◦ fj, fj〉 = 〈fj, fj ◦ ei〉 = 〈fj , L(ei)fj〉 ≥ 0

holds for every (i, j). Since L(ei) is self-adjoint and positive semidefnite (see (ii) of Proposition
2.1), if 〈ei, fj〉 = 0 then

0 = 〈fj , L(ei)fj〉 and L(ei)fj = 0.

Therefore, (10) turns out to be

λiµj = 0 or ei ◦ fj = 0

which ensures that
u ◦ v =

∑
i,j

λiµj(ei ◦ fj) = 0.

(iii): It is clear that 〈u, v〉 = 0 if u ∈ intK and v = 0. Suppose that 〈u, v〉 = 0 for some u ∈ intK
and v ∈ K. Then by a similar discussion in (ii) above, we have

0 = 〈u, v〉 =
s∑

j=1

µj〈u, fj〉 =
s∑

j=1

µj〈fj , u ◦ fj〉 =
s∑

j=1

µj〈fj, L(u)fj〉 (11)

for a decomposition v =
∑s

j=1 µjfj. Since L(u) is positive definite by (ii) of Proposition 2.1
and since fj �= 0, we see that 〈fj , L(u)fj〉 > 0 for every j = 1, . . . , s Thus µj = 0 (j = 1, . . . , s)
follows from µj ≥ 0 (j = 1, . . . , s) and (11); which implies v = 0.
(iv): Let

Ū := {(x, y) ∈ K ×K : x ◦ y ∈ intK}.
It is obvious that U ⊇ Ū . Suppose that (x, y) ∈ Ū and x ∈ K \ intK. Let x =

∑r
i=1 λiei and

y =
∑s

j=1 µjfj be decompositions of x and y given by (i) of Theorem 2.3. Since x ∈ K \ intK,
by (i) and (ii) of Corollary 2.4, there exists an index ī such that λī = 0. Define z :=

∑s
k=1 νkfk

where

νk =




1 if λk = 0,

0 otherwise.

8



Then z �= 0, z2 = z ∈ K, and

〈x ◦ y, z〉 = 〈
∑
i,j

λiµj(ei ◦ fj), z〉

=
∑
i,j,k

λiµjνk〈ei ◦ fj, fk〉

=
∑
i,j,k

λiµjνk〈L(fj)ei, fk〉

=
∑
i,j,k

λiµjνk〈ei, L(fj)fk〉

=
∑
i,j,k

λiµjνk〈ei, fj ◦ fk〉

=
∑
i,j

λiµjνj〈ei, f2
j 〉

=
∑
i,j

λiµjνj〈ei, fj〉

= 0

where the last equality follows from the definition of νk (k = 1, . . . , s). This leads to a contra-
diction. In fact,

0 = 〈x ◦ y, z〉 = 〈x ◦ y, z2〉
= 〈z, (x ◦ y) ◦ z〉
= 〈z,L(x ◦ y)z〉,

but z �= 0 and L(x ◦ y) is positive definite since x ◦ y ∈ intK. Thus, x ∈ intK. Similarly, we
can see that y ∈ intK.
(v): We first show that P (x, y) defined by (6) is positive definite for every x, y ∈ intK. Suppose
that x, y ∈ intK. Using the results of Proposition 2.5, we see that

P (x)−1/2P (x+ y)P (x)−1/2 = P (x−1/2)P (x+ y)P (x−1/2) (by (ix) )

= P (P (x−1/2)(x+ y)) (by (iii) )

= P (P (x−1/2)x+ P (x−1/2)y)

= P (P (x−1/2)P (x1/2)e+ P (x−1/2)y) (by (i) )

= P (e+ P (x−1/2)y). (by (ix) )

Similarly,

P (x)−1/2P (y)P (x)−1/2 = P (x−1/2)P (y)P (x−1/2) (by (ix) )

= P (P (x−1/2)(y)). (by (iii) )

Therefore, we have

P (x+ y) − P (x) − P (y) = P (x)1/2[P (e+ P (x−1/2)y) − P (e) − P (P (x−1/2)y)]P (x)1/2.
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Let z := P (x−1/2)y. It follows from the equation (6) that

P (e+ z) − P (e) − P (z) = 2[L(e)L(z) + L(z)L(e) − L(e ◦ z)]
= 2[L(z) + L(z) − L(z)]
= 2L(z).

Note that z = P (x1/2)y ∈ intK since x1/2 is invertible and y ∈ intK (see (viii) of Proposition
2.5). Thus we observe that

P (x+ y) − P (x) − P (y) = 2L(z) � 0.

Since the fact x ◦ y ∈ intK implies that L(x ◦ y) is positive definite, using (6) again, we can
conclude that

L(x)L(y) + L(y)L(x) = P (x, y) + L(x ◦ y)
= [P (x+ y) − P (x) − P (y)] + L(x ◦ y) � 0.

(vi): Let (x, y) ∈ U . Since x ∈ intK, by (ii) of Proposition 2.1, L(x) is invertible. Suppose that
(∆x,∆y) satisfy (8) and (9). The equation (9) implies

∆y + L(x)−1L(y)∆x = 0

and
〈∆x,∆y〉 + 〈∆x,L(x)−1L(y)∆x〉 = 0.

By (8), we have
〈∆x,L(x)−1L(y)∆x〉 ≤ 0.

Define ∆x̃ = L(x)−1∆x. Then

0 ≥ 〈∆x, L(x)−1L(y)∆x〉
= 〈L(x)∆x̃, L(x)−1L(y)L(x)∆x̃〉
= 〈∆x̃, L(y)L(x)∆x̃〉
= 〈∆x̃, (L(x)L(y) + L(y)L(x))∆x̃〉/2

which implies that ∆x̃ = 0 by the facts (x, y) ∈ U and (v) above. Finally, we see that

∆x = L(x)∆x̃ = 0 and ∆y = −L(x)−1L(y)∆x = 0.

(vii): By the fact (e, e) ∈ U and by the continuity of the operators x◦y and L(x)L(y)+L(y)L(x),
the set U is a nonempty open subset of intK × intK.

Let (x, y) ∈ U . For θ ∈ [0, 1], define

(x(θ), y(θ)) := (θe+ (1 − θ)x, θe+ (1 − θ)y) = θ(e, e) − (1 − θ)(x, y).

To see that the set U is star-shaped, it suffices to show that (x(θ), y(θ)) ∈ U for every θ ∈ [0, 1].
Since the set intK × intK is convex, for every θ ∈ [0, 1], we have (x(θ), y(θ)) ∈ intK × intK.

In addition, x(θ) ◦ y(θ) turns out to be
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x(θ) ◦ y(θ) = (θe+ (1 − θ)x) ◦ (θe+ (1 − θ)y)
= θ2e+ θ(1 − θ)(x+ y) + (1 − θ)2x ◦ y

where e ∈ intK, x+ y ∈ intK and x ◦ y ∈ intK. By the convexity of the cone intK, we see that
x(θ) ◦ y(θ) ∈ intK and hence (x(θ), y(θ)) ∈ U for every θ ∈ [0, 1].
(viii): For every x ∈ intK, (iv) of Proposition 2.1 implies that x◦x ∈ intK and hence (x, x) ∈ U .
(ix): Since intK is a convex cone, for every x ∈ intK and α ∈ 	++, it must hold that αe ∈ intK
and

x ◦ (αe) = αx ∈ intK.

Thus we see that
intK × {αe : α ∈ 	++} ⊂ U

and hence
K × {αe : α ∈ 	+} ⊂ cl(U).

By the symmetricity of the product x ◦ y = y ◦ x, we obtain the assertion.

Next we consider a special class of Jordan algebras. A Jordan algebra is called simple if it
cannot be represented as the sum of two Jordan algebras.

Proposition 2.8 Let V be a simple Euclidean Jordan algebra.

(i) For every u ∈ V ,
Tr(L(u)) =

n

r
tr(u).

(ii) For every nonzero idempotent c of V ,
√

r

2n
≤ ‖c‖ ≤ √

r

where the norm ‖u‖ is defined by (5).

Proof: See Proposition III.4.2 of [4] for (i). Since every nonzero idempotent c is an element
of K, by (i) of Corollary 2.4, all eigenvalues of c are nonnegative and tr(c) is positive. The
assertion (ii) follows from (i) of the proposition, (iii) of Theorem 2.3 and

0 < ‖c‖ =
√
〈c, c〉 =

√
tr(c2) =

√
tr(c) =

√
r

n
Tr(L(u)).

It is known that Simple Euclidean Jordan algebras can be classified into the following five
cases, which gives a classification for symmetric cones.

Theorem 2.9 Let V be a simple Euclidean Jordan algebra. Then V is isomorphic to one of
the following algebras, where the operator is defined by X ◦ Y = 1

2(XY + Y X) for the matrix
algebras.
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(i) The algebra (En+1, ◦), the algebra of quadratic forms in 	n+1 under the operation u ◦ v =
(uT v, u0v̄ + v0ū) where u = (u0, ū), v = (v0, v̄) ∈ 	n+1.

(ii) The algebra (Sn, ◦) of n× n symmetric matrices.

(iii) The algebra (Hn, ◦) of n× n complex Hermitian matrices.

(iv) The algebra (Qn, ◦) of n× n quaternion Hermitian matrices.

(v) The exceptional Albert algebra, i.e., the algebra (O3, ◦) of 3×3 octonian Hermitian matrices.

Proof: See Chapter V in [4].

3 Homeomorphism of an interior point map

In this section, we will extend the results in [17] to the case of symmetric cones and show the
homeomorphism of an interior point map using the results in Section 2.

The arguments used in the section are quite analogous to the ones in [17]. However, we
restrict the domain of the map F to intK× intK×	m and it affects subtle details of the proofs.
Therefore, we will give the proofs unless they completely coincide with the ones in [17].

Monteiro and Pang’s approach in [17] is based on a theory of local homeomorphic maps
(Section 2 and the Appendix of [16], Chapter 5 of Ortega and Rheinboldt [21] and Chapter 3
of Ambrosetti and Prodi [2]). The following quite general results are key propositions in their
analysis.

Here we introduce some notations and definitions. If M and N are two metric space, we
denote the set of continuous functions fromM to N by C(M,N) and the set of homeomorphisms
from M onto N by Hom(M,N). For given G ∈ C(M,N), D ⊆M and E ⊆ N , we define

G(D) := {G(u) : u ∈ D},
G−1(E) := {u ∈M : G(u) ∈ E}.

We will also denote “G restricted to the pair (D,E)” by G|(D,E).

Definition 3.1 (Section 2 of [16], Section 2.2 of [17]) (i) A metric space M is connected
if there exists no partition (V1, V2) of M for which V1 and V2 are nonempty and open.

(ii) A metric space M is path-connected if for any two points u0, u1 ∈M , there exists a path,
i.e., a continuous function p : [0, 1] →M such that p(0) = u0 and p(1) = u1.

(iii) A metric space m is simply-connected if it is path-connected and for any path p : [0, 1] →
M with p(0) = p(1) = u, there exists a continuous map α : [0, 1] × [0, 1] → M such that
α(s, 0) = p(s)and α(s, 1) = u for all s ∈ [0, 1] and α(0, t) = α(1, t) = u for all t ∈ [0, 1].

(vi) The map G ∈ C(M,N) is said to be proper with respect to the set E ⊆ N if the set
G−1(K) ⊆M is compact for every compact set K ⊆ E. If G is proper with respect to N ,
we will simply say that G is proper.
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It is easy to see that every star-shaped set (see Definition 2.6) in a normed vector space is
simply-connected.

Proposition 3.2 (Theorem 1 of [16], Proposition 1 of [17]) Let M and N be metric spaces
such that M is path-connected and N is simply-connected. Suppose that G : M → 	n is a local
homeomorphism. Then G is proper if and only if G ∈ Hom(M,N).

Proposition 3.3 (Corollary 1 of [16], Proposition 2 of [17]) Let G ∈ C(M,N), M0 ⊆
M and N0 ⊆ N .

(i) Suppose that G, M0 ⊆M and N0 ⊆ N satisfy the following conditions:

(a) G|(M0,N) is a local homeomorphism,

(b) G(M0) ∩N0 �= ∅,
(c) G(M \M0) ∩N0 = ∅, and

(d) G is proper with respect to a subset E such that N0 ⊆ E ⊆ N .

Then G|(M0∩G−1(N0),N0) is a proper local homeomorphism.

(ii) Suppose that G, M0 ⊆ M and N0 ⊆ N satisfy the conditions (a) – (d) in (ii) above and
the additional condition below:

(e) N0 is connected.

Then G(M0) ⊇ N0 and G(cl(M0)) ⊇ E ∩ cl(N0).

Proposition 3.4 (Corollary 3 of [16], Proposition 3 of [17]) Let M be a path-connected
metric space and let V be an n-dimensional real vector space. Suppose that G : M → V is a
local homeomorphism and that G−1([y0, y1]) is compact for any pair of points y0, y1 ∈ G(M).
Then, G|(M,G(M)) ∈ Hom(M,G(M)) and G(M) is convex.

The following result is analogous to Lemma 2 of [17], but the restriction on the domain F
to intK × intK ×	m has an effect on the set for which the map H is shown to be proper.

Lemma 3.5 (cf. Lemma 2 of [17]) Let F : intK × intK × 	m → V × 	m be a continuous
map which satisfies Assumption 1.1. Let H be the map defined by (4). If the map H restricted to
U ×	m is a local homeomorphism, then the map H is proper with respect to intK×F (U ×	m).

Proof: Let C be a compact subset of intK×F (U×	m). We first show thatH−1(C) is closed.
Suppose that there exists a sequence {(x(k), y(k), z(k))} ⊂ H−1(C) such that (x(k), y(k), z(k)) →
(x̄, ȳ, z̄). For each k, we see that

(x(k), y(k), z(k)) ∈ intK × intK ×	m, H(x(k), y(k), z(k)) ∈ C.

The continuity of H and the closedness of C ensure that

(x̄, ȳ, z̄) ∈ K ×K ×	m, H(x̄, ȳ, z̄) ∈ C.
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Since C is a subset of intK × F (U × 	m), the fact H(x̄, ȳ, z̄) ∈ C implies that

x̄ ◦ ȳ ∈ intK.

Thus, by (vi) of Lemma 2.7, we have (x̄, ȳ) ∈ intK × intK and hence (x̄, ȳ, z̄) ∈ H−1(C).
Next, let us show that H−1(C) is bounded. Suppose that H−1(C) is unbounded. Then

there exists a sequence {(x(k), y(k), z(k))} ⊆ H−1(C) for which

lim
k→∞

√
‖x(k)‖2 + ‖y(k)‖2 + ‖z(k)‖2 = ∞

holds. Since C is compact, there exists an F∞ ∈ F (U × 	m) such that

F∞ = lim
k→∞

F (x(k), y(k), z(k)). (12)

Here F∞ ∈ F (U × 	m) ensures the existence of an (x∞, y∞, z∞) ∈ U × 	m satisfying

F (x∞, y∞, z∞) = F∞. (13)

Note that, since (x∞, y∞) ∈ intK × intK, there exists an η > 0 such that

N∞ := {(x, y, z) ∈ U × 	m : (x− η−1e, y − η−1e) ∈ intK × intK, ‖x‖ < η, ‖y‖ < η}

contains (x∞, y∞). Since N∞ is an open set and every local homeomorphism maps open sets
onto open sets, the set H(N∞) and hence the set F (N∞) are open. Thus, by (12), it can be
seen that for every sufficient large k ≥ k0, we obtain F (x(k), y(k), z(k)) ∈ F (N∞), which implies
that there exists (x̃(k), ỹ(k), z̃(k)) ∈ N∞ satisfying F (x(k), y(k), z(k)) = F (x̃(k), ỹ(k), z̃(k)) for every
k ≥ k0. Here, (i) of Assumption 1.1 implies that

〈x̃(k) − x(k), ỹ(k) − y(k)〉 ≥ 0

and hence
〈x̃(k), y(k)〉 + 〈x(k), ỹ(k)〉 ≤ 〈x̃(k), ỹ(k)〉 + 〈x(k), y(k)〉. (14)

We see that {x(k) ◦ y(k)} is bounded since {H(x(k), y(k), z(k))} lies in the compact set C. There-
fore there exists a γ > 0 such that

tr(x(k) ◦ y(k)) = 〈x(k), y(k)〉 ≤ γ (15)

for every k. In addition, since (x̃(k), ỹ(k)) ∈ N∞, it follows that

〈x̃(k) − η−1e, y(k)〉 ≥ 0, 〈x(k), ỹ(k) − η−1e〉 ≥ 0, (16)
‖x̃(k)‖ ≤ η, ‖ỹ(k)‖ ≤ η. (17)

Consequently, we have

〈η−1e, y(k)〉 + 〈x(k), η−1e〉 ≤ 〈x̃(k), y(k)〉 + 〈x(k), ỹ(k)〉 (by (16) )
≤ 〈x̃(k), ỹ(k)〉 + 〈x(k), y(k)〉 (by (14) )
≤ η2 + γ (by (17) and (15) ) (18)
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for every k ≥ k0. Since η−1e ∈ intK, by Proposition 2.2, the inequality (18) ensures that the
set {(x(k), y(k)) : k ≥ k0} ⊂ intK × intK is bounded. This implies that {z(k)} is also bounded
by (ii) of Assumption 1.1. Thus we obtain a contradiction.

In the following two lemmas and Theorem 3.8, we consider that the map F is affine and
defined on V × V × 	m. Theorem 3.8 leads us to a technical result, Lemma 3.9, which is a
crucial lemma to establish the result for nonlinear maps F , Theorem 3.8.

Lemma 3.6 (cf. Lemma 3 of [17]) Let F : V × V × 	m → V × 	m be an affine map and
let F 0 be the linear part of F .

(i) F is (x, y)-equilevel-monotone if and only if for every (∆x,∆y,∆z) ∈ V × V × 	m,
F 0(∆x,∆y,∆z) = 0 implies that 〈∆x,∆y〉 ≥ 0.

(ii) F is z-injective if and only if for every ∆z ∈ 	m, F 0(0, 0,∆z) = 0 implies that ∆z = 0.

(iii) F is z-injective if and only if F is z-bounded.

Proof: The proof is completely the same as the one of Lemma 3 in [17].

Lemma 3.7 (cf. Lemma 4 of [17]) Let F : V ×V ×	m be an affine map which is equilevel-
monotone and z-injective. Then H restricted to U × 	m is a local homeomorphism.

Proof: Since U×	m is an open set by (vii) of Lemma 2.7, it suffices to show that the derivative
map H ′(x, y, z) : V × V ×	m → V × V ×	m is an isomorphism for every (x, y, z) ∈ U × 	m.
Let (x, y, z) ∈ U × 	m and suppose that H ′(x.y, z)(∆x,∆y,∆) = 0. Then

H ′(x.y, z)(∆x,∆y,∆) =


∆x ◦ y + x ◦ ∆y

F 0(∆x,∆y,∆z)




and we see that

∆x ◦ y + x ◦ ∆y = 0, (19)
F 0(∆x,∆y,∆z) = 0 (20)

where F 0 : V × V × 	m is the linear part of F . Since F is (x, y)-equilevel-monotone, by (i)
of Lemma 3.6, the equality (20) implies 〈∆x,∆y〉 ≥ 0. Combining this with (19), by (vi)
of Lemma 2.7, we have ∆x = ∆y = 0. Thus, by the z-injectivity of F , we obtain ∆z = 0
from (ii) of Lemma 3.6. By the linearity of H ′(x, y, z), the fact that (∆x,∆y, δz) = (0, 0, 0)
whenever H ′(x.y, z)(∆x,∆y,∆) = 0 implies the isomorphism of H ′(x.y, z)(∆x,∆y,∆) for every
(x, y, z) ∈ U × 	m.

Theorem 3.8 (cf. Theorem 1 of [17]) Let F : V × V × 	m → V × 	m be an affine map
which is (x, y)-equilevel-monotone, z-injective and z-bounded on V × V × 	m. Then the map
H defined by (4) satisfies that
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(i) H is proper with respect to intK × F (U × 	m),

(ii) H maps U × 	m homeomorphically onto intK × F (U × 	m).

Proof: Define

M := intK × intK ×	m, N := V × V ×	m, E := intK × F (U × 	m),

M0 := U × 	m, N0 := intK × F (U × 	m), G := H|(M,N).
(21)

We can easily see that
N0 ⊆ E ⊆ N, M0 ⊆ H−1(N0). (22)

(i): Since F is equilevel-bounded and z-injective, Lemma 3.7 and (iii) of Lemma 3.6 ensure
that H|(M0,N) = G|(M0,N) is a local homeomorphism and z-bounded. Thus the map F satisfies
Assumption 1.1 and by Lemma 3.5, H|(M,E) is proper with respect to E = intK ×F (U ×	m).
(ii): Note that (i) above ensures that the requirement (d) of Proposition 3.3 is satisfied. We
show that another requirements (a)–(c) are also satisfied.

Lemma 3.7 implies that G|(M0,N) = H(M0,N) is a local homeomorphism, i.e., the requirement
(a) holds.

Let us show that H(M0) ∩ N0 �= ∅ and H(M \M0) ∩ N0 = ∅. The former follows from
the fact that (e, e, 0) ∈ U × 	m and H(e, e, 0) ∈ H(M0) ∩ N0. To show the latter, suppose
that H(M \ M0) ∩ N0 �= ∅. Then there exists a triplet (x, y, z) ∈ intK × intK × 	m such
that (x, y) �∈ U and H(x, y, z) ∈ N0. Then, by the definitions (4) and (21) of H and N0, the
fact H(x, y, z) ∈ N0 implies that F (x, y, z) ∈ F (U × 	m) and hence (x, y) ∈ U , which is a
contradiction.

Consequently, we have shown that (a)–(d) of Proposition 3.3 are satisfied. Since (22) ensures
the relation M0 ⊆M0 ∩H−1(N0) = M0 ∩G−1(N0), we obtain that the map H restricted to

(M0, N0) = (U × 	m, intK × F (U × 	m))

is a proper local homeomorphism.
Next, we show that H(U ×	m) = intK × F (U ×	m) by using (ii) of Proposition 3.3. It is

clear that
G(M0) = H(U × 	m) ⊆ intK × F (U × 	m) = N0.

To obtain the inverse inclusion, we should mention that the set N0 is connected. In fact, by
(vii) of Lemma 2.7, U × 	m is star-shaped and hence path-connected. Since F is continuous,
the sets F (U ×	m) and N0 = intK×F (U ×	m) are also path-connected, and hence connected.
Thus, we can apply (ii) of Proposition 3.3 and obtain that

H(U × 	m) = G(M0) ⊇ N0 = intK × F (U ×	m).

Finally, let us show that G ∈ H(M0, N0). In (vii) of Lemma 2.7, we have seen that the
set U is star-shaped. Since F is affine, both of the set M0 and N0 are star-shaped and hence
simply-connected. By the local homeomorphism of G, the assertion G ∈ H(M0, N0) follows
from Proposition 3.2.

We proceed to give an important lemma concerning the set U using the above theorem.
Note that the set U is defined regardless of the map F and the following lemma is applicable
for the case where the map F is nonlinear and not necessarily affine.
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Lemma 3.9 (cf. Lemma 5 of [17]) For every (x0, y0), (x1, y1) ∈ U , if 〈x0 − x1, y0 − y1〉 ≥ 0
and x0 ◦ y0 = x1 ◦ y1 then (x0, y0) = (x1, y1).

Proof: Let ∆x = x0 − x1 and ∆y = y0 − y1. Suppose that ∆x �= 0 or ∆y �= 0. Without any
loss of generality, we may assume that ∆x �= 0.

First, we will show that there exists a linear map M : V → V such that M(∆x) = ∆y and
〈w,M(w)〉 ≥ 0 for every w ∈ V . If ∆y = 0 then M = O satisfies the requirements. Otherwise,
we can consider the following two cases:

Case 1 (〈∆x,∆y〉 > 0): Let L = {v : 〈v,∆y〉 = 0}. Then ∆x �∈ L and the subspace generated
by ∆x and the subspace L span V . Thus, every w ∈ V is given by w = α∆x+ v for some
v ∈ L and α ∈ 	. Since ∆x �∈ L, there exists a unique linear map M satisfying

M(∆x) = ∆y and M(v) = 0 for every v ∈ L.

and for every w ∈ V , we have

〈w,M(w)〉 = 〈α∆x+ v,M(α∆x+ v)〉
= 〈α∆x+ v, α∆y〉
= α2〈∆x,∆y〉 ≥ 0.

Case 2 (〈∆x,∆y〉 = 0): Let L1 = {v : 〈v,∆y〉 = 0 and 〈v,∆y〉 = 0}. Then ∆x,∆y �∈ L1

and the subspace generated by {∆x,∆y} and L1 span V . Thus, every w ∈ V is given by
w = α∆x + β∆y + v for some v ∈ L1 and α, β ∈ 	. Since ∆x,∆y �∈ L, there exists a
unique linear map M satisfying

M(∆x) = ∆y, M(∆y) = −‖∆y‖2

‖∆x‖2
∆x and M(v) = 0 for every v ∈ L1

and for every w ∈ V , we have

〈w,M(w)〉 = 〈α∆x+ β∆y + v,M(α∆x+ β∆y + v)〉
= 〈α∆x+ β∆y + v, α∆y − β

‖∆y‖2

‖∆x‖2
∆x〉

= αβ‖∆y‖2 − αβ
‖∆y‖2

‖∆x‖2
‖∆x‖2 = 0.

Define F (x, y) = y −M(x) for every (x, y) ∈ V × V . While the map F will be affected by
the choice of (∆x,∆y) = (x0 − x1, y0 − y1), it always satisfies the assumptions of Theorem
3.8 with m = 0 and that F (x0, y0) = F (x1, y1). Thus, by (ii) of Theorem 3.8, the associated
map H restricted to U is one-to-one. Since (x0, y0) and (x1, y1) satisfy x0 ◦ y0 = x1 ◦ y1

and F (x0, y0) = F (x1, y1), we obtain that H(x0, y0) = H(x1, y1) and hence the desired result
(x0, y0) = (x1, y1).

The following is our main result.

Theorem 3.10 (cf. Theorem 2 of [17]) Suppose that a continuous map F : intK × intK ×
	m → V ×	m satisfies Assumption 1.1. Then the map H defend by (4) satisfies that
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(i) H is proper with respect to intK × F (U × 	m),

(ii) H maps U × 	m homeomorphically onto intK × F (U × 	m).

Proof: The proof is similar to the one of Theorem 3.8, while we should note that the domain
of the map H is restricted on the set intK × intK ×	m.

Define the sets M , N , E, M0 and N0, and the map G as in (21). Then (22) holds even in
this case.
(i): To show the local homeomorphism of H|(M0,N) = G|(M0,N), we use Lemma 3.9 instead of
Lemma 3.7. Since H|(M0,N) is a continuous map from an open subset of V × V ×	m into the
same space, by the domain invariance theorem, it suffices to show that H|(M0,N) is one-to-one.

Suppose that (x̂, ŷ, ẑ), (x̃, ỹ, z̃) ∈ U × 	m satisfy H(x̂, ŷ, ẑ) = H(x̃, ỹ, z̃), i.e.,

F (x̂, ŷ, ẑ) = F (x̃, ỹ, z̃), x̂ ◦ ŷ = x̃ ◦ ỹ.

Since F is (x, y)-equilevel-monotone, we see that

〈x̂− x̃, ŷ − ỹ〉 ≥ 0, x̂ ◦ ŷ = x̃ ◦ ỹ.

By Lemma 3.9, the above relations imply that

(x̂, ŷ) = (x̃, ỹ)

and by the z-injectivity of F , we have

(x̂, ŷ, ẑ) = (x̃, ỹ, z̃).

Thus, H|(M0,N) is one-to-one and maps M0 homeomorphically onto H(M0). By the local
homeomorphism of H|(M0,N) together with the equilevel-monotonicity and the z-boundedness
of the map F , Lemma 3.5 ensures thatH is proper with respect to the set E = intK×F (U×	m).
(ii): In the proof of (i) above, we have already seen that (a) and (d) of Proposition 3.3 hold.
By the same discussions as in the proof of (ii) of Theorem 3.8, we can see that the assumptions
(b) and (c) of Proposition 3.3 are also satisfied. Since F is continuous, F (U × 	m) and N0 =
intK ×F (U ×	m) are also path-connected. Thus, as in the proof of (ii) of Theorem 3.8 again,
we obtain that

H(U × 	m) = G(M0) = N0 = intK × F (U ×	m).

In what follows, we discuss the convexity of the set F (U ×	m), which is a key property for
finding a trajectory and observing its limiting behavior in our homogeneous model described
in Section 5. To do this, we impose the additional assumption below on the map F , which has
been introduced in [17].

Assumption 3.11 F is (x, y)-everywhere-monotone on the domain with respect to the set
V × 	m, i.e., there exist continuous functions φ from the domain of F to the set V × 	m

and c : (V ×	m) × (V ×	m) → 	 such that

c(r, r) = 0
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for every r ∈ V ×	m and

〈x− x′, y − y′〉 ≥ 〈r − r′, φ(x, y, z) − φ(x′, y′, z′)〉V ×�m + c(r, r′)

holds for every (x, y, z) and (x′, y′, z′) in the domain of F satisfying F (x, y, z) = r and F (x′, y′, z′) =
r′.

Here we define
〈(a, b), (a′, b′)〉V ×�m = 〈a, a′〉 + bT b′

for every (a, b), (a′, b′) ∈ V ×	m.

It can be easily seen that F is (x, y)-equilevel-monotone whenever F is (x, y)-everywhere-
monotone.

Theorem 3.12 (cf. Theorem 3 of [17]) Suppose that a continuous map F : intK × intK ×
	m → V ×	m satisfies Assumptions 1.1 and 3.11. Then the set F (U ×	m) is an open convex
set.

Proof: It suffices to show that H(U × 	m) is open and convex since H(U × 	m) =
intK × F (U × 	m) holds by (ii) of Theorem 3.10. Since U × 	m is open (see (vii) of Lemma
2.7), (ii) of Theorem 3.10 implies that the set H(U ×	m) is also open. In what follows, we will
show that the set H(U × 	m) is convex. Define

M := U × 	m, N := V × V ×	m, G := H|(M,N).

Then the set M is path-connected by (vii) of Lemma 2.7 and G is a local homeomorphism by
(ii) of Theorem 3.10. Thus, to obtain the assertion from Proposition 3.4, we have only to show
that for any w0, w1 ∈ G(M), G−1([w0.w1]) is compact.

Let w0, w1 ∈ G(M). Then there exist (x̃, ỹ, z̃), (x̂, ŷ, ẑ) ∈ U × 	m such that

G(x̃, ỹ, z̃) = w0 and G(x̂, ŷ, ẑ) = w1.

Define E = [G(x̃, ỹ, z̃),G(x̂, ŷ, ẑ)]. We will show that every sequence {(x(k), y(k), z(k))} ⊂
G−1(E) has an accumulation point in G−1(E). Let {(x(k), y(k), z(k))} ⊂ G−1(E) be given.
Then there exists a sequence {τk} ⊂ [0, 1] for which

x(k) ◦ y(k) = τkx̃ ◦ ỹ + (1 − τk)x̂ ◦ ŷ, (23)
F (k) = τkF̃ + (1 − τk)F̂ (24)

hold for every k ≥ 0, where we define F (k) := F (x(k), y(k), z(k)), F̃ := F (x̃, ỹ, z̃) and F̂ :=
F (x̂, ŷ, ẑ). Since we assume that F is (x, y)-everywhere-monotone, by (24), we have

〈x̃− x(k), ỹ − y(k)〉 ≥ 〈F̃ − F (k), φ̃− φ(k)〉 + c(F̃ , F (k))
= (1 − τk)〈F̃ − F̂ , φ̃− φ(k)〉 + c(F̃ , F (k))

where φ̃ := φ(x̃, ỹ, z̃) and φ(k) := φ(x(k), y(k), z(k)). It follows that

〈x(k), ỹ〉 + 〈y(k), x̃〉 ≤ 〈x̃, ỹ〉 + 〈x(k), y(k)〉 − c(F̃ , F (k))
−(1 − τk)〈F̃ − F̂ , φ̃− φ(k)〉. (25)
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Similarly, we have

〈x(k), ŷ〉 + 〈y(k), x̂〉 ≤ 〈x̂, ŷ〉 + 〈x(k), y(k)〉 − c(F̂ , F (k))
−τk〈F̂ − F̃ , φ̂− φ(k)〉. (26)

Multiplying (25) by τk, (26) by (1 − τk) and adding them, we see that

〈x(k), τkỹ + (1 − τk)ŷ〉 + 〈y(k), τkx̃+ (1 − τk)x̂〉
≤ τk〈x̃, ỹ〉 + (1 − τk)〈x̂, ŷ〉 + 〈x(k), y(k)〉

+τk(1 − τk)〈F̂ − F̃ , φ̃− φ̂〉 − τkc(F̃ , F (k)) − (1 − τk)c(F̂ , F (k)) (27)

holds for every k ≥ 0. Note that the convexity of intK guarantees that τkỹ + (1 − τk)ŷ ∈ intK
and τkx̃+ (1 − τk)x̂ ∈ intK for every τk ∈ [0, 1]. Thus, there exists an η > 0 such that

([τkỹ + (1 − τk)ŷ] − ηe, [τkx̃+ (1 − τk)x̂] − ηe) ∈ intK × intK

for every τk ∈ [0, 1]. This implies that

〈x(k), [τkỹ + (1 − τk)ŷ] − ηe〉 + 〈y(k), [τkx̃+ (1 − τk)x̂] − ηe〉 ≥ 0

and hence

〈x(k), ηe〉 + 〈y(k), ηe〉 ≤ 〈x(k), τkỹ + (1 − τk)ŷ〉 + 〈y(k), τkx̃+ (1 − τk)x̂〉 (28)

for every k ≥ 0. Note that the continuity of c, the boundedness of {τk}, the boundedness of
{F (k)}, and (27) imply that the right hand side of (28) is bounded. By Proposition 2.2, we
can conclude that {(x(k), y(k))} ⊂ intK × intK is bounded. The z-boundedness of F ensures
that {(x(k), y(k), z(k))} ⊂ U ×	m is also bounded. Thus, {(x(k), y(k), z(k))} has an accumulation
point (x̄, ȳ, z̄) ∈ cl(U × 	m) = cl(U) ×	m.

Let us show that (x̄, ȳ, z̄) ∈ U ×	m. The equation (23), x̃ ◦ ỹ ∈ intK, x̂ ◦ ŷ ∈ intK and the
convexity of intK guarantee that x̄ ◦ ȳ ∈ intK and hence (x̄, ȳ) ∈ U ⊆ intK × intK by (iv) of
Lemma 2.7. Thus, (x̄, ȳ, z̄) lies in the domain of G and G(x̄, ȳ, z̄) is well defined. Since G is
continuous and the set E is closed, we finally see that G(x̄, ȳ, z̄) ∈ E and (x̄, ȳ, z̄) ∈ G−1(E).

4 Solvability of (CP)

In this section, we discuss the solvability of (CP) assuming that the map F is defined and
continuous on the set K × K × 	m instead of intK × intK × 	m. The following results are
direct extensions of the ones in [17] to the case of symmetric cones and obtained by quite similar
discussions in the previous section. We will only give the differences arising from the expansion
of the domain of the map F in the proofs below.

Lemma 4.1 (cf. Lemma 2 of [17] and Lemma 3.5) Let F : K ×K ×	m → V ×	m be a
continuous map which is (x, y)-equilevel-monotone and z-bounded on K ×K × 	m. Let H be
the map defined by (4). If the map H restricted to U ×	m is a local homeomorphism, then the
map H is proper with respect to V × F (U × 	m).
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Proof: Let C be a compact subset of V × F (U ×	m). Since the domain K ×K ×	m of F
is closed, by the continuity of H, the set H−1(C) is always closed. The argument to obtain the
boundedness of H−1(C) is the same as in the proof of Lemma 3.5.

Theorem 4.2 (cf. Theorem 2 of [17] and Theorem 3.10) Suppose that a continuous map
F : K ×K ×	m → V ×	m satisfies Assumption 1.1. Then the map H defend by (4) satisfies
that

(i) H is proper with respect to V × F (U × 	m),

(ii) H maps U × 	m homeomorphically onto intK × F (U × 	m), and

(iii) H(K ×K ×	m) ⊇ K × F (U × 	m).

Proof: Define the sets M , N , M0 and N0, and the map G as in (21), and the set E by

E := V × F (U × 	m).

(i): The assumption imposed here is stricter than the one in Theorem 3.10. Thus the local
homeomorphism of H|(M0,N) = G|(M0,N) is similarly obtained from Lemma 3.9. Using Lemma
4.1 instead of Lemma 3.5, we can see that H is proper with respect to E = V × F (U × 	m),
i.e., the assertion (i) holds.
(ii): In the above discussion, we have shown that (d) of Proposition 3.3 holds. Since the sets
M , N and N0 are the same as in Theorem 3.10, we can see that the assumptions (a)–(c) of
Proposition 3.3 are also satisfied and that

H(U × 	m) = G(M0) = N0 = intK × F (U ×	m).

holds.
(iii): Since U is star-shaped (see (vii) of Lemma 2.7), U ×	m is connected and hence N0 is also
connected by the continuity of F . Combining this with the facts

K ×K ×	m = cl(M) ⊇ cl(M0) and E ∩ cl(N0) = K × F (U × 	m),

the assertion (iii) follows from (ii) of Proposition 3.3.

The following corollary can be obtained as a direct consequence of Theorem 3.12.

Corollary 4.3 (cf. Theorem 3 of [17] and Theorem 3.12) Suppose that a continuous map
F : K ×K ×	m → V ×	m satisfies Assumptions 1.1 and 3.11. Then the set F (U ×	m) is an
open convex set.

The solvability of (CP) follows from the above results.

Corollary 4.4 (cf. Corollary 1 of [17]) Suppose that the map F : K ×K ×	m → V ×	m

is continuous and that 0 ∈ F (U × 	m), which implies that (CP) has an interior feasible point
(x̄, ȳ, z̄) ∈ intK × intK × 	m such that x̄ ◦ ȳ ∈ intK and F (x̄, ȳ, z̄) = 0. Let p : [0, 1] →
K × F (U ∩ 	m) be a path for which

p(0) = 0 and p(t) ∈ intK × F (U × 	m)

hold and suppose that the set {p(t) : t ∈ [0, 1]} is bounded.
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(i) If the map F satisfies Assumption 1.1 then there exists a unique path (x, y, z) : (0, 1] →
intK × intK ×	m such that

H(x(t), y(t), z(t)) = p(t) for every t ∈ (0, 1]

and {(x(t), y(t), z(t)) : t ∈ (0, 1]} is bounded. Thus (CP) is asymptotically solvable. In
addition, every accumulation point of {(x(t), y(t), z(t)) : t ∈ (0, 1]} is a solution of (CP).

(ii) If F satisfies Assumptions 1.1 and 3.11 then for each h ∈ intK ×F (U ∩	m), we can take

p(t) = th, for every t ∈ [0, 1]

as a path p : [0, 1] → K × F (U ∩ 	m) satisfying the requirements above.

Proof: (i): The assertion follows from Theorem 4.2: (ii) of the theorem implies the unique
existence of (x(t), y(t), z(t)) for every t ∈ (0, 1], (i) implies the boundedness of (x(t), y(t), z(t)),
and (iii) implies that every accumulation point of {(x(t), y(t), z(t))} is a solution of (CP).
(ii): Since (0, 0) ∈ K × F (U × 	m), Corollary 4.3 ensures that

{p(t) : p(t) = th, t ∈ [0, 1]} ⊂ K × F (U × 	m)

for every h ∈ intK × F (U ∩	m). It is obvious that {p(t) : t ∈ [0, 1]} is bounded, p(0) = 0 and
p(t) ∈ intK × F (U × 	m) for every t ∈ (0, 1].

5 A homogeneous model for (CP)

In this section, as an application of the results in Section 3, we give a homogenous model for
solving a special class of (CP)s where the map F : K ×K → V is of the form

F (x, y) = y − ψ(x) (29)

for a continuous map ψ : K → V .
Our model is a natural extension of the homogeneous model proposed by Andersen and

Ye [3]. One of the remarkable features of their model is that the associated trajectory gives
certifications on the strong feasibility or the strong infeasibility of the original problem. Our
results, Theorems 5.4 and 5.5, show that our homogeneous model inherits the property even
for the case of symmetric cones.

Throughout this section, we impose the following assumption on ψ.

Assumption 5.1 The map ψ : K → V in (29) is monotone on the set K, i.e.,

〈ψ(x) − ψ(x′), x− x′〉 ≥ 0

for every x, x′ ∈ K.

Proposition 5.2 Suppose that S ⊆ K and ψ : S → V is monotone on the set S. Then the
map F : S×K → V given by (29) is (x, y)-everywhere-monotone on the set S×K with m = 0.
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Proof: Define φ : S ×K → V and c : V × V → 	 by

φ(x, y) := x and c := 0.

Let r := F (x, y) and r′ := F (x′, y′) where (x, y), (x′, y′) ∈ S ×K. Then we see that

ψ(x) − ψ(x′) = (y − y′) − (r − r′),

and the monotonicity of ψ implies that

0 ≤ 〈ψ(x) − ψ(x′), x− x′〉
= 〈(y − y′) − (r − r′), x− x′〉
= 〈y − y′, x− x′〉 − 〈r − r′, x− x′〉
= 〈y − y′, x− x′〉 − 〈r − r′, φ(x, y) − φ(x′, y′)〉 + c(r, r′).

Thus, by the definition of (x, y)-everywhere-monotonicity in Assumption 3.11, the map F is
(x, y)-everywhere-monotone on the set S ×K with m = 0.

Define the sets

	+ := {τ ∈ 	 : τ ≥ 0} and 	++ := {τ ∈ 	 : τ > 0}.

For a given (CP) with a map F of the form (29), we consider the following homogeneous model
(HCP):

(HCP) Find (x, τ, y, κ) ∈ (K ×	++) × (K ×	+)

s.t. FH(x, τ, y, κ) = 0, (x, τ) ◦H (y, κ) = 0
(30)

where FH : (K ×	++) × (K ×	+) → (V ×	) and (x, τ) ◦H (y, κ) are given by

FH(x, τ, y, κ) :=


 y − τψ(x/τ, z/τ)

κ+ 〈ψ(x/τ), x〉


 (31)

and

(x, τ) ◦H (y, κ) :=


x ◦ y

τκ


 . (32)

For ease of notation, we use the following symbols

VH := V ×	, KH := K ×	+, xH := (x, τ) ∈ VH, yH := (y, κ) ∈ VH. (33)

It should be noted that the set KH is a Cartesian product of two symmetric cones K and 	+

and given by

KH =


x

2
H =


x2

τ2


 : xH ∈ VH


 .
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Thus the closed convex cone KH is the symmetric cone of VH. It can be easily seen that
intKH = intK ×	++.

We also introduce the scalar product 〈(x, τ), (y, κ)〉H associated to the bilinear product ◦H

as
〈(x, τ), (y, κ)〉H := 〈x, y〉 + τκ. (34)

For every xH = (x, τ) ∈ VH, the linear operator

LH(xH) :=


L(x) 0

0T τ




is self-adjoint with respect to 〈·, ·〉, i.e.,

〈vH, LH(xH)wH〉 = 〈LH(xH)vH, wH〉
for every vH, wH ∈ VH.

Let us define the map ψH by

ψH(xH) = ψH(x, τ) :=


 τψ(x/τ)

−〈ψ(x/τ), x〉


 (35)

for every xH = (x, τ) ∈ K ×	++. Then the map FH is given by

FH(xH, yH) = yH − ψH(xH). (36)

We also define the set

UH := {(xH, yH) ∈ intKH × intKH : xH ◦H yHintKH}. (37)

It is clear that the set UH has the properties described in Lemma 2.7 with U = UH.
The following proposition shows that a monotonicity of the map FH on the set intKH×intKH

can be obtained if the map ψ is monotone on the set K.

Proposition 5.3 Suppose that ψ : K → V satisfies Assumption 5.1. Then we have

(i) the map ψH is monotone on intKH, and

(ii) the map FH is (xH, yH)-everywhere-monotone on intKH × intKH.

Thus, the map FH with the domain intKH × intKH satisfies Assumptions 1.1 and 3.11 with
m = 0 whenever the map ψ is monotone on K.

Proof: (i): For every xH, x
′
H ∈ intKH, it follows from the definition (35) that

〈ψH(xH) − ψH(x′H), xH − x′H〉H
= 〈τψ(x/τ) − τ ′ψ(x′/τ ′), x− x′〉 − (τ − τ ′)[〈ψ(x/τ), x〉 − 〈ψ(x′/τ ′), x′〉]
= 〈τψ(x/τ), x − x′〉 − 〈τ ′ψ(x′/τ ′), x− x′〉 − (τ − τ ′)〈ψ(x/τ), x〉 + (τ − τ ′)〈ψ(x′/τ ′), x′〉
= −τ〈ψ(x/τ), x′〉 − τ ′〈ψ(x′/τ ′), x〉 + τ ′〈ψ(x/τ), x〉 + τ〈ψ(x′/τ ′), x′〉
= −ττ ′〈ψ(x/τ), x′/τ ′〉 − ττ ′〈ψ(x′/τ ′), x/τ〉 + ττ ′〈ψ(x/τ), x/τ〉 + ττ ′〈ψ(x′/τ ′), x′/τ ′〉
= ττ ′〈ψ(x/τ), (x/τ) − (x′/τ ′)〉 − ττ ′〈ψ(x′/τ ′), (x/τ) − (x′/τ ′)〉
= ττ ′〈ψ(x/τ) − ψ(x′/τ ′), (x/τ) − (x′/τ ′)〉
≥ 0
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where the last inequality follows from the monotonicity of ψ. Thus the map ψH is monotone on
the set intKH.
(ii): The assertion follows from (i) above and Proposition 5.2 with S = intKH.

In the theorem below, the assertions (i)–(iii) follow only from the construction (35) of the
map ψH while we assume that the map ψ is monotone. Note that we assume that (V, ◦) is a
simple Euclidean Jordan algebra in the assertion (v).

Theorem 5.4 (cf. Theorem 1 of [3]) Suppose that ψ : K → V satisfies Assumption 5.1.

(i) For every xH ∈ intKH,
〈xH, ψH(xH)〉H = 0.

(ii) Every asymptotically feasible solution (x̂H, ŷH) of (HCP) is an asymptotically complemen-
tary solution.

(iii) (HCP) is asymptotically feasible.

(iv) (CP) has a solution if and only if (HCP) has an (asymptotical) solution (x∗H, y∗H) =
(x∗, τ∗, y∗, κ∗) with τ∗ > 0. In this case, (x∗/τ∗, y∗/τ∗) is a solution of (CP).

(v) Suppose that (V, ◦) is a simple Euclidean Jordan algebra. Then (CP) is strongly infeasible
if and only if (HCP) has an asymptotical solution (x∗, τ∗, y∗, κ∗) with κ∗ > 0.

Proof: (i): By a simple calculation, we have

〈xH, ψH(xH)〉H
= 〈x, τψ(x/τ)〉 − τ〈ψ(x/τ), x〉
= 0.

(ii): Suppose that (x̂H, ŷH) is an asymptotically feasible solution. Then there exists a bounded
sequence (x(k)

H , y
(k)
H ) ∈ intKH × intKH such that

lim
k→∞

FH(x(k)
H , y

(k)
H ) lim

k→∞
(y(k)

H − ψH(x(k)
H )) = 0.

Here (i) above implies that

〈x(k)
H , y

(k)
H 〉H = 〈x(k)

H , y
(k)
H 〉H − 〈x(k)

H , ψH(x(k)
H )〉H

= 〈x(k)
H , y

(k)
H − ψH(x(k)

H )〉H
holds for every k ≥ 0. Thus, we see that

lim
k→∞

〈x(k)
H , y

(k)
H 〉H = 0.

By the definition (34) of 〈·, ·〉H and (ii) of Lemma 2.7, we obtain that (x̂H, ŷH) is an asymptotically
complementary solution.
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(iii): For every k ≥ 0, define

x(k) := (1/2)ke ∈ intK, τk := (1/2)k ∈ 	++, y
(k) := (1/2)ke ∈ intK, κk := (1/2)k ∈ 	++.

Then the sequence {(x(k)
H , y

(k)
H )} = {(x(k), τk, y

(k), κk)} is bounded and

lim
k→∞

(
y(k) − τkψ(x(k)/τk)

)
= lim

k→∞

(
(1/2)ke− (1/2)kψ(e, 0)

)
= 0,

lim
k→∞

(
κk + 〈ψ(x(k)/τk), x(k)〉

)
= lim

k→∞

(
(1/2)k + (1/2)k〈ψ(e, 0), e〉

)
= 0.

Thus, the bounded sequence {(x(k)
H , y

(k)
H )} ⊂ intKH × intKH satisfies

lim
k→∞

(y(k)
H − ψH(x(k)

H )) lim
k→∞

FH(x(k), y
(k)
H ) = 0

which implies that (HCP) is asymptotically feasible.
(iv): It is easy to see that if (x∗, τ∗, y∗, κ∗) ∈ (K ×	+)× (K ×	+) is a solution of (HCP) with
τ∗ > 0 then

y∗/τ∗ − ψ(x∗/τ∗) = 0 and x∗ ◦ y∗ = 0

which shows that (x∗/τ∗, y∗/τ∗) ∈ K ×K is a solution of (CP).
Conversely, let (x̂, ŷ) ∈ K ×K be a solution of (CP). Then

ŷ − 1 · ψ(x̂/1) = 0 and (x̂, 1) ◦H (ŷ, 0) = 0

and (x̂, 1, ŷ, 0) ∈ (K ×	++) × (K ×	+) is a solution of (HCP).
(v): By Proposition 5.2, the monotonicity of the map ψ on the set K implies that the map F
defined by (29) satisfies Assumptions 1.1 and 3.11 with the domain K ×K and m = 0. Thus
the set F (U) is open and convex by Theorem 3.12.

If (CP) is strongly infeasible, then we must have 0 �∈ cl(F (U)). Since the set cl(F (U)) is a
closed convex set, by the separating hyperplane theorem, there exist a ∈ V with ‖a‖ = 1 and
ξ ∈ 	 such that

〈a, b〉 ≥ ξ > 0 for every b ∈ cl(F (U)). (38)

Since F is continuous on the set cl(U) ⊆ K ×K, we can see that F (cl(U)) ⊂ cl(F (U)). In fact,
if b ∈ F (cl(U)) then there exists a sequence such that

(x(k), y(k)) ∈ U , lim
k→∞

(x(k), y(k)) = (x̄, ȳ) ∈ cl(U), F (x̄, ȳ) = b,

and the continuity of F on the set cl(U) implies that

lim
k→∞

F (x(k), y(k)) = F (x̄, ȳ) = b.

Therefore (38) implies that

〈a, F (x, y)〉 = 〈a, y − ψ(x)〉
= 〈a, y〉 − 〈a,ψ(x)〉
≥ ξ > 0 for every (x, y) ∈ cl(U). (39)
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Note that (ix) of Lemma 2.7 ensures that the above relation (39) holds at (x, y) = (0, αȳ) for
every fixed ȳ ∈ K and every α > 0. Thus, it must be true that

〈a, ȳ〉 ≥ 0 for every ȳ ∈ K

which implies that a ∈ K. Similarly, since (x, 0) ∈ cl(U) for every x ∈ K, it follows from (39)
that

−〈a, ψ(x)〉 ≥ ξ > 0 (40)

for every x ∈ K. Thus, combining with the fact that a ∈ K, we see that

−〈a, ψ(βa)〉 ≥ ξ > 0 for every β ≥ 0. (41)

From the monotonicity of the map ψ on the set K ×K, we also see that for every x ∈ K and
β ≥ 0,

0 ≤ 〈βx− x, ψ(βx) − ψ(x)〉
= (β − 1)〈x,ψ(βx) − ψ(x)〉.

Thus, for every β ≥ 1,
〈x,ψ(βx) − ψ(x)〉 ≥ 0 (42)

which implies that
lim

β→∞
〈x,ψ(βx)〉/β ≥ 0. (43)

For each x ∈ K, denote

ψ∞(x) := lim
β→∞

ψ(βx)
β

(44)

where ψ∞(x) represents the limit of any subsequence and its value may have ∞ or −∞.
We first claim that ψ∞(a) ∈ K. Let {βk} be a subsequence such that βk → +∞ and for

each k, let
ψ(βka)
βk

=
r∑

i=1

λ
(k)
i c

(k)
i (45)

be a decomposition given by (i) of Theorem 2.3. We also define

λk := min{λ(k)
i (i = 1, 2, . . . , r)}, jk ∈ arg min{λ(k)

i (i = 1, 2, . . . , r)} and c(k) := c
(k)
jk
. (46)

Note that {c(k)} is a sequence of a primitive (i.e., nonzero) idempotent of a simple Euclidean
Jordan algebra (V, ◦) and hence it satisfies

√
r

2n
≤ ‖c(k)‖ ≤ √

r for each k (47)

by (ii) of Proposition 2.8.
Suppose that ψ∞(a) �∈ K along the subsequence {βk}. Then there exist a δ > 0 for which

λk ≤ −δ

27



for sufficiently large k’s. Define
x(k) := a+ εc(k)

for ε > 0. Then we can see that

〈x(k), ψ(βkx
(k))〉/βk = 〈a+ εc(k), ψ(βkx

(k))〉/βk

= 〈a,ψ(βkx
(k))〉/βk + ε〈c(k), ψ(βkx

(k))〉/βk

< ε〈c(k), ψ(βkx
(k))〉/βk (by (40) )

= ε
(
〈c(k), ψ(βkx

(k)) − ψ(βka)〉/βk + 〈c(k), ψ(βka)〉/βk

)
. (48)

Here the definitions (45) and (46) and the boundedness (47) of {c(k)} ensure that

〈c(k), ψ(βka)〉/βk = λk〈c(k), c(k)〉 ≤ −δ r
2n

< 0 (49)

for sufficiently large k’s. In addition, since we set x(k) = a+ εc(k), by the continuity of ψ and
the boundedness of {c(k)}, we have

〈c(k), ψ(βkx
(k)) − ψ(βka)〉/βk = O(ε) (50)

for sufficiently small ε’s. Thus, by (49) and (50),

〈c(k), ψ(βkx
(k)) − ψ(βka)〉/βk + 〈c(k), ψ(βka)〉/βk ≤ −δ r

4n
< 0

holds for sufficiently large k’s and sufficiently small ε’s. Therefore, by (48), we obtain that

〈x(k), ψ(βkx
(k))〉/βk ≤ −εδ r

4n
< 0

for all such k’s and ε’s. Since x(k) = a+ εc(k) ∈ K, by fixing a suitably small ε > 0, the above
inequality contradicts to (43) and we must have ψ∞(a) ∈ K.

Next we claim that ψ∞(a) is bounded. Let {βk} be a subsequence along which ψ(βka)/βk

tends to ψ∞(a). By the facts βka ∈ K for every k, e ∈ K and ψ is monotone on K, we see that

0 ≤ 〈βka− e, ψ(βka) − ψ(e)〉/βk

= 〈a,ψ(βka)〉 − 〈e, ψ(βka)/βk〉 − 〈a,ψ(e)〉 + 〈e, ψ(e)/βk〉
< −〈e, ψ(βka)/βk〉 − 〈a,ψ(e)〉 + 〈e, ψ(e)/βk〉

where the last inequality follows from (40). Taking a limit as k → ∞ from both sides, we have

〈e, ψ∞(a)〉 ≤ −〈a, ψ(e)〉
which implies that ψ∞(a) ∈ K is bounded (see Proposition 2.2). Note that 〈a,ψ(βka)〉 ≤ −ξ
from (41) and 〈a,ψ(βka)〉 ≥ 〈a,ψ(a)〉 from (42). Thus {〈a,ψ(βka)〉} is bounded. To summarize,
by setting

x∗ := a ∈ K, τ∗ := lim
βk→∞

1
βk

= 0,

y∗ := ψ∞(a) = lim
k→∞

ψ(βka)/βk ∈ K, κ∗ := lim
k→∞

−〈a, ψ(βka)〉 ≥ ξ > 0
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(HCP) has an asymptotical solution (x∗, τ∗, y∗, κ∗) ∈ (K ×	+) × (K ×	+) with κ∗ > 0.
Conversely, suppose that there exists a bounded sequence (x(k), τk, y

(k), κk) ∈ (intK×	++)×
(intK ×	++) such that

lim
k→∞

y(k) = lim
k→∞

τkψ(x(k)/τk) ∈ K, lim
k→∞

κk = lim
k→∞

−〈x(k), ψ(x(k)/τk)〉 ≥ ξ > 0.

Let us show that there is no feasible point (x, y) ∈ K ×K satisfying y − ψ(x) = 0. Suppose
that (x, y) ∈ K ×K and y − ψ(x) = 0. Since ψH is monotone on (K × 	++) × (K × 	+), by
the definition (35), we have

0 ≤ 〈(x(k), τk) − (x, 1), ψH(x(k), τk) − ψH(x, 1)〉
= 〈x(k) − x, τkψ(x(k)/τk) − ψ(x)〉 + (τk − 1)

(
〈x,ψ(x)〉 − 〈x(k), ψ(x(k)/τk)〉

)

= 〈x(k), τkψ(x(k)/τk)〉 + 〈x,ψ(x)〉
+(τk − 1)〈x,ψ(x)〉 − (τk − 1)〈x(k), ψ(x(k)/τk)〉
−〈x(k), ψ(x)〉 − 〈x, τkψ(x(k)/τk)〉

= τk〈x,ψ(x)〉 + 〈x(k), ψ(x(k)/τk)〉 − 〈x(k), ψ(x)〉 − 〈x, τkψ(x(k)/τk)〉
and hence

〈x(k), ψ(x(k)/τk)〉
≥ 〈x(k), ψ(x)〉 + 〈x, τkψ(x(k)/τk)〉 − τk〈x,ψ(x)〉
= 〈x(k), y〉 + 〈x, τkψ(x(k)/τk)〉 − τk〈x, y〉. (51)

Here limk→∞ τk = 0 since limk→∞ κk ≥ ξ > 0. In addition, it follows from the assumption that
〈x(k), y〉 ≥ 0 and that

lim
k→∞

〈x, y(k)〉 = 〈x, lim
k→∞

τkψ(x(k)/τk)〉 ≥ 0.

Thus the relation (51) ensures that

lim
k→∞

〈x(k), ψ(x(k)/τk)〉 ≥ 0

which contradicts to
κk := −〈x(k), ψ(x(k)/τk)〉 ≥ ξ > 0.

Also, any limit of x(k) gives a separating hyperplane, i.e., a certificate proving infeasibility.

We are going to show that a central path of the homogeneous model (HCP) is well defined.
As we will see in (iii) of Theorem 5.5, any limit point of the path lets us know if (HCP) has an
asymptotically complementarity solution (x∗H, y∗H) = (x∗, τ∗, y∗, κ∗) with τ∗ > 0 or if it has such
a solution with κ∗ > 0. Therefore, in view of (iv) and (v) of Theorem 5.4, if we find a limit of
the path then we can determine whether (CP) is strongly feasible, strongly infeasible or other
possible cases.

Let us consider the map

HH :=


xH ◦H yH

FH(xH, yH)


 (52)

29



and choose an initial point (x(0)
H , y

(0)
H ) such that

(x(0)
H , y

(0)
H ) ∈ intKH × intKH and xH ◦H yH ∈ intKH.

For simplicity, we set

(x(0)
H , y

(0)
H ) = (x(0), τ0, y

(0), κ0) = (e, 1, e, 1) ∈ intKH × intKH.

Define

h
(0)
H :=


 p

(0)
H

f
(0)
H


 :=


x

(0)
H ◦H y

(0)
H

FH(x(0)
H , y

(0)
H )


 =


 eH

y
(0)
H − ψH(x(0)

H )


 (53)

where eH = (e, 1) is the identity element in VH satisfying

tr(eH) = rank(VH) = r + 1. (54)

We consider the system
HH(xH, yH) = th

(0)
H

for each t ∈ (0, 1].

Theorem 5.5 (cf. Theorem 2 of [3]) Suppose that ψ : K → V satisfies Assumption 5.1.
Define h(0)

H by (53).

(i) For any t ∈ (0, 1], there exists a point (xH(t), yH(t)) ∈ intKH × intKH such that

HH(xH(t), yH(t)) = th
(0)
H .

(ii) The set
P := {(xH, yH) : HH(xH(t), yH(t)) = th

(0)
H , t ∈ (0, 1]}

forms a bounded path in intKH × intKH. Any accumulation point (xH(0), yH(0)) is an
asymptotically complementary solution of (HCP).

(iii) If (HCP) has an asymptotically complementarity solution (x∗H, y∗H) = (x∗, τ∗, y∗, κ∗) with
τ∗ > 0 ( κ∗ > 0, respectively), then any accumulation point

(xH(0), yH(0)) = (x(0), τ(0), y(0), κ(0))

of the bounded path P satisfies τ(0) > 0 ( κ(0) > 0, respectively).

Proof: (i): It follows from Proposition 5.3 that the map FH defined by (31) satisfies
Assumptions 1.1 and 3.11. Thus, by Theorem 3.12, the set HH(UH) with

UH := {(xH, yH) ∈ intKH × intKH : xH ◦H yH ∈ intKH}

is an open convex subset of intKH × intKH. Here we have already seen that

0 ∈ cl(HH(UH))
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in (ii) and (iii) of Theorem 5.4. Since the set HH(UH) is convex, the fact above implies that

th
(0)
H ∈ HH(UH)

for every t ∈ (0, 1]. Combining this with the homeomorphism of the map HH in Theorem 3.10,
we obtain the assertion (i).
(ii): The homeomorphism of the map HH also ensures that the set P forms a path in intKH ×
intKH. It suffices to show that the path P is bounded.

Let (xH, yH) = (x, τ, y, κ) ∈ P . Then there exists a t ∈ (0, 1] for which

xH ◦H yH = teH and yH − ψH(xH) = tf
(0)
H (55)

hold and

〈xH, f
(0)
H 〉H

= 〈xH, y
(0)
H 〉H − 〈xH, ψH(x(0)

H )〉H
(by (53) )

= 〈xH, y
(0)
H 〉H + 〈yH, x

(0)
H 〉H − 〈yH, x

(0)
H 〉H − 〈xH, ψH(x(0)

H )〉H
= 〈xH, y

(0)
H 〉H + 〈yH, x

(0)
H 〉H − 〈x(0)

H , tf
(0)
H + ψH(xH)〉H − 〈xH, ψH(x(0)

H )〉H
(by (55) )

= 〈xH, y
(0)
H 〉H + 〈yH, x

(0)
H 〉H − t〈x(0)

H , f
(0)
H 〉H − 〈x(0)

H , ψH(xH)〉H − 〈xH, ψH(x(0)
H )〉H

≥ 〈xH, y
(0)
H 〉H + 〈yH, x

(0)
H 〉H − t〈x(0)

H , f
(0)
H 〉H − 〈xH, ψH(xH)〉H − 〈x(0)

H , ψH(x(0)
H )〉H

(by the monotonicity of ψH)

= 〈xH, y
(0)
H 〉H + 〈yH, x

(0)
H 〉H − t〈x(0)

H , f
(0)
H 〉H

(by (i) of Theorem 5.4)

= 〈xH, y
(0)
H 〉H + 〈yH, x

(0)
H 〉H − t〈x(0)

H , y
(0)
H − ψH(x(0)

H )〉H
(by (53) )

= 〈xH, y
(0)
H 〉H + 〈yH, x

(0)
H 〉H − t〈x(0)

H , y
(0)
H 〉H

(by (i) of Theorem 5.4).

In addition, for the same t ∈ (0, 1], we have

t〈xH, f
(0)
H 〉H = 〈xH, tf

(0)
H 〉H

= 〈xH, yH − ψH(xH)〉H (by (55) )
= 〈xH, yH〉H (by (i) of Theorem 5.4)
= tr(teH) (by (55) )
= t(r + 1) (by (54) )

= t〈x(0)
H , y

(0)
H 〉H.

Therefore, we obtain that

〈xH, y
(0)
H 〉H + 〈yH, x

(0)
H 〉H ≤ 〈xH, f

(0)
H 〉H + t〈x(0)

H , y
(0)
H 〉H
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= 〈x(0)
H , y

(0)
H 〉H + t〈x(0)

H , y
(0)
H 〉H

= (1 + t)〈x(0)
H , y

(0)
H 〉H

= (1 + t)(r + 1) ≤ 2(r + 1).

Thus, by Proposition 2.2, the set P is bounded.
(iii): Let (x∗H, y∗H) = (x∗, τ∗, y∗, κ∗) be an asymptotical solution for (HCP). Then there exists a
bounded sequence

{(x(k)
H , y

(k)
H )} = {(x(k), τk, y

(k), κk)} ⊂ intKH × intKH

such that

lim
k→∞

(x(k)
H , y

(k)
H ) = (x∗H, y

∗
H), lim

k→∞
y

(k)
H − ψH(x(k)

H ) = 0 and lim
k→∞

x
(k)
H ◦H y

(k)
H = 0.

Let (xH(t), yH(t)) = (x(t), τ(t), y(t), κ(t)) be any point on the path P . Then,

xH(t) ◦H yH(t) = teH and yH(t) − ψH(xH(t)) = tf
(0)
H . (56)

By the boundedness of the set P as we have seen in (ii) above, there exists an ε ∈ (0, 1] such
that

‖xH(t)‖ ≤ 1/ε and ‖yH(t)‖ ≤ 1/ε (57)

holds for every t ∈ (0, 1]. In addition, for each t ∈ (0, 1], there exists an index k(t) such that
for every k ≥ k(t), we have

‖x(k)
H − x∗H‖ ≤ ε, ‖y(k)

H − y∗H‖ ≤ ε and ‖y(k)
H − ψH(x(k)

H )‖ ≤ tε. (58)

Here, by the monotonicity of ψH,

〈xH(t) − x
(k)
H , yH(t) − y

(k)
H 〉H

= 〈xH(t) − x
(k)
H , ψH(xH) − ψH(x(k)

H )〉H
+〈xH(t) − x

(k)
H , yH(t) − ψH(xH(t))〉H − 〈xH(t) − x

(k)
H , y

(k)
H − ψH(x(k)

H )〉H
≥ 〈xH(t) − x

(k)
H , yH(t) − ψH(xH(t))〉H − 〈xH(t) − x

(k)
H , y

(k)
H − ψH(x(k)

H )〉H
and hence, for every t ∈ (0, 1] and every k ≥ k(t),

〈xH(t), y(k)
H 〉H + 〈yH(t), x(k)

H 〉H
≤ 〈xH(t), yH(t)〉H + 〈x(k)

H , y
(k)
H 〉H

−〈xH(t) − x
(k)
H , yH(t) − ψH(xH(t))〉H

+〈xH(t) − x
(k)
H , y

(k)
H − ψH(x(k)

H )〉H
= 〈xH(t), yH(t)〉H + 〈x(k)

H , y
(k)
H 〉H

−〈xH(t), yH(t) − ψH(xH(t))〉H − 〈x(k)
H , y

(k)
H − ψH(x(k)

H )〉H
+〈x(k)

H , yH(t) − ψH(xH(t))〉H + 〈xH(t), y(k)
H − ψH(x(k)

H )〉H
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= 〈x(k)
H , yH(t) − ψH(xH(t))〉H + 〈xH(t), y(k)

H − ψH(x(k)
H )〉H

(by (i) of Theorem 5.4)

= 〈x(k)
H , tf

(0)
H 〉H + 〈xH(t), y(k)

H − ψH(x(k)
H )〉H

(by (56))

≤ t‖x(k)
H ‖‖f (0)

H ‖ + ‖xH(t)‖‖y(k)
H − ψH(x(k)

H )‖
≤ t(‖x∗H‖ + ε)‖h(0)

H ‖ + t

(by (57) and (58) )
≤ tδ

where δ := 1 + (‖x∗H‖ + 1)‖h(0)
H ‖ > 0. Note that (56) implies

xH(t) = tyH(t)−1 and yH(t) = txH(t)−1.

Combining the above relations, it must hold that for every t ∈ (0, 1] and k ≥ k(t)

tδ ≥ 〈xH(t), y(k)
H 〉H + 〈yH(t), x(k)

H 〉H
= 〈tyH(t)−1, y

(k)
H 〉H + 〈txH(t)−1, x

(k)
H 〉H

= t

{
〈y(t)−1, y(k)〉 +

κk

κ(t)
+ 〈x(t)−1, x(k)〉 +

τk
τ(t)

}
.

Since 〈y(t)−1, y(k)〉 > 0 and 〈x(t)−1, x(k)〉 > 0, we finally obtain that
κk

κ(t)
< δ and

τk
τ(t)

< δ

for every t ∈ (0, 1] and k ≥ k(t). Thus, the assertion (iii) follows from the facts κk → κ∗,
τk → τ∗ and δ > 0.

6 Concluding remarks

In this paper, we studied the homeomorphism of the interior point map defined by (4) for
monotone complementarity problems over symmetric cones associated with Euclidean Jordan
algebras. As an application of our results, we provided a homogeneous model for the problems
and showed the existence of a trajectory. We also showed that if the algebra is simple then
any limit point of the trajectory gives us a certification of the strong feasibility or the strong
infeasibility.

While there remain many issues to be investigated, we would like to mention three of them
below:

- development of numerical algorithms and their complexity analyses,

- extension of the results for more general complementarity problems, e.g., the mixed comple-
mentarity problems for which the map F is given by

F (x, y, z) =


 y − ψ1(x, z)

ψ2(x, z)
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for some continuous mapping ψ := (ψ1, ψ2) : K ×	m → V ×	m,

- providing optimization problems whose local optimality condition can be stated as a comple-
mentarity problem over symmetric cones.

Recently, the concept of P-properties for linear and/or nonlinear transformations on Eu-
clidean Jordan algebra was introduced by Gowda, Sznajder and Tao [8] and by Tao and
Gowda [26], aiming to provide non-monotone properties on the algebra. For the case of the n-
dimensional positive orthant, a homogeneous model for P0 complementarity problems has been
proposed in [27]. In contrast to the results in this paper, however, the lack of the monotonicity
of the map F prevents us to show that the image of the map F is convex, which corresponds
to our result, Theorem 3.12. As we have seen in the theorem, the convexity of the image of
F is a key property to obtain a certificate proving strong infeasibility of the original problem.
It may be another interesting issue to determine whether the property can be obtained even if
the Jordan algebra is not simple, rather than for non-monotone cases.
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[10] R.A. Hauser and O. Güler. Self-scaled barrier functions on symmetric cones and their
classification. Foundations of Computational Mathematics, 2:121-143, 2002.

34



[11] M. Kojima, S. Mizuno and A. Yoshise. A primal-dual interior-point algorithm for linear
programming. Progress in Mathematical Programming. Edited by N. Megiddo. Springer
Verlag, 1989.

[12] M. Kojima, N. Megiddo, and T. Noma. Homotopy continuation methods for nonlinear
complementarity problems. Mathematics of Operations Research, 16:754–774, 1991.

[13] M. Kojima, S. Shindoh and S. Hara. Interior-point methods for the monotone linear
complementarity problem in symmetric matrices. SIAM Journal on Optimization 7(1997)
86-125.

[14] M. Shida, S. Shindoh and M. Kojima. Centers of monotone generalized complementarity
problems. Mathematics of Operations Research 22 (1997) 969-976.

[15] R.D.C. Monteiro and I. Adler. Interior path following primal-dual algorithms. Part I:
Linear programming. Mathematical Programming 44:27-41, 1989.

[16] R.D.C. Monteiro and J.-S. Pang. Properties of an interior-point mapping for mixed com-
plementarity problems. mathematics of Operations Research 21 (1996) 629-654.

[17] R.D.C. Monteiro and J.-S. Pang. On Two Interior-Point Mappings for Nonlinear Semidef-
inite Complementarity Problems. Mathematics of Operations Research 23 (1998) 39-60.

[18] R.D.C. Monteiro and P. Zanjacomo. General interior-point maps and existence of weighted
paths for nonlinear semidefinite complementarity problems. Mathematics of Operations
Research 25 (2000) 381-399.

[19] Yu.E. Nesterov and M.J. Todd. Self-scaled barriers and interior-point for convex program-
ming. Mathematics of Operations Research, 22:1-42, 1997.

[20] Yu.E. Nesterov and M.J. Todd. Primal-dual interior-point methods for self-scaled cones.
SIAM Journal on Optimization, 8:324-364, 1998.

[21] J.M. Ortega and W.C. Rheinboldt. Iterative solution of nonlinear equations in several
variables. Academic Press, New York, 1970.

[22] B.K. Rangarajan and M.J. Todd. Convergence of infeasible-interior-point methods for self-
scaled conic programming. Technical Report TR1388, Department of Operations Research
and Industrial Engineering, Cornell University, Ithaca, NY 14853, 2003.

[23] B.K. Rangarajan. Polynomial convergence of infeasible-interior-point methods over sym-
metric cones. Technical Report, Department of Operations Research and Industrial Engi-
neering, Cornell University, Ithaca, NY 14853, 2004.

[24] S.H. Schmieta. Complete classification of self-scaled barrier functions. Technical report,
Department of IEOR, Columbia University, New York, 2000.

[25] S.H. Schmieta and F. Alizadeh. Extension of primal-dual interior-point algorithm to sym-
metric cones. Mathematical Programming, 96:409-438, 2003.

35



[26] J. Tao and M.S. Gowda. Some P-properties for nonlinear transformations on Euclidean
Jordan algebras. Technical Report TRGOW04-01, Department of Mathematics and Statis-
tics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland
21250, U.S.A.

[27] A. Yoshise. A homogeneous model for P0 and P∗ nonlinear complementarity problems. Dis-
cussion Paper Series 1059, Institute of Policy and Planning Sciences, University of Tsukuba,
Japan 2003.

36


