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Abstract

This paper deals with a decision problem on whether or not to accept orders from customers sequentially

arriving at a custom production company where an idling profit is yielded by manufacturing products with

standard specifications when no backorder exists. We discuss the admission control problem and pricing control

problem in an identical framework. Properties of the optimal decision rule maximizing the total expected present

discounted net profit gained over an infinite planning horizon are examined and clarified. It is shown that when

the idling profit is great, the optimal policies may not be monotone in the number of orders in the system.

1 Introduction

This paper deals with the problem of selecting which profitable orders to accept out of customers se-

quentially arriving in a custom production company, such as a shipbuilding company, advertising agency,

consulting company, design office, construction firm, and so on. In discussions on the problem, the two

kinds of opportunity loss described below should be taken into consideration:

1. Opportunity loss I . Suppose that orders from all arriving customers are accepted irrespective of

their profitabilities. In this case, the production process soon becomes full; with the result that orders

from customers arriving thereafter can not be accepted however high their profitabilities may be. This

leads to an opportunity loss that if adequate allowance were kept in the production lines by having

rejected less profitable orders in advance, the company could have enjoyed upcoming profitable orders.

We shall refer to this loss as Opportunity loss I.

2. Opportunity loss II . Excessively refraining from accepting orders due to the apprehension that

Opportunity loss I could occur causes a reduced number of backorders. This time, the production

process soon becomes idle, implying the opportunity loss that if more orders had been accepted in

advance, the profit could have been gained from them. We shall refer to this loss as Opportunity

loss II.

Both Opportunity losses cause a diminishment in the long run profit. The objective therefore is to find

an optimal customers selection rule so as to maximize an expected long run profit through keeping an

appropriate level of backorders by controlling the number of orders to accept in advance with the aim to

avoid Opportunity losses I and II. This problem is usually called the customers selection problem.

This class of problems has been studied as the admission control problem and the pricing control

problem. In the former, a customer offers the price for his order, and judging from this, the company

decides whether or not to accept. In the latter, by contrast, the system offers a price for an order, and

judging from this, the customer decides whether or not to place an order with the company.

Optimal policies in the admission control problem were originally considered by Heyman [2]. This was

later applied to the queueing system with a finite customer class and finite-capacity by Miller [10] and

continued by Lippman and Ross [7] for a single-server with uncountable customer classes. In [3] a model

for a discrete-time process was formulated by Ikuta. Optimal pricing policies in pricing control were

discussed by Low [8], more recently by You [15] and Feng and Xiao [1] for yield management, and by Fu

et al. [9] for queueing staffing problem. These two problems, i.e., the admission control and the pricing
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control problems are separately formulated and analyzed in Yoon and Lewis’s [14], which is the latest

report. In our paper we show that both problems can be treated in an identical framework( see [5, Ikuta]

for a general discussion on the integration of admission control problem and pricing contol problem) and

prove that the optimal policies are not always monotone in the number of backorders through theoretical

analysis (see Figure 8.2).

We introduce the idling profit, which is not taken into account in any other papers. The idling profit is

yielded when there is no backorder in the system. For example, consider a custom production company

manufacturing products with general specifications and with special ones; let us refer to the production

of products with general specifications as standard production, and that of products with special spec-

ifications as custom production. If all the products with special specifications that have been accepted

so far have been completed and the production process has become idle, they shift custom production to

standard production, which yields a idling profit. In this paper we examine the problem mainly focusing

on the relationship of the optimal policies with the idling profit. Furthermore, we introduce a search cost.

The search cost is paid to search for a customer where without paying a search cost at a point in time,

no customer arrives at the next point in time. The introduction of the search cost inevitably yields the

option of skipping the search or not.

The objective here is to find the optimal decision rule so as to maximize the total expected present

discounted net profit gained over an infinite planning horizon, the total expected present discounted value

of prices of orders accepted whether in the admission control problem or in the pricing control problem

plus the idling profits minus the search costs minus the penalty costs.

Section 2 provides a strict definition of the model of the problem treated in the paper. Section 3 defines

some functions and examines their properties, and this will be used in the analysis of the subsequent

sections. In Section 4 the optimal equation of the model is derived, and in Section 5 it is transformed for

convenience of discussion in the subsequent sections. In Section 6 the properties of the optimal decision

rule are examined, and these are summarized in Section 7. Section 8 discusses some important aspects

of the problem through numerical experiments, and Section 9 considers the practical implications of the

results obtained in the above sections and summarizes the conclusions derived, while in Section 10 we

suggest some subjects of study to be tackled in the future.

2 Model

The model examined in the paper is defined on the eight assumptions below:

A1. The model is defined as a discrete-time sequential stochastic decision process with an infinite plan-

ning horizon. Let points in time be equally spaced on the axis of the planning horizon, and let the

time interval between successive points in time be called the period.

A2. It is only when a search is enacted by paying a search cost c ≥ 0 at a point in time that a customer

arrives at the next point in time with a probability λ ( 0 < λ ≤ 1 ).

A3. Let the prices offered by subsequently appearing customers, w,w′, · · · , in the admission control prob-

lem and the maximum permissible ordering prices of subsequently appearing customers, w,w′, · · · ,

in the pricing control problem be both independent and identically distributed random variables

having a known continuous distribution function F (w) with a finite expectation µ. Then, in the

pricing control problem, if the system offers a price z to an appearing customer, the probability of

the customer placing the order with the system is given by

p(z) = Pr{z ≤ w}. (2.1)
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In both the admission control and pricing control problems, for certain given numbers a and b

(0 < a < b < ∞) let us define the probability density function as follows;

f(w) = 0, w < a, f(w) > 0, a ≤ w ≤ b, f(w) = 0, b < w (2.2)

where clearly a < µ < b. Throughout the paper, let us denote the expectation of a given function

g(w) as to w by E[g(w)].

A4. With a probability q ( 0 < q < 1 ) an order in the system at a certain point in time is completed

and goes out of the system at the next point in time.

A5. When there exists no backorder in the system, an idling profit s ≥ 0 is yielded by engaging in other

economic activities using the idle production line.

A6. Let the discount factor be denoted by β < 1.

A7. By n > 1 let us denote the maximum permissible number of orders which can be held in the system

at any instance (A model with n = 1 is examined in [13, Son]).

A8. Let us assume the process to start with no backorder.

Here, note that the decision on the problem is based on the following three rules:

1) The rule whether or not to accept an order from arriving customers in the admission control problem.

2) The rule as to the ordering price to offer in the pricing control problem.

3) The rule whether to continue or to skip the search in both problems.

The objective is to find the optimal decision rule so as to maximize the total expected present discounted

net profit gained over an infinite planning horizon, the total expected present discounted value of prices

of orders accepted or placed plus the idling profits minus the total expected present discounted value of

search costs.

3 Notations and Definitions

For any real number x let us define the following three functions, which will be used to describe the

optimal equation. The properties of its optimal decision rule are investigated using their properties,

which will be stated in Section 6.1.

T (x) =







E [max{w − x, 0}] for the admission control problem,

max
z

p(z)(z − x) for the pricing control problem,
(3.1)

L(x) = λβT (x) − c, (3.2)

M(x) = L(x) + βx,

called, respectively, the T -, L-, and M -functions ∗ . In pricing control, by z(x) let us designate the

z attaining the maximum of p(z)(z − x) on z ∈ (−∞,∞) for a given x if it exists; i.e., T
(

z(x)
)

=

p
(

z(x)
)(

z(x) − x
)

. Note T (0) > 0 (See [5]). Further, define

α = λβT (0) − c, (3.3)

γ = (1 − β(1 − q))−1 > 1. (3.4)

Here, it can be easily shown that

1 − γqβ = γ(1 − β) > 0. (3.5)

For expressional simplicity, we define the following notations seen in Table 3.1.

∗An example of T -function is shown in App. B, which is used for numerical experiments conducted in Section 8
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Table 3.1: Definition of notations

Notation Definition Notation Definition Notation Definition

C continuing the search 〈C〉

Each
corresponding

decision is
optimal

〈O(z)〉
It is optimal to offer the price z
for an order in pricing control

K skipping the search 〈K〉

A accepting an order 〈A〉 〈A(w)〉
It is optimal to accept an appearing
order w in admission control

R rejecting an order 〈R〉 〈R(w)〉
It is optimal to reject an appearing
order w in admission control

*We do not use S as a notation representing “skipping the search” because it is often used for

representing “stopping the search”

4 Optimal Equations

Either if the search was skipped at the previous point in time or if no customer has appeared with

probability 1 − λ regardless of having conducted the search at the previous point in time, it follows that

no customer appears at the present point in time. For convenience, we shall refer to such a situation as

“the system has a fictitious order φ”.

• In both admission control and pricing control, by u(φ, i) we shall denote the maximum total expected

present discounted net profits starting from a state of having the fictitious order φ and i ( 0 ≤ i ≤ n)

orders in the system; let us refer to such a situation as the state (φ, i).

• In the admission control problem, by u(w, i) let us denote the maximum total expected present

discounted net profit starting with i ( 0 ≤ i < n) orders in the system and an arriving customer who

offers a price w.

• In the pricing control problem, by u(1, i) let us denote the maximum total expected present dis-

counted net profit starting with i ( 0 ≤ i < n) orders in the system and an arriving customer to

whom the system offers a price z.

Here, note that when in state (φ, n), even if a customer appears, it can not be accepted due to the

assumption of i ≤ n; accordingly, the present state (φ, n) remains unchanged at the next point in time if

no order in the system is completed with probability 1 − q.

Since the expectation of immediate reward at any point in time is clearly finite, using the conventional

way outlined in the discussion of the Markovian decision process [11, Ross](p29-30), we can easily show

that |u(φ, i)| ≤ M/(1 − β) for a sufficiently large M > 0, i.e., u(φ, i) is finite. Furthermore, u(w, i) and

u(1, i) are also finite. Now, for convenience in the later discussions, let us define

hi = u(φ, i) − u(φ, i + 1), 0 ≤ i < n. (4.1)

Then the optimal equations for both cases can be described as follows.

1. Admission control problem:
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u(φ, 0) = max

{

C : β
(

λE[u(ξ, 0)] + (1 − λ)u(φ, 0)
)

− c + s,

K : βu(φ, 0) + s,
(4.2)

u(φ, i) = max



















C : (1 − q)β
(

λE [u(ξ, i)] + (1 − λ)u(φ, i)
)

+qβ
(

λE [u(ξ, i − 1)] + (1 − λ)u(φ, i − 1)
)

− c,

K : (1 − q)βu(φ, i) + qβu(φ, i − 1),

1 ≤ i < n, (4.3)

u(φ, n) = max

{

C : (1 − q)βu(φ, n) + qβ
(

λE [u(ξ, n − 1)] + (1 − λ)u(φ, n − 1)
)

− c,

K : (1 − q)βu(φ, n) + qβu(φ, n − 1),
(4.4)

u(w, i) = max

{

A : w + u(φ, i + 1)

R : u(φ, i)
(4.5)

= max{w − hi, 0} + u(φ, i), 0 ≤ i < n. (4.6)

2. Pricing control problem:

u(φ, 0) = max

{

C : β
(

λu(1, 0) + (1 − λ)u(φ, 0)
)

− c + s,

K : βu(φ, 0) + s,
(4.7)

u(φ, i) = max



















C : (1 − q)β(λu(1, i) + (1 − λ)u(φ, i)
)

+qβ
(

λu(1, i − 1) + (1 − λ)u(φ, i − 1)
)

− c,

K : (1 − q)βu(φ, i) + qβu(φ, i − 1),

1 ≤ i < n, (4.8)

u(φ, n) = max

{

C : (1 − q)βu(φ, n) + qβ
(

λu(1, n − 1) + (1 − λ)u(φ, n − 1)
)

− c,

K : (1 − q)βu(φ, n) + qβu(φ, n − 1),
(4.9)

u(1, i) = max
z

{p(z)
(

z + u(φ, i + 1)
)

+ (1 − p(z))u(φ, i)} (4.10)

= max
z

p(z)(z − hi) + u(φ, i), 0 ≤ i < n. (4.11)

See Lemma 6.3 for the unique existence of the solution of the above equations.

5 Transformation of Optimal Equations

Let us define

v(i) =







E [u(w, i)] for the admission control problem

u(1, i) for the pricing control problem







, 0 ≤ i < n. (5.1)

Then since u(w, i) ≥ w and u(1, i) ≥ maxz p(z)z from Eqs. (4.5) and (4.10), we obtain, respectively,

E [u(w, i)] ≥ µ = T (0) and u(1, i) ≥ maxz p(z)z = T (0), hence

v(i) ≥ T (0), 0 ≤ i < n. (5.2)

Then using Eq. (3.1), we can immediately rearrange both Eq. (4.2) to Eq. (4.5) and Eq. (4.7) to Eq. (4.10)

into the identical expression below.
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u(φ, 0) = max{λβv(0) + (1 − λ)βu(φ, 0) − c, βu(φ, 0)} + s, (5.3)

u(φ, i) = max















(1 − q)β(λv(i) + (1 − λ)u(φ, i)
)

+qβ
(

λv(i − 1) + (1 − λ)u(φ, i − 1)
)

− c,

(1 − q)βu(φ, i) + qβu(φ, i − 1)















, 1 ≤ i < n, (5.4)

u(φ, n) = max

{

(1 − q)βu(φ, n) + qβ
(

λv(n − 1) + (1 − λ)u(φ, n − 1)
)

− c,

(1 − q)βu(φ, n) + qβu(φ, n − 1),

}

, (5.5)

v(i) = T (hi) + u(φ, i) or equivalently T (hi) = v(i) − u(φ, i), 0 ≤ i < n. (5.6)

Further, Eq. (5.3) to Eq. (5.5) can be rewritten, respectively,

u(φ, 0) = βu(φ, 0) + max{λβ
(

v(0) − u(φ, 0)
)

− c, 0} + s, (5.7)

u(φ, i) = (1 − q)βu(φ, i) + qβu(φ, i − 1)

+ max{λ(1 − q)β(v(i) − u(φ, i)) + λqβ
(

v(i − 1) − u(φ, i − 1)
)

− c, 0}, 1 ≤ i < n, (5.8)

u(φ, n) = (1 − q)βu(φ, n) + qβu(φ, n − 1) + max{λqβ
(

v(n − 1) − u(φ, n − 1)
)

− c, 0}, (5.9)

which can be immediately rearranged into

u(φ, 0) =
(

max{λβ
(

v(0) − u(φ, 0)
)

− c, 0} + s
)

/(1 − β), (5.10)

u(φ, i) = γqβu(φ, i − 1)

+γ max{λ(1 − q)β
(

v(i) − u(φ, i)
)

+ λqβ
(

v(i − 1) − u(φ, i − 1)
)

− c, 0}, 1 ≤ i < n,(5.11)

u(φ, n) = γqβu(φ, n − 1) + γ max{λqβ
(

v(n − 1) − u(φ, n − 1)
)

− c, 0} (5.12)

where γ is defined by Eq. (3.4). Hence, using Eq. (5.6), we can rewrite Eq. (5.10) to and Eq. (5.12) as

follows.

u(φ, 0) = (max{λβT (h0) − c, 0} + s)/(1 − β), (5.13)

u(φ, i) = γqβu(φ, i − 1) + γ max{λ(1 − q)βT (hi) + λqβT (hi−1) − c, 0}, 1 ≤ i < n, (5.14)

u(φ, n) = γqβu(φ, n − 1) + γ max{λqβT (hn−1) − c, 0}. (5.15)

Further, using L- function defined in Eq. (3.2), we can rewrite Eq. (5.13) to Eq. (5.15) as follows.

u(φ, 0) = (max{L(h0), 0} + s)/(1 − β), (5.16)

u(φ, i) = γqβu(φ, i − 1) + γ max{(1 − q)L(hi) + qL(hi−1), 0}, 1 ≤ i < n, (5.17)

u(φ, n) = γqβu(φ, n − 1) + γ max{qL(hn−1) − (1 − q)c, 0}. (5.18)

Below, for convenience, let

Q0 = L(h0), (5.19)

Qi = (1 − q)L(hi) + qL(hi−1), 1 ≤ i < n, (5.20)

Qn = qL(hn−1) − (1 − q)c. (5.21)

Then Eq. (5.16) to Eq. (5.18) can be rewritten as follows.
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u(φ, 0) = (max{Q0, 0} + s)/(1 − β), (5.22)

u(φ, i) = γqβu(φ, i − 1) + γ max{Qi, 0}, 1 ≤ i ≤ n. (5.23)

Now, Noting Eqs. (5.23) and (3.5), we can rewrite Eq. (4.1) with i = 0 as follows.

h0 = u(φ, 0) − u(φ, 1) = γ(1− β)u(φ, 0) − γ max{Q1, 0}. (5.24)

Rearranging Eq. (5.24) by substituting Eq. (5.22) yields

h0 = γ max{Q0, 0} − γ max{Q1, 0} + γs. (5.25)

Similarly, we obtain

hi = γqβhi−1 + γ max{Qi, 0} − γ max{Qi+1, 0}, 1 ≤ i < n, (5.26)

Regarding hi as a function of s, let us represent hi and Qi by, respectively, hi(s) and Qi(s), i.e.,

Q0(s) = L(h0(s)), (5.27)

Qi(s) = (1 − q)L(hi(s)) + qL(hi−1(s)), 1 ≤ i < n, (5.28)

Qn(s) = qL(hn−1(s)) − (1 − q)c. (5.29)

Here, by si let us denote the smallest solution of Qi(s) = 0, if it exists, i.e.,

si = min{s
∣

∣ Qi(s) = 0}. (5.30)

From all the above it can be easily seen that the optimal decision rules for any given i can be prescribed

as follows.

Optimal Decision Rule 5.1

1. Admission control problem:

i. If Qi > 0, then 〈C〉i
† , or else 〈K〉i for 0 ≤ i ≤ n.

ii. If w > hi, then 〈A(w)〉i, or else 〈R(w)〉i for 0 ≤ i < n.

2. Pricing control problem:

i. If Qi > 0, then 〈C〉i, or else 〈K〉i for 0 ≤ i ≤ n.

ii. 〈O(zi)〉 with zi = z(hi) for 0 ≤ i < n.

6 Analysis

6.1 Preliminaries

Lemma 6.1

(a) a ≤ z(x) for all x.

(b) If x < b, then x < z(x) < b, and if x ≥ b, then z(x) = b.

(c) z(x) is nondecreasing in x.

(d) There exists a finite x? < a such that if x < (> )x?, then z(x) = (> ) a.

(e) T (x) is nonincreasing on (−∞,∞), strictly decreasing on (−∞, b), and convex on (−∞,∞).

(f) T (x) ≥ 0 on (−∞,∞).

(g) T (x) > 0 on (−∞, b), and T (x) = 0 on [b,∞).

(h) limx→∞ T (x) = 0 and limx→−∞ T (x) = ∞.

†The notation 〈C〉
i

implies that continuing the search is optimal in state (φ, i).
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(i) νT (x) + x is nondecreasing in x if ν ≤ 1 and strictly increasing in x if ν < 1.

Proof. See [5, Ikuta] [15, You]‡ .

Note. It is not yet proven which of z(x?) > a or z(x?) = a is true in [5]. If F (w) is a uniform

distribution on [a, b] with 0 < a < b, then x? = 2a − b (See App. B).

Lemma 6.2

(a) L(x) is nonincreasing on (−∞,∞), strictly decreasing on (−∞, b), and convex on (−∞,∞).

(b) L(x) ≥ −c on (−∞,∞).

(c) L(x) ≤ λβT (0) − c on [0,∞), L(x) > −c on (−∞, b), and L(x) = −c on [b,∞).

(d) limx→∞ L(x) = −c and limx→−∞ L(x) = ∞.

(e) If L(x) > 0, then x < b.

(f) If L(x) = L(y) > 0, then x = y, and if L(x) > L(y), then x < y.

(g) M(x) is nondecreasing in x and M(b) = βb − c.

Proof. (a-d) Immediate from Lemma 6.1(e-h).

(e) L(x) = λβT (x) − c > 0, from which T (x) > c/λβ ≥ 0, hence from Lemma 6.1(g) x < b.

(f) Clear from (a).

(g) M(x) = L(x) + βx = β(λT (x) + x)− c, which is nondecreasing in x due to Lemma 6.1(i). Further,

for x ≥ b we get M(x) = βx − c due to (c), hence M(b) = βb − c.

Lemma 6.3 The system of equations Eq. (4.2) to Eq. (4.5) and Eq. (4.7) to Eq. (4.10) has a unique

solution.

Proof. See App. A.2.

Lemma 6.4

(a) u(φ, i) and v(i) are nonincreasing in i where u(φ, i) ≥ 0 for 0 ≤ i ≤ n.

(b) hi ≥ 0 for 0 ≤ i < n.

Proof. See App. A.3.

6.2 Case of α ≤ 0

Lemma 6.5 Qi ≤ 0 for 0 ≤ i ≤ n.

Proof. Assume α ≤ 0. Then from Lemmas 6.4(b) and 6.2(c) we have 0 ≥ α = λβT (0) − c ≥ L(hi) for

0 ≤ i < n. Hence (1) 0 ≥ L(h0) = Q0, (2) 0 ≥ λβT (0) − c = (1 − q)(λβT (0) − c) + q(λβT (0) − c) ≥

(1 − q)L(hi) + qL(hi−1) = Qi for 1 ≤ i < n, and (3) 0 ≥ λβT (0) − c > λqβT (0) − c = q(λβT (0) − c) −

(1 − q)c ≥ qL(hn−1) − (1 − q)c = Qn.

‡As [5] includes the contents of [15], readers should refer to [5]
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6.3 Case of α > 0

Lemma 6.6

(a) u(φ, i) > 0 for 0 ≤ i ≤ n.

(b) If Qi ≤ 0 for a given i such as 1 ≤ i < n, then hi−1 > hi, hence hi−1 ≥ hi.

Proof. (a) First, note u(φ, i) ≥ 0 for all i from Lemma 6.4(a). Hence, from Eqs. (5.3) and (5.2) we have

u(φ, 0) ≥ β(λv(0) + (1− λ)u(φ, 0)) − c + s ≥ λβT (0)− c + s = α + s > 0. Suppose u(φ, i− 1) > 0. Then

from Eqs. (5.4) and (5.5) we can get u(φ, i) ≥ (1 − q)βu(φ, i) + qβu(φ, i − 1) > 0 for 1 ≤ i ≤ n.

(b) Let Qi ≤ 0 for a given i such as 1 ≤ i < n. Then from Eq. (5.23) we have u(φ, i) = γqβu(φ, i − 1),

hence u(φ, i + 1) = γqβu(φ, i) + γ max{Qi+1, 0} = (γqβ)2u(φ, i − 1) + γ max{Qi+1, 0}. Accordingly, we

get

hi − hi−1 = 2u(φ, i) − u(φ, i − 1) − u(φ, i + 1)

= 2γqβu(φ, i − 1) − u(φ, i − 1) − (γqβ)2u(φ, i − 1) − γ max{Qi+1, 0}

= −(1 − γqβ)2u(φ, i − 1) − γ max{Qi+1, 0} < 0

due to u(φ, i − 1) > 0 from (a) and 1 > γqβ from Eq. (3.5); accordingly, hi−1 > hi, hence hi−1 ≥ hi.

Lemma 6.7 Let hi−1 < hi for a given i such as 1 ≤ i < n. Then hi−1 < hi < · · · < hn−1 < b and

Qj > 0 for j with i ≤ j < n.

Proof. Let hi−1 < hi for a given i such as 1 ≤ i < n. Then Qi > 0 from the contrapositions of

Lemma 6.6(b); accordingly, from Lemma 6.2(a) we get

0 < Qi = (1 − q)L(hi) + qL(hi−1) ≤ (1 − q)L(hi−1) + qL(hi−1) = L(hi−1),

implying hi−1 < b due to Lemma 6.2(e). Further, from Eq. (5.26) we have

hi = γqβhi−1 + γQi − γ max{Qi+1, 0}

= γqβhi−1 + γ(1− q)L(hi) + γqL(hi−1) − γ max{Qi+1, 0}

≤ γq
(

βhi−1 + L(hi−1)
)

+ γ(1 − q)L(hi)

= γqM(hi−1) + γ(1 − q)L(hi). (6.1)

Assume hi ≥ b. Then L(hi) = −c ≤ 0 from Lemma 6.2(c), hence hi ≤ γqM(hi−1). Since hi−1 < b, from

Lemma 6.2(g) we get hi ≤ γqM(b) = γq(βb − c) ≤ γqβb < b due to Eq. (3.5), which is a contradiction.

Hence, it must be hi−1 < hi < b. Here, let us assume Qi+1 ≤ 0. Then hi+1 < hi < b from Lemma 6.6(b)

and the above result. Further, from Lemma 6.2(a) we have

0 ≥ Qi+1 = (1 − q)L(hi+1) + qL(hi) > (1 − q)L(hi) + qL(hi) = L(hi) · · · (1∗).

From Eq. (6.1) and Lemma 6.2(g) we have

hi ≤ γqM(hi) + γ(1 − q)L(hi)

= γq
(

βhi + L(hi)
)

+ γ(1− q)L(hi)

= γqβhi + γL(hi),
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from which we have (1 − γqβ)hi ≤ γL(hi). Using Eq. (3.5), we can rewrite the above inequality γ(1 −

β)hi ≤ γL(hi), i.e., (1 − β)hi ≤ L(hi). Since hi ≥ 0 from Lemma 6.4(b), we have L(hi) > 0, which

contradicts (1∗), hence it must be Qi+1 > 0. From this and Qi > 0 we can rewrite Eq. (5.26) as follows.

hi = γqβhi−1 + γ(Qi − Qi+1).

Since γ(Qi − Qi+1) = γqL(hi−1) + γ(1 − 2q)L(hi) − γ(1 − q)L(hi+1), we obtain

hi = γq
(

βhi−1 + L(hi−1)
)

+ γ(1 − 2q)L(hi) − γ(1 − q)L(hi+1)

= γqM(hi−1) + γ(1 − 2q)L(hi) − γ(1− q)L(hi+1).

Noting the assumption of hi−1 < hi, from Lemma 6.2(g) we get

hi ≤ γqM(hi) + γ(1− 2q)L(hi) − γ(1 − q)L(hi+1)

= γq(βhi + L(hi)) + γ(1 − 2q)L(hi) − γ(1 − q)L(hi+1)

= γqβhi + γ(1 − q)
(

L(hi) − L(hi+1)
)

,

from which we have

(1 − γqβ)hi ≤ γ(1 − q)
(

L(hi) − L(hi+1)
)

.

Here, since hi−1 ≥ 0 from Lemma 6.4(b), we have hi > 0 due to the assumption of hi−1 < hi. From

this result and 1 > γqβ due to Eq. (3.5) we obtain (1 − γqβ)hi > 0, so that L(hi+1) < L(hi), implying

hi < hi+1. Repeating the same procedure as the above leads to the completion of the proof.

Lemma 6.8 Let hi−1 ≤ hi for a given i such as 1 ≤ i < n. Then hi−1 ≤ hi ≤ · · · ≤ hn−1 < b and

Qj > 0 for j with i ≤ j < n.

Proof. Almost the same as in the proof of Lemma 6.7.

Lemma 6.9 If Qi > 0 for a given i such as 0 ≤ i < n, then Qj > 0 for i ≤ j < n.

Proof. Let Qi > 0 for a given i such as 1 ≤ i < n. First, let hi−1 < hi. Then Qi+1 > 0 from

Lemma 6.7. Next, let hi−1 ≥ hi. Then since L(hi−1) ≤ L(hi) due to Lemma 6.2(a), we get 0 < Qi =

(1 − q)L(hi) + qL(hi−1) ≤ L(hi). Here, assume Qi+1 ≤ 0, i.e., (1 − q)L(hi+1) + qL(hi) ≤ 0. Then

hi ≥ hi+1 due to Lemma 6.6(b). Noting L(x) is convex on (−∞,∞) from Lemma 6.2(a), we have

L((1 − q)hi+1 + qhi) ≤ (1 − q)L(hi+1) + qL(hi) ≤ 0 < L(hi),

from which we have (1 − q)hi+1 + qhi > hi, hence hi < hi+1 due to the assumption of q < 1, which is

a contradiction. Hence, it must be Qi+1 > 0. Repeating the same procedure leads to the completion of

the induction. Let Q0 > 0. Then since L(h0) > 0 from Eq. (5.19). Here, assuming Q1 ≤ 0, we can also

derive a contradiction in quite the same way as the above, hence it must be Q1 > 0.

Lemma 6.10 hi(s) is nondecreasing in s for i ≥ 0.

Proof. See App. A.4.

Lemma 6.11 lims→∞ hi(s) = ∞ and lims→−∞ hi(s) = −∞ for i ≥ 0.

Proof. Since L(hi) ≤ λβT (0) − c for 0 ≤ i < n due to Lemmas 6.4(b) and 6.2(c), noting Eq. (5.25), we

have
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h0(s) ≥ −γ max{Q1, 0} + γs = −γ max{(1 − q)L(h1) + qL(h0), 0} + γs ≥ −γ max{λβT (0) − c, 0} + γs,

h0(s) ≤ γ max{Q0, 0} + γs = γ max{L(h0), 0} + γs ≤ γ max{λβT (0) − c, 0} + γs,

from which lims→∞ h0(s) = ∞ and lims→−∞ h0(s) = −∞. Let lims→∞ hi−1(s) = ∞ and lims→−∞ hi−1(s) =

−∞. Then noting Eq. (5.26), in the same way as the above we obtain

hi(s) ≥ γqβhi−1(s) − γ max{λβT (0)− c, 0},

hi(s) ≤ γqβhi−1(s) − γ max{λβT (0)− c, 0}.

Therefore, lims→∞ hi(s) = ∞ and lims→−∞ hi(s) = −∞. Hence, by induction the assertion holds for

0 ≤ i ≤ n−1. From this result and Eq. (5.29) we can prove lims→∞ hn−1(s) = ∞ and lims→−∞ hn−1(s) =

−∞ in the same way as the above.

Lemma 6.12 Qi(s) is nonincreasing in s for all i ≥ 0.

Proof. Since hi(s) is nondecreasing in s for 0 ≤ i < n due to Lemma 6.10, from Lemma 6.2(a) we can

easily see that Qi(s) is nonincreasing in s.

Lemma 6.13 For 0 ≤ i ≤ n we have:

(a) There exists si > 0.

(b) If s < (≥) si, then Qi(s) > (≤) 0.

Proof. (a) From Lemmas 6.11 and 6.2(d) we clearly have lims→−∞ Qi(s) = ∞. Further, for a sufficiently

large s we have hi(s) ≥ b due to Lemma 6.11, hence lims→∞ Qi(s) = −c ≤ 0. Thus, it follows that si

exists.

(b) Immediate from the definition of si and Lemma 6.12.

Lemma 6.14

(a) Let s = 0.

1 Q0(s) > 0.

2 If h0 = 0, then h0 = h1.

3 If h0 > 0, then h0 < h1.

(b) If s0 ≤ s, then h0 > h1.

Proof. (a) Let s = 0.

(a1) Assume λβv(0) + (1 − λ)βu(φ, 0) − c ≤ βu(φ, 0) from Eq. (5.3). Then since u(φ, 0) = βu(φ, 0),

we have β = 1 due to u(φ, 0) > 0 from Lemma 6.6(a), which contradicts the assumption of β < 1.

Accordingly, we have u(φ, 0) = λβv(0) + (1 − λ)βu(φ, 0) − c = λβ(v(0) − u(φ, 0)) + βu(φ, 0) − c =

λβT (h0) + βu(φ, 0) − c due to Eq. (5.6), from which

0 < u(φ, 0) = (λβT (h0) − c)/(1 − β) = L(h0)/(1 − β), (6.2)

hence L(h0) > 0, i.e., Q0(s) > 0.

(a2) Q0 = L(h0) > 0 due to (a1), hence Q1 > 0 due to Lemma 6.6(b). Accordingly, from Eq. (5.26)

with s = 0 we have h0 = γ(Q0 − Q1), i.e.,

h0 = γ
(

L(h0) − (1 − q)L(h1) − qL(h0)
)

= γ(1 − q)
(

L(h0) − L(h1)
)

, (6.3)
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from which we obtain that if h0 = 0, then L(h1) = L(h0) = L(0) = λβT (0) − c = α > 0, hence, h1 = 0

due to Lemma 6.2(f).

(a3) From Eq. (6.3), if h0 > 0, then L(h0) > L(h1), implying h0 < h1 due to Lemma 6.2(f).

(b) Let s0 ≤ s. Then from Lemma 6.13(b) we have Q0(s) = L(h0(s)) ≤ 0. Assume h0 ≤ h1. Then

Q1 = (1−q)L(h1)+qL(h0) ≤ (1−q)L(h0)+qL(h0) = L(h0) ≤ 0, implying h0 > h1 due to Lemma 6.6(b).

This is a contradiction, hence it must be h0 > h1.

Let us define

s∗ = min{s
∣

∣ h0(s) > h1(s)}.

Lemma 6.15 We have s0 ≥ s∗ > 0 where if s ≥ (<) s∗, then h0 > (≤) h1.

Proof. From Lemma 6.14 we have h0 ≤ h1 for s = 0 and h0 > h1 for s ≥ s0, implying that there exists

a positive s∗ ≤ s0 such as h0(s) > h1(s); accordingly, the latter half of the assertion is clearly true.

Lemma 6.16 If s = 0, then hi is nondecreasing in i and Qi > 0 for 0 ≤ i < n.

Proof. The former half is immediate from Lemmas 6.14(a2) and 6.8 with i = 1. The latter half is evident

from Lemmas 6.14(a1) and 6.8.

Theorem 6.1

(a) Let α ≤ 0. Then 〈K〉0≤i≤n.

(b) Let α > 0.

1 Let s0 ≤ s. Then 〈K〉0≤i<n or there exists i∗( 0 < i∗ < n ) such that 〈K〉0≤i<i∗ and 〈C〉i∗≤i<n.

2 Let s < s0.

i 〈C〉1≤i<n.

ii Let s∗ ≤ s. Then hi is not always nondecreasing in i.

iii Let s < s∗.
1 h0 ≤ h1.

2 If h0 = h1, then hi is nondecreasing in i with hi < b for 0 ≤ i < n.

3 If h0 < h1, then hi is strictly increasing in i with hi < b for 0 ≤ i < n.

Proof. (a) Evident from Lemma 6.5.

(b) Let α > 0. Here note that s∗ ≤ s0 from Lemma 6.15.

(b1) Let s0 ≤ s. Clearly Q0(s) ≤ 0 from Lemma 6.13(b with i = 0), hence 〈K〉0. From this result and

the fact that once continuing the search is optimal for a certain i, i.e., 〈C〉i, then so also is for all i′ with

i ≤ i′ < n due to Lemma 6.9. Accordingly, the assertion clearly holds.

(b2) Let s < s0.

(b2i) Then Q0(s) > 0 from Lemma 6.13(b with i = 0), hence Qi(s) > 0 for 0 ≤ i < n from Lemma 6.9,

thus 〈C〉0≤i<n.

(b2ii) Let s∗ ≤ s. Then since h0 > h1 from Lemma 6.15, it follows that hi is not always nondecreasing

in i.

(b2iii) Let s < s∗.

(b2iii1-b2iii3) Immediate from, respectively, Lemmas 6.15, 6.8, and 6.7.
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7 Optimal Decision Rule

For explanatory convenience, let us define the two assertions below:

Assertion SP : Conducting only a standard production without searching for customers is always

better than doing a custom production with searching for customers.

Assertion CP : Conducting custom production and shifting to standard production when the backo-

rder is exhausted is always better than only doing a standard production without searching for customers.

We assumed A8 in Section 2, that is, the production starts with no backorder, i.e., i = 0. Then if

skipping the search is optimal, i.e., 〈K〉0, and since no customer appears, it follows that the number of

backorders remains forever zero, i.e., i = 0 over the entire planning horizon. Accordingly, it eventually

follows that Assertion SP holds. Consequently, the optimal decision rule 5.1 can be restated as follows.

Optimal Decision Rule 7.1

(a) Let α ≤ 0 or “α > 0 and s0 ≤ s”. Then 〈K〉0 (Theorem 6.1(a,b1)), hence Assertion SP holds for the

reason stated above.

(b) Let α > 0 and s < s0. Then since 〈C〉0≤i<n (Lemma 6.1(b2i)), it is optimal to conduct the search by

paying a search cost c, implying that Assertion CP holds for 0 ≤ i < n. If i = n, any of continuing

the search and skipping the search may be optimal; more precisely, if s < sn, then 〈C〉n, or else 〈K〉n

(Lemma 6.13(b) with i = n).

1 Let s∗ ≤ s. Then hi is not always nondecreasing in i (Theorem 6.1(b2ii)); in other words, as

seen in Figure 8.2, there exists a i∗(s) ≥ 1 such that hi is decreasing in i ≤ i∗(s) and increasing in

i > i∗(s).

2 Let s < s∗. Then hi is nondecreasing in i with h0 ≤ h1 where if h0 < h1, then hi is strictly

increasing in i (Theorem 6.1(b2iii2,b2iii3)).

In pricing control it should be noted that the monotonicity of hi in i stated above is inherited to the

optimal price zi due to Lemma 6.1(c). Since zi = z(hi), from Lemma 6.1(d) we see that zi = a if hi < x?.

8 Numerical Examples

Here, let us show some numerical examples of the optimal decision rule summarized in Section 7.

8.1 Admission control problem

Let F (w) be the uniform distribution on [0.01, 1.01], i.e., a = 0.01 and b = 1.01, and let λ = 0.95,

q = 0.35, β = 0.99 and c = 0.01. Then from Eq. (B.1) we have

T (x) =















0.51 − x for x < 0.01,

0.5(1.01 − x)2 for 0.01 ≤ x < 1.01,

0 for 1.01 ≤ x.

In this case, T (0) = 0.51, hence α = λβT (0) − c = 0.47 > 0.

I. s
∗ and s0: Performing numerical calculations, we obtain s∗ = 0.1330293 · · · ' 0.133 and s0 =

0.3259868 · · · ' 0.326. Accordingly, if the idling profit s ≥ 0.326, the assertion SP holds, and if

s < 0.326, the assertion SP holds.

Relationship of s∗ and s0 with related parameters λ, q, β, and c:

1. Figure 8.1 illustrates the relationships of s∗ and s0 with the four related parameters λ, q, β, and

c where the calculations are made by setting one of the four parameters as a variable with all the

others being fixed. Here, it is to be noted that each of the coordinates planes of the four graphs
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is divided into the three regions; R〈K〉 for s0 ≤ s, R̆〈C〉 for s∗ ≤ s < s0, and Ŕ〈C〉 for s < s∗.

In the region R〈K〉, not conducting the search, i.e., skipping the search is always optimal, and in

both regions R̆〈C〉 and Ŕ〈C〉, conducting the search is always optimal where hi is unimodal in i

on R̆〈C〉 and nondecreasing in i on Ŕ〈C〉 (see Figure 8.2).

2. From Figure 8.1 it can be seen that (1) s∗ is nonincreasing in c and nondecreasing in λ and β,

(2) s0 is nonincreasing in c and nondecreasing in λ and q, and (3) s∗ and s0 are unimodal in,

respectively, q and β. That s∗ is unimodal in q implies that for a certain given s there exists q′

and q′′ with q′ < q′′ such that if q ≤ q′, then (q, s) ∈ R̆〈C〉, if q′ < q ≤ q′′, then (q, s) ∈ Ŕ〈C〉, and

if q′′ ≤ q, then again (q, s) ∈ R̆〈C〉; in other words, there exists two critical values of q such that

the shape of hi changes from “unimodal” to “nondecreasing” at q = q′ and from “nondecreasing”

to “unimodal” at q = q′′.

II. hi: Figure 8.2 depicts the relationships of hi with the number of backorders i and the idling profit

s. The figure tells us that (1) if s < 0.133, then hi is strictly increasing in i ≥ 0, (2) if s = 0.133,

then h0 ' h1 = 0.3731556 · · · and hi is strictly increasing in i ≥ 1, and (3) if 0.133 < s < 0.326,

then hi is unimodal, i.e., there exists a i∗(s) ≥ 1 such that hi is strictly decreasing in i ≤ i∗(s)

and strictly increasing in i ≥ i∗(s). Further, the figure shows that hi is nondecreasing in s for all i

(Lemma 6.10) and that if i is sufficiently large, then hi coincides with hi with s = 0.000. The latter

finding reflects the fact that as the number of backorders becomes larger, since the possibility of the

backorder being exhausted gets smaller, the effect of s on hi is gradually diminished.

8.2 Pricing control problem

Let F (w) be the uniform distribution on [2, 3], i.e., a = 2 and b = 3, and let λ = 0.75, q = 0.55, β = 0.99

and c = 0.05. Then from Eq. (B.3) we get
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Figure 8.1: Relationships of s∗ and s0 with related parameters λ, q, β, and c
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Figure 8.2: Graph of hi where s∗ = 0.133 and s0 = 0.326. Here, note that if
s < 0.133, then hi is strictly increasing in i and if 0.133 ≤ s < 0.326,
then hi is unimodal in i.

T (x) =















2 − x for x < 1 → z(x) = 2,

0.25(3 − x)2 for 1 ≤ x < 3 → z(x) = (x + 3)/2,

0 for 3 ≤ x → z(x) = 3.

In this case, T (0) = 2, hence α = λβT (0) − c = 1.435 > 0. Further, x? = 2a − b = 1.

I. s
∗ and s0: Performing numerical calculations, we obtain s∗ = 0.4986829 · · · ' 0.499 and s0 =

1.3828263 · · · ' 1.383. Accordingly, if the idling profit s ≥ 1.383, the assertion SP holds, and if

s < 1.383, the assertion CP holds. In the case we obtain almost the same graphs as Figure 8.1.

II. hi and zi: Figure 8.3 depicts the relationships of hi and zi(= z(hi)) with the number of backorders

i and the idling profit s.

1. The graph on the left tells us that (1) if s < 0.499, then hi is strictly increasing in i ≥ 0,

(2) if s = 0.499 then h0 ' h1 = 0.8993454 · · · and hi is strictly increasing in i ≥ 1, (3) if

0.499 ≤ s < 1.383, there exists a i∗(s) ≥ 1 such that hi is strictly decreasing in i ≤ i∗(s) and

strictly increasing in i ≥ i∗(s).

2. The graph on the right shows the optimal ordering price zi. Now, note that there exists i such

that hi < x? = 2a − b = 1 in the graph of hi. Since zi = z(hi) = a for hi < x? = 1 due to

Lemma d, it follows that zi = z(hi) for such i becomes equal to a = 2; in other words, zi = z(hi)

is truncated by a, the low bound of the distribution. Further, it should be noted that there

exists hi < a such that its corresponding optimal ordering price zi becomes greater than a, i.e.,

zi = z(hi) > a.

9 Conclusions and Considerations

Now, let us examine the practical implications of the optimal decision rule described in Section 7.

A. Let α ≤ 0 or equivalently λβT (0) ≤ c, implying that the search cost c is sufficiently large to be

greater than or equal to λβT (0). Then not conducting the search; in other words, skipping the search

always becomes optimal, i.e., 〈K〉0. In this case, the assertion SP holds.
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Figure 8.3: Graphs of hi and zi

B. Let α > 0 or equivalently λβT (0) > c, implying that the search cost c is sufficiently small to be

smaller than λβT (0), including c = 0. Then it can be conjectured that conducting the search is always

optimal, i.e., 〈C〉0≤i<n; Is this always the case ? Unfortunately the answer is negative for the reasons

stated below.

1. Let s0 ≤ s. In this case, even though the search cost is sufficiently small, if the idling profit is

sufficiently large to be greater than or equal to s0, it becomes optimal to skip the search in order to

enjoy the idling profit, i.e., 〈K〉0. Accordingly, the conjecture stated above is false. In this case, the

number of backorders remains ever zero, hence it follows that the standard production is always

conducted, i.e., the assertion SP holds.

2. Let s < s∗, that is, both the search cost c and idling profit s are sufficiently small. In the case, it

is optimal to conduct the search, i.e., 〈C〉0≤i<n, with the resultant conclusion that the assertion CP

holds. Accordingly, the conjecture stated above is true. Further, in this case, let us not forget

the fact that the optimal selection criterion hi in admission control and the optimal ordering price

zi in pricing control both increase in the number of backorders i as seen in Figures 8.2 and 8.3

(Theorem 6.1(b2iii)). Below, let us consider the implication of the monotonicity of hi and zi in i.

i. Let the number of backorders i be sufficiently small. Then in order to avoid Opportunity

loss II, the system should accept any order however low in price it may be; of course, although

there exists a low bound. This implies that the optimal selection criterion hi in admission

control and the optimal ordering price zi in pricing control must be set to be low.

ii. Let the number of backorders i be sufficiently large. Then in order to avoid Opportunity

loss I, the system should reject orders with low price by setting the high selection criterion in

admission control and the offering high price in pricing control; as the result that only orders

with a high price are accepted in admission control and that a high price is offered in pricing

control.

iii. The above two considerations imply that the optimal selection criterion hi in admission control

and the optimal ordering price zi in pricing control should be set to be increasing in the number

of backorders i. The monotonicity of hi and zi brings about the following dynamic behavior

for the movement of the number of backorders i. First, let us consider the admission control

problem. When the number of backorders is small, since the selection criterion is low, the

number of orders accepted becomes large; accordingly, the number of backorders increases.
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Since the selecting criterion becomes high as the number of backorders increases, the number

of orders accepted becomes small; therefore, the number of backorders becomes small, hence

it follows that the number of backorders decreases. The above fact can be restated as follows.

The smaller the number of backorders may become, the stronger the force of making itself

large may become; on the contrary, the larger the number of backorders may become, the

stronger the force of making itself small may become. Such a movement in the number of

backorders looks just like a free oscillation of pendulum, always moving toward the vertical,

the most stable position. The above consideration leads us to the implication that the number

of backorders fluctuates while all the time being pulled toward the equilibrium point in the

stochastic sense. Stabilization of the number of backorders is also what management desires.

In the pricing control problem the same consideration as the above can be given.

3. Let s∗ ≤ s < s0, i.e., the idling profit be neither sufficiently large nor sufficiently small. For

example, if 0.133 ≤ s < 0.326 in Figure 8.2 and if 0.499 ≤ s < 1.383 in Figure 8.3, there exists a

i∗(s) ≥ 1 such that hi is decreasing in i ≤ i∗(s) and hi is increasing in i ≥ i∗(s); in other words,

both of the optimal selection criterion hi and the optimal ordering price zi are not always increasing

in the number of backorders i, i.e., hi and zi are both unimodal in i. This implies the following.

Let the number of backorders i be sufficiently small. Then if rejecting orders by setting the high

selection criterion in admission control, the probability of production process becoming idle is large;

as a result, the system can enjoy the idling profit. Further, as the number of backorders increases

until i = i∗(s) and goes cross i∗(s), since the influence of idling profits on the selection criterion

and the ordering price get weaker, they become nondecreasing in i as in the case of s = 0.000.

Now, that the hi takes such a shape stated above in admission control first tells us the following.

For an appearing customer with certain value w there exists such i
′

< i
′′

that if i ≤ i
′

, rejecting the

order of customer is optimal, if i
′

< i ≤ i
′′

, accepting it is optimal, and if i
′′

< i, again rejecting it

is optimal; that is, it follows that there exist double critical values in terms of i at both of which

rejecting and accepting become indifferent. In the pricing control problem the same consideration

as the above can be also given.

10 Suggested Future Study

In this paper we have proposed a basic model for a customer selection problem with idling profit. In order

to make the model more practical, the following points should be necessarily investigated and tackled.

1. A custom production company may have multiple production lines.

2. An order held in the system may be canceled owing to customer unavoidable circumstances.

3. Orders may be processed through a series of processes; in this case, a scheduling problem, or a

sequencing problem of orders to be processed arises.

4. It is rather natural and practical to think that any order has an appointed date of delivery, and this

is not considered in our model. The period up to the time when an accepted order should be delivered

after its completion is different among the orders accepted. In this case, the optimal customer selection

criterion and the optimal ordering price may depend on the length of the period. Further, in this case,

a model can be considered into which an assumption is introduced that delay of delivery is permitted,

and this will inevitably be accompanied by a penalty.

5. Thus far we have implicitly assumed that a customer once turned away can not be solicited in the

future. The future availability of a rejected customer, that is assumed in usual models of optimal

stopping problems [4] [6] [12], should be also introduced in our model.

Appendix
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A. Proofs
A.1 Recurrent Equations

Let us define the following recurrent relations corresponding to Eq. (5.3) to Eq. (5.6).

ut(φ, 0) = max{λβvt−1(0) + (1 − λ)βut−1(φ, 0) − c, βut−1(φ, 0)} + s, t ≥ 1, (A.1)

ut(φ, i) = max















(1 − q)β(λvt−1(i) + (1 − λ)ut−1(φ, i)
)

+qβ(λvt−1(i − 1) + (1 − λ)ut−1(φ, i − 1)) − c,

(1 − q)βut−1(φ, i) + qβut−1(φ, i − 1)

, 1 ≤ i < n, t ≥ 1, (A.2)

ut(φ, n) = max















(1 − q)βut−1(φ, n)

+qβ(λvt−1(n − 1) + (1 − λ)ut−1(φ, n − 1)) − c,

(1 − q)βut−1(φ, n) + qβut−1(φ, n − 1)















, t ≥ 1 (A.3)

where u0(φ, 0) = 0 for all i. Further, as ones corresponding to Eqs. (4.5) and (4.10) for 0 ≤ i < n let us

define, respectively,

ut(w, i) = max{w + ut(φ, i + 1), ut(φ, i)}, for the admission control problem,

ut(1, i) = maxz{p(z)
(

z + ut(φ, i + 1)
)

+ (1 − p(z))ut(φ, i)}, for the pricing control problem,

and then define, respectively, vt(i) = E [ut(w, i)] and vt(i) = ut(1, i). Then vt(i) can eventually be

rewritten as follows.

vt(i) =







E [max{w + ut(φ, i + 1), ut(φ, i)}],

max
z

{p(z)
(

z + ut(φ, i + 1)
)

+ (1 − p(z))ut(φ, i)}







, 0 ≤ i < n. (A.4)

Accordingly, letting

hit = ut(φ, i) − ut(φ, i + 1), 0 ≤ i < n, t ≥ 0, (A.5)

from Eqs. (A.4) and (3.1) we have

vt(i) = T (hit) + ut(φ, i), 0 ≤ i < n, t ≥ 0. (A.6)

A.2 Lemma 6.3

For any given vector x = (x0, x1, · · · , xn)′ let us define the norm ||x|| = max{|x0|, |x1|, · · · , |xn|} where

clearly ||x|| ≥ |xi| for 0 ≤ i ≤ n. Further, by Diu let us denote the right hand sides of Eq. (4.2) to Eq. (4.4)

and Eq. (4.7) to Eq. (4.9), and let Du = (D0u, D1u, · · · , Dnu)′ and u = (u(φ, 0), u(φ, 1), · · · , u(φ, n))′.

Let û(w, i) and û(1, i) be the bounded functions of i = 0, 1, · · · , n. Then using the definition of v(i) and

v̂(i), from Eq. (4.5) with i = 0 we have

|v(0) − v̂(0)|≤E[max{|u(φ, 1) − û(φ, 1)|, |u(φ, 0) − û(φ, 0)|}] = ||u − û||, (A.7)

and from Eq. (4.10) we get

|v(0) − v̂(0)| ≤ max
z

{p(z)|u(φ, 1)− û(φ, 1)| + (1 − p(z))|u(φ, 0) − û(φ, 0)|} ≤ ||u − û||.

Accordingly, from (4.7) we obtain

|D0u − D0û| ≤ max

{

λβ|v(0) − v̂(0)| + (1 − λ)β|u(φ, 0) − û(φ, 0)|,

β|u(φ, 0) − û(φ, 0)|

}

≤ β||u − û||.

Similarly, we get |Diu−Diû| ≤ β||u−û|| for 1 ≤ i ≤ n. Thus by definition we have ||Du−Dû|| ≤ β||u−û||,

implying that Du is a contraction mapping. Hence, the assertion holds.
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A.3 Lemma 6.4

(a) Clearly, u0(φ, i) in nonincreasing in i, hence from Eq. (A.4) v0(i) is nonincreasing in i. Assume

ut−1(φ, i) is nonincreasing in i, hence vt−1(i) is nonincreasing in i. Then we have

ut(φ, 0) ≥ ut(φ, 0) − s

= max

{

(1 − q)β(λvt−1(0) + (1 − λ)ut−1(φ, 0)) + qβ(λvt−1(0) + (1 − λ)ut−1(φ, 0)) − c

(1 − q)βut−1(φ, 0) + qβut−1(φ, 0)

}

≥ ut(φ, 1).

In almost the same way as this, for 2 ≤ i ≤ n − 1 we get ut(φ, i − 1) ≥ ut(φ, i). Now, noting that

vt−1(i) ≥ ut−1(φ, i) from Eq. (A.6) due to Lemma 6.1(f) and that ut−1(φ, i) ≥ ut−1(φ, i + 1) due to the

induction hypothesis, from Eq. (A.2) with i = n − 1 we obtain

ut(φ, n − 1) ≥ max















(1 − q)β(λut−1(φ, n) + (1 − λ)ut−1(φ, n))

+qβ(λvt−1(n − 1) + (1 − λ)ut−1(φ, n − 1)) − c

(1 − q)βut−1(φ, n) + qβut−1(φ, n − 1)















= ut(φ, n).

Hence, since ut(φ, i) is nonincreasing in i ∈ [0, n], for 1 ≤ i ≤ n − 1 from Eq. (A.4) we immediately have

vt(i−1) ≥ vt(i). Thus, u(φ, i) and v(i) are nonincreasing in, respectively, i ∈ [0, n] and i ∈ [0, n−1]. Now,

since we can easily show that u(φ, 0) ≥ s/(1−β) ≥ 0 from Eq. (5.13), we have u(φ, i) ≥ γqβu(φ, i−1) ≥ 0

for 1 ≤ i ≤ n from Eq. (5.23), hence by induction u(φ, i) ≥ 0 for i = 0, 1, · · · , n.

(b) Immediate from Eq. (4.1) and (a).

A.4 Lemma 6.10

Let u0(φ, i) = 0 for all i. Then hi0(s) = 0 for all i, which can be regarded as nondecreasing in s ≥ 0.

Assume that hi,t−1(s) is nondecreasing in s ≥ 0 for all i.

1. Proof for the monotonicity of h0(s) in s. Let us define S
−

0 = {s
∣

∣ Q0(s) ≤ 0, s ≥ 0} and S
+

0 = {s
∣

∣

Q0(s) > 0, s ≥ 0}. Then let us consider the following two cases of s ∈ S
−

0 and s ∈ S
+

0 .

i. Case of s ∈ S
−

0 . Then since the optimal decision in state (φ, 0) is to skip the search, from

Eqs. (5.3) and (5.4) with i = 1 the optimal equations become

u(φ, 0) = βu(φ, 0) + s,

u(φ, 1) = max







(1 − q)β(λv(1) + (1 − λ)u(φ, 1)
)

+ qβ
(

λv(1) + (1 − λ)u(φ, 0)
)

− c,

(1 − q)βu(φ, 1) + qβu(φ, 0).

Here, let us define the following recurrent relations corresponding to the above equations.

ut(φ, 0) = βut−1(φ, 0) + s,

ut(φ, 1) = (1 − q)βut−1(φ, 1) + qβut−1(φ, 0)

+ max{λ(1 − q)β(vt−1(1) − ut−1(φ, 1)) + λqβ(vt−1(0) − ut−1(φ, 0)) − c, 0}.

Accordingly, noting T (hit(s)) = vt(i) − ut(φ, i) in Eq. (A.6), from Eq. (A.5) with i = 0 we have

h0t(s) = (1 − q)βh0,t−1(s) + s − max{(1 − q)L(h1,t−1(s)) + qL(h0,t−1(s)), 0}.

Since L(hi,t−1(s)) with i = 0, 1 are both nonincreasing in s from the induction hypothesis and

Lemma 6.2(a), we immediately obtain that h0t(s) is nodecreasing in s ∈ S
−

0 .

ii. Case of s ∈ S
+

0 . Then Q1 > 0 due to Lemma 6.9. Accordingly, since the optimal decisions are

to continue the search in both states u(φ, 0) and (φ, 0), the optimal equations Eqs. (5.3) and (5.4)

with i = 1 become
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u(φ, 0) = λβv(0) + (1 − λ)βu(φ, 0) − c + s,

u(φ, 1) = (1 − q)β(λv(1) + (1 − λ)u(φ, 1)) + qβ(λv(0) + (1 − λ)u(φ, 0)) − c.

Here, let us define the following recurrent relations corresponding to the above equations.

ut(φ, 0) = βut−1(φ, 0) + λβ(vt−1(0) − ut−1(φ, 0)) − c + s,

ut(φ, 1) = (1 − q)βut−1(φ, 1) + qβut−1(φ, 0)

+λ(1 − q)β(vt−1(1) − ut−1(φ, 1)) + λqβ(vt−1(0) − ut−1(φ, 0)) − c.

Accordingly, noting T (hit(s)) = vt(i) − ut(φ, i) in Eq. (A.6), from Eq. (A.5) with i = 0 we have

h0t(s) = (1 − q)βh0,t−1(s) − λ(1 − q)βT (h1,t−1(s)) + λ(1 − q)βT (h0,t−1(s)) + s

= (1 − q)M(h0,t−1(s)) − (1 − q)L(h1,t−1(s)) + s,

which is nondecreasing in s ∈ S
+

0 from Lemmas 6.2(g,a).

Now, since h0t(s) is continuous in s ∈ S
−

0 ∪ S
+

0 , it eventually follows that h0t(s) is nondecreasing in

s ≥ 0.

2. Proof for the monotonicity of hi(s) in s for 1 ≤ i ≤ n−2. From Eqs. (A.2) and (A.5) for 1 ≤ i ≤ n−2

we have

hit(s) = (1 − q)βut−1(φ, i) + qβut−1(φ, i − 1)

+ max{λ(1 − q)β(vt−1(i) − ut−1(φ, i)) + λ(1 − q)β(vt−1(i − 1) − ut−1(φ, i − 1)) − c, 0}

−(1 − q)βut−1(φ, i + 1) − qβut−1(φ, i)

−max{λ(1 − q)β(vt−1(i + 1) − ut−1(φ, i + 1)) + λ(1 − q)β(vt−1(i) − ut−1(φ, i)) − c, 0}

= (1 − q)βhi,t−1(s) + qβhi−1,t−1(s) + max{(1 − q)L(hi,t−1(s)) + qL(hi−1,t−1(s)), 0}

−max{(1 − q)L(hi+1,t−1(s)) + qL(hi,t−1(s)), 0}. (A.8)

Accordingly, for any s < s′, from Eq. (A.8) we obtain

hit(s) − hit(s
′) ≤ (1 − q)β

(

hi,t−1(s) − hi,t−1(s
′)

)

+ qβ
(

hi−1,t−1(s) − hi−1,t−1(s
′)

)

+ max{(1 − q)
(

L(hi,t−1(s)) − L(hi,t−1(s
′))

)

+ q
(

L(hi−1,t−1(s)) − L(hi−1,t−1(s
′))

)

, 0}

+ max{(1 − q)
(

L(hi+1,t−1(s
′)) − L(hi+1,t−1(s))

)

+ q
(

L(hi,t−1(s
′)) − L(hi,t−1(s))

)

, 0}

Since L(hi,t−1(s
′)) ≤ L(hi,t−1(s)) for all i due to the induction hypothesis and Lemma 6.2(a), we have

hit(s) − hit(s
′) ≤ (1 − q)

(

(

βhi,t−1(s) + L(hi,t−1(s))
)

−
(

βhi,t−1(s
′) + L(hi,t−1(s

′))
)

)

+q
(

(

βhi−1,t−1(s) + L(hi−1,t−1(s))
)

−
(

βhi−1,t−1(s
′) + L(hi−1,t−1(s

′))
)

)

= (1 − q)
(

M(hi,t−1(s)) − M(hi,t−1(s
′))

)

+ q
(

M(hi−1,t−1(s)) − M(hi−1,t−1(s
′))

)

≤ 0

due to Lemma 6.2(g). Hence, hit(s) in nondecreasing in s for 1 ≤ i ≤ n − 2.

3. Proof for the monotonicity of hn−1(s) in s. From Eqs. (A.2) with i = n − 1, (A.3), and (A.6) we

obtain

hn−1,t(s) = (1 − q)βhn−1,t−1(s) + qβhn−2,t−1(s)

+ max{(1 − q)L(hn−1,t−1(s)) + qL(hn−2,t−1(s)), 0} − max{qL(hn−1,t−1(s)) − (1 − q)c, 0}.(A.9)
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Accoridngly, in almost the same way as the proof of 1 ≤ i < n − 1, from Eq. (A.9) we can also prove

hn−1,t(s) ≤ hn−1,t(s
′), i.e., hn−1,t(s) is nondecreasing in s.

From all the above it eventually follows that hi(s) is nondecreasing in s for 0 ≤ i < n.

B. Example of T -function

Let us show an example of T -function, which is used for the numerical experiments conducted in Section 8.

Let F (w) be the uniform distribution on [a, b] with 0 < a < b < ∞.

1. Admissio control problem: Noting that T (x) can be rewritten T (x) =
∫ b

x
(w − x)dF (w), we have

T (0) = 0.5(b + a) and

T (x) =















0.5(b + a) − x for x < a,

0.5(b − x)2/(b − a) for a ≤ x < b,

0 for b ≤ x.

(B.1)

2. Pricing contro problem: It is evident from Eqs. (2.1) and (2.2) that p(z) = 1 for z < a, p(z) =

(b− z)/(b− a) for a ≤ z < b, and p(z) = 0 for b ≤ z. For convenience, let g(z, x) = p(z)(z − x), hence

T (x) = maxz g(z, x). Further, for any real numbers z and x let us define y(z, x) = (b−z)(z−x)/(b−a),

and by z∗(x) let us denote the z attaining the maximum of y(z, x) for any given x ∈ (−∞,∞). Then

g(z, x) can be expressed as follows.

g(z, x) =















z − x for z < a,

y(z, x) for a ≤ z < b,

0 for b ≤ z.

(B.2)
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Figure 2.4: graphs of g(z, x)

Here, note that g(z, x) is maximized at z = z(x) by the definition where a ≤ z(x) ≤ b from

Lemma 6.1(a,b). Accordingly, since ∂y(z, x)/∂z = (−2z +x + b)/(b− a), we obtain z∗(x) = (x + b)/2.

Then g(z, x) can be depicted as any one of the three graphs in Figure 2.4, depending on a value that

z∗(x) takes on. From the figure it is immediately seen that (1) if z∗(x) < a, hence x < 2a − b, then

z(x) = a, thus T (x) = p(a)(a − x) = a − x, (2) if 2a − b ≤ z∗(x) < b, hence 2a ≤ x < b, then

z(x) = (x + b)/2, thus T (x) = p
(

(x + b)/2
)

((x + b)/2− x) = 0.25(b− x)2/(b− a), and (3) if z∗(x) ≥ b,

hence x ≥ b, then z(x) = b, thus T (x) = p(b)(b − x) = 0, which can be summarized as follows.

T (x) =















a − x for x < 2a − b → z(x) = a,

0.25(b − x)2/(b − a) for 2a − b ≤ x < b → z(x) = (x + b)/2,

0 for b ≤ x → z(x) = b.

(B.3)

from which we see that x? = 2a − b. Accordingly, if x? = 2a − b > 0, then T (0) = a, or else

T (0) = 0.25 b2/(b − a).
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