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Abstract

This paper deals with a decision problem on whether or not to accept orders from customers sequentially arriving

at a custom production company where an idling profit is yielded by conducting production of products with

standard specifications when there exists no backorder in the company and where a penalty is paid for not

keeping an appointed date of delivery. We discuss the admission control problem and pricing control problem in

an identical framework. Properties of the optimal decision rule maximizing the total expected present discounted

net profit gained over an infinite planning horizon are examined and clarified.

1 Introduction

This paper deals with the problem of selecting which profitable orders to accept out of sequentially

arriving customers in a custom production company, such as a shipbuilding company, advertising agency,

consulting company, design office, construction firm, and so on. In the problem, we should note that the

two kinds of opportunity loss described below closely relate to the problem.

1. Opportunity loss I . Suppose that orders from all arriving customers are accepted irrespective of their

profitabilities. In this case, the production process soon becomes full; with the result that orders from

customers arriving thereafter can not be accepted, however high their profitability potential may be,

for the reason that if they are accepted, they can not be processed by the appointed date for delivery.

This leads to an opportunity loss that if adequate allowance had been kept in the production lines by

having rejected less profitable orders in advance, the company could have enjoyed upcoming profitable

orders. We shall refer to this loss as Opportunity loss I.

2. Opportunity loss II . Excessively refraining from accepting orders due to apprehension that Oppor-

tunity loss I could occur causes a reduced number of backorders. This time, the production process

soon becomes idle, implying an opportunity loss where if more orders had been accepted in advance,

profit could have been gained from them. We shall refer to this loss as Opportunity loss II.

Both Opportunity losses cause a diminishment in the long run profit. The objective here therefore is to

find an optimal customers selection rule so as to maximize an expected long run profit through keeping

an appropriate level of backorders by controlling the number of orders to accept in advance with the aim

to avoid Opportunity losses I and II. This problem is usually called the customers selection problem.

This class of problems has been studied as the admission control problem and the pricing control

problem. In the former, a customer offers a price for his order, and judging from this, the company

decides whether or not to accept. In the latter, by contrast, the system offers a price for an order, and

judging from this, the customer decides whether or not to place an order with the company.

Optimal policies in the admission control problem were originally considered by Heyman [2]. This was

later applied to the queueing system with a finite customer class and finite-capacity by Miller [10] and

continued by Lippman and Ross [7] for a single-server with uncountable customer classes. In [3] a model

for a discrete-time process was formulated by Ikuta. Optimal pricing policies in pricing control were
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discussed by Low [8], more recently by You [16] and Feng and Xiao [1] for yield management, and by Fu

et al. [9] for queueing staffing problem. These two problems, i.e., the admission control and the pricing

control problems are separately formulated and analyzed in Yoon and Lewis’s [15], which is the latest

report. In our paper we show that both problems can be treated in an identical framework; see [5, Ikuta]

for a general discussion on the integration of admission control problem and pricing control problem.

In this paper a search cost is paid to search for a customer where without paying a search cost at

a point in time, no customer arrives at the next point in time. The introduction of the search cost

inevitably yields the option of skipping the search or not. Furthermore, we introduce penalty cost and

idling profit, which are not taken into account in any other papers. A penalty cost penalizes the company

(system) for not keeping an appointed date of delivery; if an order accepted can not be completed and

delivered up to the appointed date, the company has to pay a penalty to the customer for the period

delayed. The idling profit is yielded when there is no backorder in the system. For example, consider a

custom production company manufacturing products with special and general specifications. When all

the products with special specification that have been accepted to a point have been completed and the

production process has become idle, the production is shifted to general specification products to yield

profit again. We clarify the relationship of the optimal policies with the penalty cost, the search cost,

and the idling profit.

The objective here is to find the optimal decision rule to maximize the total expected present discounted

net profit gained over an infinite planning horizon, the total expected present discounted value of prices

of orders accepted whether in the admission control problem or in the pricing control problem plus the

idling profits minus the search costs minus the penalty costs.

Here by n let us denote the maximum number of orders that can be held in the system. The way of

analysis for the case of n = 1 is very different from that for the case of n ≥ 2. In this paper we only

discuss the case of n = 1; see [14, Son] for the case of n ≥ 2.

Section 2 provides a strict definition for the model. Section 3 describes the optimal equation of the

model, and this is transformed in Section 4. Three functions are defined in Section 5. The properties

of the optimal decision rule are clarified in Section 6, and based on this the optimal decision rule is

prescribed in Section 7. Section 8 summarizes the conclusions obtained in the previous sections and

Section 9 suggests some subjects of study to be tackled in the future.

2 Model

Assumptions The model examined in the paper is defined on the assumptions below:

A1. The model is defined as a discrete-time sequential stochastic decision process with an infinite plan-

ning horizon. Let points in time be equally spaced on the axis of the planning horizon, and let the

time interval between successive points in time be called the period.

A2. It is only when a search is enacted by paying a search cost c ≥ 0 at a point in time that a customer

arrives at the next point in time with a probability λ ( 0 < λ ≤ 1 ).

A3. Let the prices offered by subsequently appearing customers, w,w′, · · · , in the admission control prob-

lem and the maximum permissible ordering prices of subsequently appearing customers, w,w′, · · · ,

in the pricing control problem be both independent and identically distributed random variables

having a known continuous distribution function F (w) with a finite expectation µ. Then, in the

pricing control problem, if the system offers a price z to an appearing customer, the probability of

the customer placing the order with the system is given by

p(z) = Pr{z ≤ w}. (2.1)
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In both the admission control and pricing control, for certain given numbers a and b (0 < a < b < ∞)

let us define the probability density function as follows;

f(w) = 0, w < a, f(w) > 0, a ≤ w ≤ b, f(w) = 0, b < w (2.2)

where clearly a < µ < b. Throughout the paper, let us denote the expectation of a given function

g(w) as to w by E[g(w)].

A4. With a probability q ( 0 < q < 1 ) an order in the system at a certain point in time is completed

and goes out of the system at the next point in time.

A5. When there exists no backorder in the system, an idling profit s ≥ 0 is yielded by engaging in other

economic activities using the idle production line.

A6. A contract is assumed to be signed with all the clients that any order accepted is delivered within

τ periods, and a clause is added that if the contract can not be honored, then a penalty θ ≥ 0 is

paid for a period delayed. Accordingly, for an order accepted l periods ago if τ ≤ l, then the penalty

must be paid, or else it does not need to be paid; here note that τ = l implies that the order has not

yet been completed at the latest date signed, hence at least one period is needed for its completion,

and the penalty θ must be paid for the order.

A7. Let the discount factor be denoted by β < 1.

Decision rules The decision on the problem is based on the following three rules:

(1) The rule whether or not to accept an order from arriving customers in the admission control problem.

(2) The rule as to the ordering price to offer in the pricing control problem.

(3) The rule whether to continue or to skip the search in both problems.

Relationship with optimal stopping problems From the viewpoint of the optimal stopping problem,

our model can be interpreted as follows. In the standard model of the optimal stopping problem [13,

Sakaguchi], once an offer is accepted, the process is assumed to terminate at that time. If the assumption

is changed into one where even if an offer (customer) is accepted, another one can be accepted at some

period thereafter, deterministic or stochastic, then the variation can be basically reduced to our model.

By introducing different concepts, as stated in Section 9, in various optimal stopping problems, we may

develop different variations of our model.

Notations For convenience in the later discussions let us define

η = (1 − q)β < 1, (2.3)

γ = (1 − η)−1 > 1, (2.4)

ρ = γητθ ≥ 0, (2.5)

χ = cγ(1 − q)/q + γs + ρ (2.6)

where it can be easily seen that

1 − γqβ = γ(1 − β) > 0. (2.7)

For expressional simplicity, we define the notations such as in Table 2.1.

3 Optimal Equations

Either if the search was skipped at the previous point in time or if no customer has appeared with

probability 1 − λ regardless of having conducted the search at the previous point in time, it follows that
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Table 2.1: Definition of notations

Notation Definition Notation Definition Notation Definition

C continuing the search 〈C〉

Each
corresponding

decision is
optimal

〈O(z)〉
It is optimal to offer the price z
for an order in pricing control

K skipping the search 〈K〉

A accepting an order 〈A〉 〈A(w)〉
It is optimal to accept an appearing
order w in admission control

R rejecting an order 〈R〉 〈R(w)〉
It is optimal to reject an appearing
order w in admission control

*We do not use S as a notation representing “skipping the search” because it is often used for

representing “stopping the search”

no customer appears at the present point in time. For convenience, we shall refer to such a situation as

“the system has a fictitious customer φ”, called the state (φ).

In both admission control and pricing control, by u(φ) and u(φ, l) we shall denote the maximum total

expected present discounted net profits starting from state (φ), provided, respectively, that there exists

no order in the system and that there exists an order accepted l periods ago in the system. Since

the expectation of immediate reward at any point in time is clearly finite, using the conventional way

outlined in the discussion of the Markovian decision process [11, Ross](p29-30), we can easily show that

|u(φ)| ≤ M/(1 − β) and |u(φ, l)| ≤ M/(1 − β), l ≥ 0, for a sufficiently large M > 0, i.e., u(φ) is finite

and u(φ, l) is bounded in l ≥ 0. Suppose the system is a state (φ, l) at a certain point in time. Then if

τ ≤ l, the penalty θ must be paid at the present point in time, or else it does not need to be paid. For

convenience in the discussions that follow, let us define

h = u(φ) − u(φ, 0). (3.1)

1. Admission control problem: By u(w) let us denote the maximum total expected present discounted

net profit starting with an appearing customer w and with no order in the system. Then we get

u(φ) = max

{

C : β
(

λE [u(ξ)] + (1 − λ)u(φ)
)

− c + s,

K : βu(φ) + s,
(3.2)

u(φ, l) = −θI(τ ≤ l) + max















C: (1 − q)βu(φ, l + 1)

+ qβ
(

λE [u(ξ)] + (1 − λ)u(φ)
)

− c,

K : (1 − q)βu(φ, l + 1) + qβu(φ)















, l ≥ 0, (3.3)

u(w) = max

{

A : w + u(φ, 0),

R : u(φ)

}

≥ w. (3.4)

The last equation can be rearranged as

u(w) = max{w − h, 0} + u(φ). (3.5)

2. Pricing control problem: By u(1) let us denote the maximum total expected present discounted net

profit starting with an appearing customer and with no order in the system. Then we have
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u(φ) = max

{

C : β
(

λu(1) + (1 − λ)u(φ)
)

− c + s,

K : βu(φ) + s,
(3.6)

u(φ, l) = −θI(τ ≤ l) + max















C: (1 − q)βu(φ, l + 1)

+ qβ
(

λu(1) + (1 − λ)u(φ)
)

− c,

K : (1 − q)βu(φ, l + 1) + qβu(φ)















, l ≥ 0, (3.7)

u(1) = max
z

{p(z)
(

z + u(φ, 0)
)

+ (1 − p(z))u(φ)} ≥ max
z

p(z)z. (3.8)

Eq. (3.8) can be rearranged as

u(1) = max
z

p(z)(z − h) + u(φ). (3.9)

See Lemma 4.1 for the proof of the unique existence of the solutions for the above system of equations.

4 Transformation of the Optimal Equations

Let us define the following functions:

1. For any real number x let

T (x) =







E [max{w − x, 0}] for the admission control problem,

max
z

p(z)(z − x) for the pricing control problem,
(4.1)

called the T -function [5, Ikuta] [16, You]. Note T (0) > 0 (See [5]). In the pricing control problem, for

a given x by z(x) let us designate the z attaining the maximum of p(z)(z−x) on (−∞,∞) if it exists,

i.e., T (x) = p(z(x))(z(x) − x).

2. Let us define

L(h) = λβT (h) − c, L̇(h) = λqβT (h) − c. (4.2)

When regarding h as a function of s, i.e., h = h(s), by s∗ and ṡ∗ let us denote the solutions of

L(h(s)) = 0 and L̇(h(s)) = 0, respectively, if they exist, i.e.,

L(h(s∗)) = 0, L̇(h(ṡ∗)) = 0. (4.3)

If multiple solutions exist in each of the above two equations, let us define the smallest of them as s∗

and ṡ∗, respectively.

Further, let us define

v(0) =

{

E[u(w)] for the admission control problem,

u(1) for the pricing control problem.
(4.4)

Then since E [u(w)] ≥ µ = T (0) from Eq. (3.4) and u(1) ≥ maxz p(z)z = T (0) from Eq. (3.8), we have

v(0) ≥ T (0). (4.5)

Now using the definition Eq. (4.1), we can express both of “Eqs. (3.2), (3.3), and (3.5)” and “Eqs. (3.6),

(3.7), and (3.9)” by the identical equations as below.

u(φ) = max{λβv(0) + (1 − λ)βu(φ) − c, βu(φ)} + s, (4.6)

u(φ, l) = −θI(τ ≤ l) + max

{

(1 − q)βu(φ, l + 1) + qβ
(

λv(0) + (1 − λ)u(φ)
)

− c

(1 − q)βu(φ, l + 1) + qβu(φ)

}

, l ≥ 0, (4.7)

v(0) = T (h) + u(φ). (4.8)

Further, Eqs. (4.6) and (4.7) can be rearranged into, respectively,
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u(φ) = βu(φ) + max{λβ
(

v(0) − u(φ)
)

− c, 0} + s, (4.9)

u(φ, l) = (1 − q)βu(φ, l + 1) + qβu(φ) + max{λqβ
(

v(0) − u(φ)
)

− c, 0} − θI(τ ≤ l), l ≥ 0. (4.10)

Using Eq. (4.8), we can rearrange Eqs. (4.9) and (4.10) as follows, respectively,

u(φ) = (max{L(h), 0} + s)/(1 − β) ≥ 0, (4.11)

u(φ, l) = (1 − q)βu(φ, l + 1) + qβu(φ) + max{L̇(h), 0} − θI(τ ≤ l), l ≥ 0. (4.12)

Lemma 4.1 The system of Eqs. (4.6) to (4.8) has a unique solution.

Proof. See App. A.

Lemma 4.2 Eq. (4.12) with l = 0 can be rewritten

u(φ, 0) = γqβu(φ) + γ max{L̇(h), 0}) − ρ. (4.13)

Proof. See App. B.

Now, Eqs. (3.5) and (4.11) and Eqs. (3.9) and (4.12) tell us that the optimal decision rules can be

prescribed as follows.

Optimal Decision Rule 4.1

1. Admission control problem:

i. If w > h, then 〈A(w)〉, or else 〈R(w)〉.

ii. If L(h) > 0
(

L̇(h) > 0
)

, then 〈C〉φ ( 〈C〉l )∗ , or else 〈K〉φ ( 〈K〉l ).

2. Pricing control problem:

i. 〈O(z(h))〉.

ii. If L(h) > 0
(

L̇(h) > 0
)

, then 〈C〉φ ( 〈C〉l ), or else 〈K〉φ ( 〈K〉l ).

Note. The optimal decision rule is independent of l.

5 Preliminaries

To begin with, for any real number x let us define the following three functions, which becomes inevitably

necessary in the analyses of Section 6.

G(x) = γ
(

max{L(x), 0} − max{L̇(x), 0}
)

− x + γs + ρ, (5.1)

B1(x) = T (x)− (x − γs − ρ)/γλ(1 − q)β, (5.2)

B2(x) = T (x)− (x + γ(c − s) − ρ)/γλβ. (5.3)

Further, by x∗, x∗

1, and x∗

2 let us denote the solution of, respectively, G(x) = 0, B1(x) = 0, and B2(x) = 0,

if they exist, i.e.,

G(x∗) = 0, B1(x
∗

1) = 0, B2(x
∗

2) = 0. (5.4)

For convenience in the later discussions, let us denote x∗

1 and x∗

2 for s = 0 by x∗

1(0) and x∗

2(0), respectively.

Now, noting Eqs. (4.13) and (2.7), we can rewrite Eq. (3.1)

h = u(φ) − u(φ, 0) = γ(1 − β)u(φ) − γ max{L̇(h), 0} + ρ. (5.5)

Rearranging Eq. (5.5) by substituting Eq. (4.11) yields

∗The notations 〈C〉φ and 〈K〉l imply that conducting the search and skipping the search, respectively, is optimal in state

(φ) and (φ, l) for l ≥ 0.
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h = γ
(

max{L(h), 0} − max{L̇(h), 0}
)

+ γs + ρ, (5.6)

which can be eventually rewritten

G(h) = 0; (5.7)

in other words, the h, defined by Eq. (3.1), is given by the solution of G(x) = 0.

Lemma 5.1

(a) z(x) exists with z(x) ≥ a.

(b) a ≤ z(x) ≤ b for all x where z(x) = b if x ≥ b.

(c) If x < b, then x < z(x) < b.

(d) z(x) is nondecreasing in x.

Proof. See [5].

Lemma 5.2 In both admission control and pricing control we have:

(a) T (x) is continuous and nonincreasing on (−∞,∞) and strictly decreasing on (−∞, b].

(b) T (x) ≥ 0 on (−∞,∞).

(c) T (x) > 0 on (−∞, b), and T (x) = 0 on [b,∞).

(d) If T (x) = (> ) 0, then b ≤ (> )x.

(e) For any given y > 0 the equation T (x) = y has a unique solution, less than b.

(f) limx→∞ T (x) = 0 and limx→−∞ T (x) = ∞.

(g) νT (x) + x is nondecreasing in x and strictly increasing in x if ν < 1.

(h) limx→∞ νT (x) + x = ∞, and if ν < 1, then limx→−∞ νT (x) + x = −∞.

Proof. See [5].

Lemma 5.3

(a) G(x) is strictly decreasing in x.

(b) G(x) < (>) 0 for any sufficiently large x > 0 (x < 0).

(c) G(x) is nonincreasing in c and strictly decreasing in q and τ for all x.

(d) G(x) is nondecreasing in λ and strictly increasing in β and θ for all x.

(e) G(x) is strictly increasing in s for all x.

Proof. See App. C.

Lemma 5.4

(a) B1(x) and B2(x) are both strictly decreasing in x where B1(x) > (<) 0 and B2(x) > (<) 0 for any

sufficiently small (large) x.

(b) x∗

1 and x∗

2 are both uniquely exist, which are positive if λβT (ρ) > c.

(c) χ > (= (<)) x ⇔ B1(x) > (= (<)) B2(x) where B1(χ) = B2(χ).

(d) x∗

2 > χ ⇔ x∗

1 > χ and x∗

2 ≤ χ ⇔ x∗

1 ≤ χ.

Proof. See App. D.
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6 Analysis

In this section, we shall prove many assertions in the relationship with s. For this reason let us regard

h, G(x), x∗

1, and x∗

2 as a function of s, i.e., h = h(s), G(x, s), x∗

1 = x∗

1(s), and x∗

2 = x∗

2(s). However, for

explanatory simplicity let us employ the notations “h, G(x), x∗

1, and x∗

2” in the Lemmas 6.1 to 6.4 except

Lemma 6.4(d) and “h(s), G(x, s), x∗

1(s), and x∗

2(s)” in their proofs.

Lemma 6.1

(a) x∗ uniquely exists with x∗ = h, x∗ ≥ s, and x∗ ≥ ρ.

(b) If s < (b − ρ)/γ (, hence b > ρ due to s ≥ 0), then h < b, or else h ≥ b.

(c) h is nonincreasing in c and strictly decreasing in q and τ .

(d) h is nondecreasing in λ and strictly increasing in β and θ.

(e) h is strictly increasing in s with lims→∞ h = ∞ and lims→−∞ h = −∞.

Proof. Below, note that L(x) = λβT (x) − c ≥ λqβT (x) − c = L̇(x) for any x because T (x) ≥ 0 due to

Lemma 5.2(b).

(a) The unique existence of x∗, independent of s, is immediate from Lemma 5.3(a,b), hence h = x∗

from Eq. (5.7). Since γ > 1 due to Eq. (2.4), we have

G(s, s) = γ
(

max{L(s), 0} − max{L̇(s), 0}
)

+ (γ − 1)s + ρ ≥ 0,

G(ρ, s) = γ
(

max{L(ρ), 0} − max{L̇(ρ), 0}
)

+ γs ≥ 0,

hence x∗ ≥ s and x∗ ≥ ρ due to Lemma 5.3(a).

(b) Since L(b) = L̇(b) = −c due to Eq. (4.2) and Lemma 5.2(c), we obtain G(b, s) = −b + γs + ρ. If

s < (b − ρ)/γ, then G(b, s) < 0, implying h < b, or else G(b, s) ≥ 0, implying h ≥ b.

(c,d) Evident from Lemma 5.3(c,d), respectively.

(e) The former half is immediate from Lemma 5.3(e). Suppose h(s) converges to a finite h̄ as s → ∞.

Then since h(s) < h̄ for any s, we have G(h̄, s) < G
(

h(s), s
)

= 0 due to Lemma 5.3(a); accordingly,

lims→∞ G(h̄, s) ≤ 0 due to Lemma 5.3(e). However, lims→∞ G(h̄, s) = ∞ from Eq. (5.1), which is a

contradiction. Thus h(s) must diverge as s → ∞. Similarly also proven lims→−∞ h(s) = −∞.

Below, by s
b

let us denote the solution of h(s) = b if it exists, i.e., h(s
b
) = b.

Lemma 6.2

(a) s
b

uniquely exists.

(b) Both L(h) and L̇(h) are strictly decreasing in s < s
b

and nonincreasing in s on (−∞,∞).

(c) L(h) > 0 and L̇(h) > 0 for any sufficiently small s.

(d) If c > 0, then L(h) < 0 and L̇(h) < 0 for any sufficiently large s.

(e) L(h) > L̇(h) for s < s
b

and L(h) = L̇(h) = −c for s ≥ s
b
.

Proof. (a) Immediate from Lemma 6.1(e).

(b) First, for any s < s′ < s
b

since h(s) < h(s′) < h(s
b
) = b due to Lemma 6.1(e), we get L(h(s)) >

L(h(s′)) and L̇(h(s)) > L̇(h(s′)) from Lemma 5.2(a), hence the former half of the assertion holds. From

Lemmas 6.1(e) and 5.2(a) it is immediately seen that L(h(s)) and L̇(h(s)) are nonincreasing in s.

(c) Let c > 0. Then from Lemmas 6.1(e) and Lemma 5.2(e) we easily see that there exists an s̄ such

that T
(

h(s̄)
)

= c/λβ > 0 and h(s̄) < b. Now, for s < s̄ we have h(s) < h(s̄) < b due to Lemma 6.1(e).
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Accordingly, from Lemma 5.2(a) we get T
(

h(s)
)

> T
(

h(s̄)
)

= c/λβ, hence 0 < λβT
(

h(s)
)

− c = L
(

h(s)
)

.

Let c = 0. Then for s < s
b

we obtain h(s) < h(s
b
) = b, hence L

(

h(s)
)

= λβT
(

h(s)
)

> λβT (b) = 0 due

to Lemma 5.2(b,c)). The proof of L̇
(

h(s)
)

> 0 is also shown in quite the same way as the above.

(d) Let c > 0. Then for s
b
≤ s we have b = h(s

b
) ≤ h(s) from Lemma 6.1(e), hence L(h(s)) =

L̇(h(s)) = −c < 0 due to Lemma 5.2(c).

(e) For any s < s
b

we have h(s) < h(s
b
) = b due to Lemma 6.1(e), hence T (h(s)) > 0 due to

Lemma 5.2(c); accordingly, L(h(s)) = λβT (h(s)) − c > λqβT (h(s)) − c = L̇(h(s)). For s
b
≤ s we get

b = h(s
b
) ≤ h(s), hence L(h(s)) = L̇(h(s)) = −c due to Lemma 5.2(c).

From Lemma 6.2 we can depict Figure 6.1.
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Figure 6.1: Graphs of L(h(s)) and L̇(h(s)) with c > 0

Lemma 6.3

(a) Let c = 0. Then L(h) ≥ 0 and L̇(h) ≥ 0.

(b) Let c > 0.

1 Both s∗ and ṡ∗ uniquely exist with ṡ∗ < s∗ < s
b
.

2 If s∗ ≤ s, then L(h) ≤ 0 and L̇(h) ≤ 0.

3 If s < s∗, then L(h) > 0.

4 If ṡ∗ ≤ s, then L̇(h) ≤ 0.

5 If s < ṡ∗, then L(h) > 0 and L̇(h) > 0.

Proof. (a) If c = 0, then L(h) = λβT (h) ≥ 0 and L̇(h) = λqβT (h) ≥ 0 due to Lemma 5.2(b).

(b) Let c > 0 (see Figure 6.1).

(b1) The unique existence of s∗ and ṡ∗ are immediate from Lemma 6.2(b,c,d). The latter half is evident

from Lemma 6.2(e).

(b2-b5) Evident from Lemma 6.2(b,e).

Below, let us regard s∗ and ṡ∗ as functions of c, i.e., s∗(c) and ṡ∗(c), and let c∗ and ċ∗ be the solution

of s∗(c) = 0 and ṡ∗(c) = 0, respectively, if they exist, i.e.,

s∗(c∗) = 0, ṡ∗(ċ∗) = 0. (6.1)

Lemma 6.4

(a) Both s∗(c) and ṡ∗(c) are strictly decreasing in c.
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(b) If c = 0, then s∗ = ṡ∗ = s
b

= (b − ρ)/γ.

(c) c∗ = λβT (ρ).

(d) ċ∗ = q
(

x∗

1(0) − ρ
)

/γ(1 − q).

(e) If ρ < b, then ċ∗ ≤ λqβT (ρ) < c∗.

Proof. (a) Let c < c′. Then since L
(

h(s∗(c))
)

= 0 and L
(

h(s∗(c′))
)

= 0, we have c = λβT
(

h(s∗(c))
)

and c′ = λβT
(

h(s∗(c′))
)

; accordingly λβT
(

h(s∗(c))
)

= c < c′ = λβT
(

h(s∗(c′))
)

. Hence h
(

s∗(c)
)

>

h
(

s∗(c′)
)

because if not so, we have the contradiction of T
(

h(s∗(c))
)

≥ T
(

h(s∗(c′))
)

due to Lemma 5.2(a).

Accordingly, we obtain s∗(c) > s∗(c′) from Lemma 6.1(e). Similarly proven for ṡ∗(c).

(b) Let c = 0. Then since L(x) = λβT (x) ≥ 0 and L̇(x) = λqβT (x) ≥ 0 for all x due to Lemma 5.2(b),

we have G(x, s) = γλ(1 − q)βT (x) − x + γs + ρ. Hence letting s̄ = (b − ρ)/γ, we get 0 = G
(

h(s̄), s̄
)

=

γλ(1 − q)βT (h(s̄)) − h(s̄) + b or equivalently

γλ(1 − q)βT (h(s̄)) = h(s̄) − b. (6.2)

Since T (h(s̄)) ≥ 0 due to Lemma 5.2(b), we obtain h(s̄) ≥ b or equivalently h(s̄) ≥ b = h(s
b
) due to the

definition of s
b
. Thus, s

b
≤ s̄ due to Lemma 6.1(e). Here, suppose sb < s̄. Then h(s̄) > h(sb) = b, hence

T (h(s̄)) > 0 from Eq. (6.2), so that h(s̄) < b due to Lemma 5.2(d), which is a contradiction. Therefore it

must be s̄ = s
b
. Now, if s < s

b
, then h(s) < h(s

b
) from Lemma 6.1(e), hence L

(

h(s)
)

> L
(

h(s
b
)
)

= 0

due to Lemma 6.2(b,e with c = 0), and if s
b
≤ s, then L

(

h(s)
)

= 0 due to Lemma 6.2(e with c = 0).

Thus we have s∗ = s
b

due to the definition of s∗. The proof of ṡ∗ = s
b

is the same as the above.

(c) From Eqs. (4.2) and (4.3) we have, for any c,

c = λβT
(

h(s∗)
)

, (6.3)

c = λqβT
(

h(ṡ∗)
)

. (6.4)

Since 0 = L(h(s∗)) ≥ L̇(h(s∗)) due to Lemma 5.2(b) and h(s∗) is the solution of G(x, s∗) = 0, from

Eq. (5.1) we get

0 = G
(

h(s∗), s∗
)

= −h(s∗) + γs∗ + ρ,

hence h(s∗) = γs∗ + ρ. Accordingly, if c = c∗, then s∗ = s∗(c∗) = 0, hence since h(s∗) = ρ, from Eq. (6.3)

we have c∗ = λβT
(

h(s∗)
)

= λβT (ρ).

(d) Rearranging Eq. (5.1) with x = h
(

ṡ∗
)

by substituting (6.4) yields

0 = G
(

h(ṡ∗), ṡ∗
)

= γ
(

max{λβT
(

h(ṡ∗)
)

− c, 0} − max{λqβT
(

h(ṡ∗)
)

− c, 0}
)

− h(ṡ∗) + γṡ∗ + ρ

= γ max{λβT
(

h(ṡ∗)
)

− λqβT
(

h(ṡ∗)
)

, 0} − h(ṡ∗) + γṡ∗ + ρ

= γ max{λ(1 − q)βT
(

h(ṡ∗)
)

, 0} − h(ṡ∗) + γṡ∗ + ρ

= γλ(1 − q)βT
(

h(ṡ∗)
)

− h(ṡ∗) + γṡ∗ + ρ

due to Lemma 5.2(b), from which

T
(

h(ṡ∗)
)

=
(

h(ṡ∗) − γṡ∗ − ρ
)

/γλ(1 − q)β,

implying

B1

(

h(ṡ∗)
)

= 0, (6.5)

hence x∗

1(ṡ
∗) = h(ṡ∗) from Lemma 5.4(b). If c = ċ∗, then ṡ∗ = ṡ∗(ċ∗) = 0 due to Eq. (6.1), thus

x∗

1(0) = h(0). Accordingly,
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T
(

x∗

1(0)
)

= (x∗

1(0) − ρ)/γλ(1 − q)β. (6.6)

Now, from Eq. (6.4) we have ċ∗ = λqβT (h(ṡ∗)) = λqβT (h(0)) = λqβT
(

x∗

1(0)
)

, from which T
(

x∗

1(0)
)

=

ċ∗/λqβ, hence from Eq. (6.6) ċ∗/λqβ =
(

x∗

1(0)−ρ
)

/γλ(1−q)β or equivalently ċ∗ = q
(

x∗

1(0)−ρ
)

/γ(1−q).

(e) Since T (x∗

1(0)) ≥ 0 due to Lemma 5.2(b), we have x∗

1(0) ≥ ρ from Eq. (6.6), thus T (ρ) ≥ T (x∗

1(0))

from Lemma 5.2(a). Accordingly, from Eqs. (6.6) and (d) we have

T (ρ) ≥
x∗

1(0) − ρ

γλ(1 − q)β
=

q(x∗

1(0) − ρ)/γ(1− q)

λqβ
=

ċ∗

λqβ
,

hence ċ∗ ≤ λqβT (ρ). If ρ < b, then since T (ρ) > 0 from Lemma 5.2(c), we obtain ċ∗ ≤ λqβT (ρ) <

λβT (ρ) = c∗ due to the assumption of q < 1 and (c).

Lemma 6.5

(a) Let c∗ > c.

1 u(φ) > 0.

2 s∗ > 0.

3 Let s < s∗.

i If ṡ∗ ≤ s, then h = x∗

2 ≤ χ.

ii If s < ṡ∗, then h = x∗

1 > χ.

(b) Let c∗ ≤ c. Then L̇(h) ≤ L(h) ≤ 0.

Proof. (a) Let c∗ > c.

(a1) From Eqs. (4.6), (4.5), and (4.11) we have u(φ) ≥ λβv(0) + (1−λ)βu(φ)− c + s ≥ λβT (0)− c + s.

Further since T (0) ≥ T (ρ) from Eq. (2.5) and Lemma 5.2(a), from the above inequality we get u(φ) ≥

λβT (ρ) − c + s = c∗ − c + s > 0 due to Lemma 6.4(c) and the assumption of s ≥ 0.

(a2) Let s = 0. Assume λβv(0)+(1−λ)βu(φ)− c ≤ βu(φ). Then u(φ) = βu(φ) from Eq. (4.6), leading

to β = 1 due to u(φ) > 0 from (a1), which contradicts the assumption of β < 1. Accordingly, it must be

λβv(0)+(1−λ)βu(φ)− c > βu(φ), which can be rearranged into 0 < λβ(v(0)−u(φ))− c = λβT (h)− c =

L(h) from Eq. (4.8), implying s∗ > 0 due to Lemma 6.2(b).

(a3) Let s < s∗. Then L(h) > 0 from Lemma 6.3(b3). Here note ṡ∗ < s∗ from Lemma 6.3(b1).

(a3i) Let ṡ∗ ≤ s. Then L̇(h) ≤ 0 from Lemma 6.3(b4). Accordingly, from Eq. (5.6) we have h =

γL(h) + γs + ρ = γλβT (h)− γ(c− s) + ρ, hence T (h)−
(

h + γ(c− s)− ρ
)

/γλβ = 0, i.e., B2(h) = 0 from

Eq. (5.3), implying that h defined by Eq. (3.1) is given by x∗

2, which is the unique solution of B2(x) = 0

due to Lemma 5.4(b), i.e., h = x∗

2, hence

T (h) = T (x∗

2) =
(

x∗

2 + γ(c − s) − ρ
)

/γλβ. (6.7)

Now, from the assumption of ṡ∗ ≤ s we obtain 0 ≥ L̇(h) = λqβT (h) − c due to Lemma 6.3(b4).

Rearranging the inequality by substituting Eq. (6.7) produces

0 ≥ qx∗

2/γ − c(1 − q) − qs − qρ/γ,

hence x∗

2 ≤ cγ(1 − q)/q + γs + ρ = χ from Eq. (2.6).

(a3ii) If s < ṡ∗, then L̇(h) > 0 from Lemma 6.3(b5). Accordingly, from Eq. (5.6) we get h = γ(L(h) −

L̇(h)) + γs + ρ = γλ(1 − q)βT (h) + γs + ρ, hence T (h) − (h − γs − ρ)/γλ(1 − q)β = 0, i.e., B1(h) = 0

from Eq. (5.2). This implies that h defined by Eq. (3.1) is also given by x∗

1 which is the unique solution

of B1(x) = 0 due to Lemma 5.4(b), i.e., h = x∗

1. Hence

T (h) = T (x∗

1) = (x∗

1 − γs − ρ)/γλ(1 − q)β. (6.8)
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Now, from the assumption of s < ṡ∗ and Lemma 6.3(b5) we have 0 < L̇(h) = λqβT (h) − c. Rearranging

this inequality by substituting Eq. (6.8) yields q(x∗

1 − γs − ρ)/γ(1 − q) − c > 0 or equivalently x∗

1 >

cγ(1 − q)/q + γs + ρ = χ from Eq. (2.6).

(b) Let c ≥ c∗. Then c ≥ λβT (ρ) due to Lemma 6.4(c). Now, since h ≥ ρ from Lemma 6.1(a), we

have T (h) ≤ T (ρ) from Lemma 5.2(a). Hence, 0 ≥ λβT (ρ) − c ≥ λβT (h) − c ≥ λqβT (h) − c due to

Lemma 5.2(b), i.e., L̇(h) ≤ L(h) ≤ 0.

7 Optimal Decision Rule

The following theorem prescribes the optimal decision rule.

Theorem 7.1

(a) Let ρ ≥ b. Then 〈K〉φ and 〈K〉l.

(b) Let ρ < b.

1 Let c = 0. Then 〈C〉φ and 〈C〉l.

2 Let c > 0.

i If c∗ ≤ c, then 〈K〉φ and 〈K〉l.

ii If c < c∗, then

1 If s∗ ≤ s, then 〈K〉φ and 〈K〉l.

2 If s < s∗, then

i 〈C〉φ.

ii If x∗

1 ≤ (> )χ, then 〈K〉l( 〈C〉l ), or if x∗

2 > (≤ )χ, then 〈C〉l( 〈K〉l ).

Proof.

(a) Let ρ ≥ b. Then T (ρ) = 0 due to Lemma 5.2(c); accordingly, 0 = λβT (ρ) = c∗ ≤ c from

Lemma 6.4(c) and the assumption of c ≥ 0. Hence the assertion holds from Lemma 6.5(b).

(b1,b2i,b2ii1,b2ii2i) Immediate from Lemmas 6.3(a), 6.5(b), 6.3(b2), and 6.3(b3), respectively.

(b2ii2ii) We immediately obtain the following relationships from Lemmas 5.4(d), 6.3(b4,b5), and the

contrapositions of Lemma 6.5(a3i,a3ii).

x∗

1 > χ x∗

2 > χ s < ṡ∗ L̇(h) > 0 〈C〉l

x∗

2 ≤ χ x∗

1 ≤ χ ṡ∗ ≤ s L̇(h)) ≤ 0 〈K〉l

⇐⇒ =⇒ =⇒ =⇒

⇐⇒ =⇒ =⇒ =⇒

Lemma 5.4(d) Lemma 6.5(a3i) Lemma 6.3(b5)

Lemma 5.4(d) Lemma 6.5(a3ii) Lemma 6.3(b4)

? ? ?

6 6 6

Theorem 7.2 In the pricing control problem we have

(a) z(h) is nondecreasing in λ, β, s, and θ and nonincreasing in q, c, and τ .

(b) If s < (b − ρ)/γ, then h < z(h) < b, or else z(h) = b.

Proof. (a) Immediate from Lemmas 6.1(c,d,e), and 5.1(d).

(b) Evident from Lemmas 6.1(b) and 5.1(b,c).

8 Conclusions and Considerations
A. Optimal decision rules. Theorem 7.1 provides the most important conclusions obtained in the paper,

which can be summarized as in Table 8.2.
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Table 8.2: Summary of optimal decision rules

ρ c s χ State (φ) State (φ, l)

ρ < b

c = 0
〈C〉

φ 〈C〉
l

0 < c < c∗
s < s∗

χ < x∗

1

x∗

1 ≤ χ 〈C〉
φ

〈K〉
l

s∗ ≤ s

c∗ ≤ c 〈K〉
φ

〈K〉
l

ρ ≥ b

B. Relationships of the optimal decision rules with parameters. If τ is sufficiently small or θ is sufficiently

large, then b ≤ ρ = γητθ, implying that skipping the search is optimal in both states (φ) and (φ, l).

On the contrary, if τ is sufficiently large or θ is sufficiently small, then b > ρ = γητθ, hence we can

depict the optimal decision rule in Table 8.2 as in Figure 8.2 where both s∗(c) and ṡ∗(c) are strictly

decreasing in c with c∗ = λβT (ρ), ċ∗ = q(x∗

1(0) − ρ)/γ(1 − q) (Lemma 6.4(a,c,d)), ṡ∗(c) < s∗(c) for

c > 0 (Lemma 6.3(b1)), and ṡ∗(0) = s∗(0) = (b−ρ)/γ > 0 (Lemma 6.4(b)). The three regions Ω(K, K),

Ω(C, K), and Ω(C, C) in Figure 8.2 correspond to the optimal decisions of, respectively, “skipping in

both states (φ) and (φ, l)”, “continuing in state (φ) and skipping in state (φ, l)”, and “continuing in

both states (φ) and (φ, l)”. Here note that the three regions are independent of l. The figure tells us

the following two points:

1. When the search cost c or the idling profit s is sufficiently large, skipping the search becomes

optimal in both states (φ) and (φ, l), implying, respectively, that it is profitable to avoid the search

cost through skipping the search or that it becomes profitable to enjoy the idling profits while

emptying the process by skipping the search.

2. When the search cost c and the idling profit s are sufficiently small, continuing the search becomes

optimal in both states (φ, 0) and (φ, 1), implying, respectively, that it is reasonable to enjoy the

profit from an order obtained through conducting the search and that it does not become profitable

even when emptying the process by skipping the search.

C. Properties of h.

1. In the admission control problem the optimal selection criterion, on which the system decides

whether to accept an appearing customer or not, is given by h, and in the pricing control problem

the optimal price, on which an appearing customer decides whether to place his order in the system

or not, is given by the function z(h). Further, it is only in the regions Ω(C, K) ∪ Ω(C, C) that the

decisions stated above are to be made.

2. The h is given by the unique solution x∗ of the equation G(x) = 0, i.e., h = x∗; refer to Lemma 6.1

for the properties of h.

3. Let (s, c) ∈ Ω(C, C) ∪ Ω(C, K), hence h < b (Lemma 6.1(b)). Then the optimal decisions can be

prescribed as follows.

1) In admission control, if w > h, an order with value w appearing after having conducted the

search is accepted, or else rejected.

2) In pricing control, the optimal price z(h) is in the interval (h, b) (Theorem 7.2(b)).

D. The monotonicities of h and z(h) in the parameters (Lemma 6.1(c,d,e) and Theorem 7.2(a)).
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Figure 8.2: Three regions encircled by the functions ṡ∗(c) and s∗(c)
and the axes c, s when b > ρ.

1. Both h and z(h) are nondecreasing in λ, β,s, and θ. This implies that the larger the customer

appearing probability λ, the discount factor β, the idling profit s, and the penalty cost θ may be,

it is reasonable to accept orders with higher values in the admission control problem and to offer

higher prices in the pricing control problem, and vice versa.

2. Both h and z(h) are nonincreasing in q, c, and τ . This implies that the larger the service

completion probability q, the search cost c, and the date of delivery τ may be, the inverse of

the above can be said, i.e., it is reasonable to accept orders, even if their values are smaller, in

admission control and to offer smaller prices in pricing control, and vice versa.

9 Future Studies

In order to make the model posed in this paper more realistic, some points must be investigated; especially,

the following points could be challenged and should be examined.

1. We have assumed so far that n = 1, i.e., no more than one customer can be held at any instance.

However, we should also examine the case of n ≥ 2 from a practical viewpoint. Nevertheless, for the

reason that the mathematical treatment for n = 1 has a specific way of analysis which is not apparent

in the analysis of the case of n ≥ 2, we excluded this case in the present paper.

2. An order under going processing may be canceled due to customer related unavoidable circumstances.

According to business usage, if a customer cancels the contract, he should pay a penalty to the company.

The introduction of cancellation is sure to have influence on the optimal decision rule; this will become

an important subject of study to be tackled.

3. Thus far we have implicitly assumed that a customer once turned away can not be solicited in the

future. The future availability of a rejected customer, that is assumed in usual models of optimal

stopping problems [4] [6] [12], should be also introduced in our model, and this is also a subject of

study to be examined from a practical viewpoint.

Appendix

A. Lemma 4.1

Consider any given vector x = (xφ, x0, x1, · · · )
′ let us define the norm ||x|| = max{|xφ|, |x0|, x1|, · · · }

where ||x|| ≥ |xi| for i = φ, 0, 1, · · · . Further, by Dφu and Dlu let us denote the right hand sides of
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Eqs. (4.6) and (4.7), and let Du = (Dφu, D0u, D1u, · · · )′ and u = (u(φ), u(φ, 0), u(φ, 1), · · · )′. Then

noting Eq. (4.4), from Eq. (3.4) we have

|v(0) − v̂(0)| ≤ |E [max{w + u(φ, 0), u(φ)} − max{w + û(φ, 0), û(φ)}]|

≤ max{|u(φ) − û(φ)|, |u(φ, 0) − û(φ, 0)|} ≤ ||u − û||,

and from Eq. (3.8) we get

|v(0) − v̂(0)| ≤ max
z

{p(z)|u(φ, 0) − û(φ, 0)| + (1 − p(z))|u(φ) − û(φ)|}

≤ max
z

{p(z)||u − û|| + (1 − p(z))||u − û||} = ||u − û||.

Accordingly, from Eq. (4.6) we obtain

|Dφu − Dφû| ≤ max

{

λβ|v(0) − v̂(0)| + (1 − λ)β|u(φ) − û(φ)|,

β|u(φ) − û(φ)|

}

≤ β||u − û||.

Similiarly, from Eq. (4.7) we get |Dlu − Dlû| ≤ β||u − û|| for l ≥ 0. Thus ||Du − Dû|| ≤ β||u − û||,

implying that Du is a contraction mapping; accordingly, the assertion holds.

B. Lemma 4.2

For simplicity, let R = qβu(φ) + max{L̇(h), 0}. Then Eq. (4.12) can be rewritten

u(φ, l) = ηu(φ, l + 1) + R − θI(τ ≤ l), l ≥ 0, (B.1)

from which we can develop u(φ, 0) as follows.

u(φ, 0) = ηu(φ, 1) + R

= η(ηu(φ, 2) + R) + R = η2u(φ, 2) + (1 + η)R

...

= ητu(φ, τ) + (1 + η + · · · + ητ−1)R

= ητu(φ, τ) + R(1 − ητ )/(1 − η).. (B.2)

Further, from Eq. (B.1) with l = τ we get

u(φ, τ) = ηu(φ, τ + 1) + R − θ

= η(ηu(φ, τ + 2) + R − θ) + R − θ = η2u(φ, τ + 2) + (1 + η)(R − θ)

...

= ηju(φ, τ + j) + (1 + η + · · · + ηj−1)(R − θ)

= ηju(φ, τ + j) + (R − θ)(1 − ηj)/(1 − η).

Accordingly, since ηj → 0 as j → ∞ due to η < 1, we obtain limj→∞ nju(φ, τ + j) = 0, hence

u(φ, τ) = (R − θ)/(1 − η). (B.3)

Rearranging Eq. (B.2) by substituting Eq. (B.3) produces

u(φ, 0) = ητ
(

R − θ
)

/(1 − η) + R(1 − ητ )/(1 − η) =
(

R − ητθ
)

/(1 − η). (B.4)

Noting Eqs. (2.4) and (2.5), we can arrange Eq. (B.4) as follows.

u(φ, 0) = γR − γητθ = γqβu(φ) + γ max{L̇(h), 0}) − ρ.
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C. Lemma 5.3

(a) Eq. (5.1) can be rearranged into

G(x) = γ max{λβT (x) − c, 0} − max{x + γλqβT (x) − γc, x} + γs + ρ, (C.1)

the first term of the right hand side of which is nonincreasing in x from Lemma 5.2(a). Since 1 > γqβ ≥

γλqβ from Eq. (2.7), it follows that x + γλqβT (x) − γc is strictly increasing in x from Lemma 5.2(g),

hence the entire right hand side of Eq. (C.1) is strictly decreasing in x.

(b) Applying Lemma 5.2(f) to Eq. (5.1) leads to

lim
x→∞

G(x) = γ
(

max{−c, 0} − max{−c, 0}
)

− lim
x→∞

x + γs + ρ = −∞

Since G(x) ≥ −max{x + γλqβT (x) − γc, x} + γs + ρ from Eq. (C.1), applying Lemma 5.2(h) to this

inequality yields

lim
x→−∞

G(x) ≥ −max{ lim
x→−∞

(

x + γλqβT (x)
)

− γc, lim
x→−∞

x} + γs + ρ = ∞.

(c) For convenience, let us rewrite Eq. (5.1) as follows.

G(x) = γ
(

λβ max{T (x)− c/λβ, 0} − λqβ max{T (x)− c/λqβ, 0}
)

− x + γs + ρ.

For any given c > 0 let x1(c) and x2(c) be the solution of T (x) = c/λqβ and T (x) = c/λβ, respectively.

Then since c/λqβ > c/λβ > 0, clearly both x1(c) and x2(c) uniquely exist from Lemma 5.2(e) where

x1(c) < b and x2(c) < b. In addition, since T (x1(c)) = c/λqβ > c/λβ = T (x2(c)), we have x1(c) < x2(c)

due to Lemma 5.2(a). It is evident that x1(c) and x2(c) are both strictly decreasing in c. Now, let c′ = c+ε

for any infinitestimal ε > 0, hence c′ > c. Then x1(c
′) < x1(c) < x2(c

′) < x2(c) (see Figure 3.3). Below,

describing G(x) as G(x, c), let us examine the relationship of G(x, c) and c. First, Eq. (5.1) for each c

and c′ can be rewritten as follows, respectively.

G(x, c) =



















γ
(

λ(1 − q)βT (x) + s
)

− x + ρ, on I ∪ II · · · (1),

γ(λβT (x) − c + s) − x + ρ, on III ∪ IV · · · (2),

−x + γs + ρ, on V · · · (3),

(C.2)

G(x, c′) =



















γ
(

λ(1 − q)βT (x) + s
)

− x + ρ, on I · · · (1′),

γ(λβT (x) − c′ + s) − x + ρ, on II ∪ III · · · (2′),

−x + γs + ρ, on IV ∪ V · · · (3′).

(C.3)

� � -� -� - -I II III IV V

x2(c)x2(c
′)x1(c

′) x1(c) b

x

T (x)


c/λβ

c′/λβ

c/λqβ

c′/λqβ

Figure 3.3: The relationship between x1(c
′), x1(c), x2(c

′) and x2(c) where I = (−∞, x1(c
′)],

II =
(

x1(c
′), x1(c)

]

, III =
(

x1(c), x2(c
′)
)

, IV = [x2(c
′), x2(c)

)

, and V =
[x2(c),∞)
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1. On the intervals I and V, we have G(x, c) = G(x, c′), respectively, from Eqs. (C.2 (1)) and (C.3 (1′))

and Eqs. (C.2 (3)) and (C.3 (3′)).

2. On the interval II, from Eqs. (C.2 (1)) and (C.3 (2′)) we get

G(x, c) − G(x, c′) = γλ(1 − q)βT (x) − γλβT (x) + γc′

= −γλqβT (x) + γc′ = −γ(λqβT (x) − c′) > 0

due to λqβT (x) − c′ < 0 on x1(c
′) < x, hence G(x, c) > G(x, c′).

3. On the interval III, from Eqs. (C.2 (2)) and (C.3 (2′)) we have

G(x, c) = γ(λβT (x) − c + s) − x + ρ > γ(λβT (x) − c′ + s) − x + ρ = G(x, c′).

4. On the interval IV, from Eqs. (C.2 (2)) and (C.3 (3′))we obtain

G(x, c) − G(x, c′) = γ
(

λβT (x) − c + s
)

− x + ρ − (−x + γs + ρ) = γ(λβT (x) − c) > 0

due to λβT (x) − c > 0 on x < x2(c).

From all the above, it eventually follows that G(x, c) ≥ G(x, c′) for all x, that is G(x, c) is nonincreasing

in c for all x. Monotonicity of G(x) in q can be proven in almost the same way as the above where it is

to be noted that γ and ρ are strictly decreasing in q. The last assertion is evident from the fact that ρ is

strictly decreasing in τ due to η < 1 and that G(x) is strictly increasing in ρ.

(d) Proven in a similar way to that in the proof of (c) where it is to be noted that γ and ρ are strictly

increasing in β. The last assertion is evident from the fact that ρ is strictly increasing in θ and that G(x)

is strictly increasing in ρ.

(e) Immediate from Eq. (5.1) since γ > 0.

D. Lemma 5.4

(a) The former half is immediate from the facts that T (x) is nonincreasing in x due to Lemma 5.2(a)

and that both of −x/γλ(1− q)β and −x/γλβ are strictly decreasing in x. The latter half is evident from

Lemma 5.2(f).

(b) The former half is evident from (a). Let λβT (ρ) > c. Then since T (0) ≥ T (ρ) from Lemma 5.2(a)

due to ρ ≥ 0, noting T (0) > 0, we have

B1(0) = T (0) + (γs + ρ)/γλ(1 − q)β > 0,

B2(0) = T (0) − c/λβ + (λs + ρ)/γλβ ≥ T (ρ) − c/λβ + (λs + ρ)/γλβ

= (λβT (ρ) − c)/λβ + (λs + ρ)/γλβ > 0.

Hence, x∗

1 and x∗

2 are positive for any s ≥ 0.

(c) Clear from

B1(x) − B2(x) = −(x − γs − ρ)/γλ(1 − q)β +
(

x + γ(c − s) − ρ
)

/γλβ

=
(

− qx + γqs + qρ + γ(1 − q)c
)

/γλ(1 − q)β = −q(x − χ)/γλ(1 − q)β.

(d) Let x∗

2 > χ. Then 0 = B2(x
∗

2) < B2(χ) = B1(χ) due to (a,c), hence 0 < B1(χ). Accordingly, since

B1(x
∗

1) = 0 < B1(χ), we obtain x∗

1 > χ due to (a). Let x∗

1 > χ. Then 0 = B1(x
∗

1) < B1(χ) = B2(χ) due

to (a,c), hence 0 < B2(χ). Accordingly, since B2(x
∗

2) = 0 < B2(χ), we obtain x∗

2 > χ due to (a). The

latter half is proven by the contrapositions of the above results.
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