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Abstract

ROA (Real Option Approach) has been recently drawing much
attention of researchers and practitioners. In ROA, it is widely ob-
served that alternative options for the project management are treated
as financial options and the underlying uncertainty is evaluated ac-
cordingly. However, this approach requires the underlying asset of the
project to be traded in a market since alternative options of the project
cannot be replicated as financial options otherwise. In this paper,
based on a broader definition of ROA by Yamamoto and Kariya [12], a
Dynamic Programming approach is proposed. The optimal investment
strategy is incorporated explicitely within the decision structure of
the model, thereby extending the previous work by Huchzermeier and
Loch [3] substantially. Structural properties of the optimal investment
strategy are investigated in detail, establishing certain monotonicity
properties of the optimal project value and the optimal investment
amount. Some numerical results are also presented.
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1 Introduction

In evaluation of project values, one of the most prevalent methods is DCF
(Discounted Cash Flow) where the future cash flow generated by a project,
when it is completed as planned, is discounted to the present value using the
capital cost as a discounting parameter. This discounted future cash flow
is compared with the initial investment amount, yielding NPV (Net Present
Value) of the project as the difference of the two. If NPV ≥ 0, the project
would be carried out, while it would be terminated when NPV < 0. Klam-
mer [7] reported that only 15 % of U.S. companies employed DCF in 1959,
but the percentage was increased to 57 % in 1970. Today almost all of U.S.
companies use DCF for evaluation of project values, see e.g. Yamamoto and
Kariya [12]. This approach, however, cannot explicitly incorporate uncer-
tainty arising from development of the project.

In order to overcome this difficulty, ROA (Real Option Approach) has been
recently drawing much attention of researchers and practitioners. Following
Yamamoto and Kariya [12], ROA is defined in this paper as below:

(1.1) Real option is the right of the management to explore alternative op-
tions in a management environment with high uncertainty.

(1.2) ROV (Real Option Value) is the portion of the present project value
representing the value of having alternative options.

(1.3) A method to evaluate ROV is called ROA.

Typically alternative options include termination, deferral, expansion,
contract, time to build, transfer, shutdown and restart, cancellation, market
entry (Yamamoto and Kariya [12]), improvement (Huchzermeier and Loch
[3]), exchange option (Lee and Paxson [9]), and growth option (Loch and
Bode-Greuel [10]). ROA is superior to DCF when the degree of uncertainty
is higher and/or various alternative options are available. In addition, ROA
is more useful than DCF when the initial investment needed to carry out
the project is larger than the discounted future cash flow. In this case, one
has NPV < 0 and the project would be terminated if DCF is employed. In
reality, however, such a project itself may be traded in the market. The po-
tential project value of this sort can be captured by ROA, but not by DCF.

Typical projects for which ROA is more attractive than DCF include:
mining natural resource projects (Cortazer, Shwartz, and Casassus [2]), gas
and electric projects(Yamamoto and Kariya [12]), infrastructure development
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projects (Yamamoto and Kariya [12]), IT projects (Benarch [1], Kumer [8]),
pharmaceuticals R&D project (Kellogg and Charnes [5], Trang, Takezawa,
and Takezawa [11]), tree harvesting problems (Insley [4]), and lease projects
(Kenyon and Tompaidis [6]).

In ROA, it is widely observed that alternative options for the project man-
agement are treated as financial options, and the underlying uncertainty is
evaluated accordingly. In some literature, this specific approach is called
ROA. In this paper, however, we stick to the original definition of (1.1)
through (1.3), and the above approach is called“ the risk-neutral”ROA.
As discussed in a recent paper by Kellogg and Charnes [5], the risk-neutral
ROA has the advantage of providing substantial flexibility in incorporating
a variety of alternative options, and of eliminating the laborious evaluation
of the capital cost which is replaced by the risk-free rate. However, the
major draw-back of the risk-neutral ROA can be found in that it requires
the underlying asset of the project to be traded in a market. Otherwise
alternative options of the project cannot be replicated as financial options,
destructing the foundation of this approach. Among the projects previously
mentioned as those preferring ROA, only mining natural resource projects
and gas and electric projects satisfy this condition. In order to eliminate
the risk-neutral requirement, a recent paper by Huchzermeier and Loch [3]
employed a DP (Dynamic Programming) approach, where the success prob-
ability of the project for each time stage does not have to be risk-neutral
but arbitrary, and the capital cost is replaced by a risk-free rate as the dis-
counting parameter. In the paper [3], however, investment costs are treated
as functions of time, exogenous to the underlying desicion structure.

The purpose of this paper is to develop a DP-based ROA for determining
the optimal investment policy so as to maximize the expected present project
value. Here investment costs are incorporated explicitly as a part of strate-
gic decisions within the model. Probability of success at time t is treated
as an increasing function of the investment amount to be decided at time
t. A similar framework can be found in Kellogg and Charnes [5] but such
probabilities are assumed to be constant there. Salvage values are also incor-
porated when the option to terminate the project is exercised or the project
was forced to stop due to failure. Furthermore, such values are expressed
as increasing functions of the estimated value of the project outcome at the
occurrence of the stoppage. Thang, Takezawa, and Takezawa [11] treated op-
tion salvage values, but they were assumed to be constants. Introduction of
salvage values upon failure is new. It will be shown that the optimal project
value with options, V ∗, is always larger than that without options, V̂ ∗, so
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that the optimal real option value ROV ∗ = V ∗ − V̂ ∗ is always nonnegative.
Furthermore, both V̂ ∗ and V ∗ increase as the level of uncertainty involved
in the successful completion of the project decreases. Similar monotonicity
properties can be observed under more restrictive conditions for the optimal
investment amount x∗.

The structure of this paper is as follows. In Section 2, a project manage-
ment model based on ROA is formally introduced. Two associated DP prob-
lems are formulated in Section 3. It is shown that under certain conditions
the unique optimal investment strategy exists for each of the DP problems.
Sections 4 and 5 are devoted to establish structural properties of the optimal
project value V ∗ and the optimal investment amount x∗. Numerical results
are exhibited in Section 6, demonstrating the monotonicity properties of V ∗

and x∗ established in the previous sections. Some concluding remarks are
given in Section 7. Basic properties of certain concave functions are given
in Appendix, which will play a key role in establishing the monotonicity
properties.

2 Model Description

We consider a project management problem over T periods. Let S0 be an
estimeted value of the project outcome at time t = 0. This estimated value
may increase or decrease as the project evolves. In managing this project
toward the end of period T , one has an option to terminate the project at the
beginning of each period t, 1 ≤ t ≤ T , with some salvage value. The decision
criterion for this option will soon become clear. If it is decided to continue
the project, the investment amount for this period should be determined.
The project may be carried out successfully to the next period t + 1 or may
fail. The success probability may depend on the investment amount. When
successful, the estimated value of the project outcome increases by a factor
of u with probability p or decreases by a factor of d with probability 1 − p,
where 0 < d < 1 < u and 0 ≤ p ≤ 1. The former case is called an upward
success and the latter is called a downward success. When the project fails
in period t, the project is forced to stop with certain salvage value, which is
different from the salvage value under the option of termination.

The decision structure described above can be expressed as a modified
binary tree in the following manner. Suppose that period t is completed
with k upward successes and t − k downward success at time t, and we are
at the beginning of period t + 1. This state is denoted by (t, k), 0 ≤ k ≤ t.
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Let St,k be the estimated value of the project outcome at state (t, k) so that

St,k = S0u
kdt−k, 0 ≤ k ≤ t.(2.1)

Similarly, we introduce:

V̂t,k : the expected value of the project at state (t, k)(2.2)

without option for termination,

and

Vt,k : the expected value of the project at state (t, k)(2.3)

with option for termination.

When the decision is made to terminate the project at state (t, k), we denote
the salvage value by VA:t+1,k, i.e.

VA:t+1,k : the salvage value of the project(2.4)

when it is decided to terminate it at state (t, k).

The corresponding state is denoted by (A : t + 1, k).

If the project is continued, the investment amount xt+1,k is determined.
How to determine xt+1,k will be discussed in Section 3. Let β(x) be the
probability that the project can be continued successfully for one period given
that the investment amount for the period is x. Throughout the paper, we
assume that, for x ≥ 0,

β(0) = 0, 0 ≤ β(x) ≤ 1, β′(x) > 0, β′′(x) < 0,(2.5)

where β′(x) = d
dx

β(x) and β′′(x) = d2

dx2 β(x), which reflects the fact that the
success probability increases as the investment amount increases with the
effect of diminishing return. The project experiences an upward success with
probability β(xt+1,k) · p. In this case, state moves from (t, k) to (t + 1, k + 1).
With probability β(xt+1,k) · (1− p), a downward success is realized and state
moves from (t, k) to (t + 1, k).

The project may be forced to stop because of failure with probability 1 −
β(xt+1,k). In this case, the associated salvage value is denoted by VF :t+1,k,
i.e.

VF :t+1,k : the salvage value of the project(2.6)

when it is forced to stop

because of failure starting from state (t, k).
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The corresponding state is denoted by (F : t + 1, k). The structure of these
state transitions is depicted in Figure 2.1.

Remark 2.1 If the investment amount for the t-th period should be dis-
counted to the present value, we define xt,k = yt,ke

−rt where r is the risk-free
interest rate and yt,k is the actual amount to be invested at time t. Since there
is one-to-one correspondence between xt,k and yt,k, only xt,k will be considered
from now on.

Remark 2.2 In the literature concerning real options, the upward success
probability p is often defined as the risk neutral probability. More specifically,
p is determined by

pu + (1 − p)d = er

so that

p =
er − d

u − d

where 0 ≤ d ≤ er and er ≤ u. This assumption may be appropriate when the
project value can be tied with a value determined through a market with no
arbitrage, e.g. stock price. In this paper, we do not require this assumption
and p can be any probability.
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Figure 2.1 Modified Binary Tree Stucture for One Period
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3 Formulation of Optimal Investment Policy:

Dynamic Programming Approach

From the modified binary tree in Figure 2.1, if the project continues with
success to the final period T , the project value VT,k at time T with k upward
successes and T − k downward successes can be written as

V̂T,k = VT,k = ST,k − XT = S0u
kdT−k − XT , 0 ≤ k ≤ T,(3.1)

where XT is the operational cost needed for generating the cash flow from
the completed project, see Remark 2.1. For the two salvation values VF :t+1,k

upon failure and VA:t+1,k due to decision to terminate, we assume that both
are functions of St,k and define

VF :t+1,k = WF (St,k); VA:t+1,k = WA(St,k).(3.2)

It is natural to assume that WF (x) and WA(x) are zero without investment
and are strictly increasing and concave, i.e,

WF (0) = 0, W ′
F (x) > 0, W ′′

F (x) ≤ 0;(3.3)

WA(0) = 0, W ′
A(x) > 0, W ′′

A(x) ≤ 0.

When no option for terminating the project is available, the correspond-
ing expected project value given the investment amount x̂t+1,k satisfies the
following backward recursive formula.

V̂t,k =
{
β(x̂t+1,k)

(
pV̂t+1,k+1 + (1 − p)V̂t+1,k

)
(3.4)

+
(
1 − β(x̂t+1,k)

)
VF :t+1,k

}
e−r − x̂t+1,k.

Accordingly the optimal investment policy without options should be de-
termined so as to maximize V̂0,0. This problem can be formulated as the
following DP problem. For notational convenience, let G(λ,A,B) be defined
by

G(λ,A,B) = λA + (1 − λ)B(3.5)

where 0 ≤ λ ≤ 1.
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[ DP-V̂ ]

max[x̂t,k] V̂0,0(3.6)

subject to

(3.7)

V̂t,k = G
(
β(x̂t+1,k), G(p, V̂t+1,k+1, V̂t+1,k), VF :t+1,k

)
e−r − x̂t+1,k

with x̂t+1,k ≥ 0, 0 ≤ k ≤ t, 0 ≤ t ≤ T − 1;

ST,k = S0u
kdT−k, 0 ≤ k ≤ T ;(3.8)

V̂T,k = ST,k − XT , 0 ≤ k ≤ T ; and(3.9)

VF :t+1,k = WF (St,k), 0 ≤ k ≤ t, 0 ≤ t ≤ T − 1.(3.10)

Since G(p, V̂t+1,k+1, V̂t+1,k) is the expectd project value with success while
VF :t+1,k is the salvage value upon failure, we assume that

G(p, V̂t+1,k+1, V̂t+1,k) > VF :t+1,k.(3.11)

It should be noted that DP − V̂ can be solved recursively by finding

V̂ ∗
t,k = f̂t,k(x̂

∗
t+1,k) = max

x≥0
f̂t,k(x);(3.12)

f̂t,k(x) = G(β(x), Ât,k, B̂t,k) − x

where

Ât,k = G(p, V̂ ∗
t+1,k+1, V̂

∗
t+1,k)e

−r; B̂t,k = VF :t+1,ke
−r(3.13)

for 0 ≤ k ≤ t and 0 ≤ t ≤ T − 1, starting with

V̂ ∗
T,k = V̂T,k = ST,k − XT , 0 ≤ k ≤ t.(3.14)

With option for termination, the expected value of the project has to
be compared with the salvage value of the project for termination at the
beginning of each period. Hence the backward recursive formula for the
expected project value Vt,k given the investment amount xt+1,k should be

Vt,k = max
[{

β(xt+1,k)
(
pVt+1,k+1 + (1 − p)Vt+1,k

)
(3.15)

+
(
1 − β(xt+1,k)

)
VF :t+1,k

}
e−r − xt+1,k, VA:t+1,k

]
.

The DP formulation then becomes:
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[ DP-V ]

max[xt,k] V0,0(3.16)

subject to

Vt,k = max
[
G

(
β(xt+1,k), G(p, Vt+1,k+1, Vt+1,k), VF :t+1,k

)
e−r(3.17)

−xt+1,k , VA:t+1,k

]
with xt+1,k ≥ 0, 0 ≤ k ≤ t, 0 ≤ t ≤ T − 1;

ST,k = S0u
kdT−k, 0 ≤ k ≤ T ;(3.18)

VT,k = ST,k − XT , 0 ≤ k ≤ T ;(3.19)

VF :t+1,k = WF (St,k), 0 ≤ k ≤ t, 0 ≤ t ≤ T − 1; and(3.20)

VA:t+1,k = WA(St,k), 0 ≤ k ≤ t, 0 ≤ t ≤ T − 1.(3.21)

Similar to (3.11), one has

G(p, Vt+1,k+1, Vt+1,k) > VF :t+1,k.(3.22)

In parallel with (3.12) through (3.14), one sees that DP − V can be solved
recursively by finding

V ∗
t,k = max{ft,k(x

∗
t+1,k), VA:t+1,k};(3.23)

ft,k(x
∗
t+1,k) = max

x≥0
ft,k(x); ft,k(x) = G(β(x), At,k, Bt,k) − x

where

At,k = G(p, V ∗
t+1,k+1, V

∗
t+1,k)e

−r; Bt,k = VF :t+1,ke
−r(3.24)

for 0 ≤ k ≤ t and 0 ≤ t ≤ T − 1, starting with

V ∗
T,k = VT,k = ST,k − XT , 0 ≤ k ≤ t.(3.25)

For the option value at state (t, k), we define

ROV ∗
t,k = V ∗

t,k − V̂ ∗
t,k.(3.26)
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Of particular interest is to find the option value ROV ∗
0,0 and the associated

optimal investment strategy (x∗
t,k) at the start of the project for the optimal

investment policy problem.

We next show that, when it is decided to continue the project, the optimal
investment amount can be determined uniquely under (2.5) for both DP − V̂
and DP − V , which facilitates the necessary DP computation substantially.
We note from (3.11), (3.13), (3.22), and (3.24) that

Ât,k > B̂t,k ; At,k > Bt,k; B̂t,k = Bt,k.(3.27)

Theorem 3.1 Suppose that the success probability function β(x) satisfies
(2.5). Then, whenever it is decided to continue the project at (t, k), both
DP − V̂ and DP − V have the unique optimal investment amounts x̂∗

t+1,k

and x∗
t+1,k respectively for all k, 0 ≤ k ≤ t, and all t, 0 ≤ t ≤ T − 1.

Proof From (2.5), (3.12), (3.27) and Lemma A.1, one sees that f̂(x) is
strictly concave. For DP − V̂ , if f̂ ′(0) < 0, then f̂ ′(x) < 0, since f ′′(x) < 0,
for all x ≥ 0 and the unique maximum value of f̂(x) for x ≥ 0 is attained at
x∗ = 0. Otherwise, from (2.5), (3.12), (A.4) and (A.5), f̂(x) has the unique
maximum point x̂∗

t+1,k determined by

β′(x∗
t+1,k) = (Ât,k − Bt,k)

−1.(3.28)

Under the assumption that the projecrt is continued at (t, k), similar argu-
ments can be repeated for DP − V with f(x) of (3.23). �

For DP − V , it may be worth noting that, when f ′(x) < 0 for all x ≥ 0, one
has

V ∗
t,k = max{VF :t+1,ke

−r, VA:t+1,k}(3.29)

since x∗
t+1,k = 0, β(0) = 0 from (2.5), and ft,k(0) = VF :t+1.k. This means that,

when f ′
t,k(x) < 0 for all x ≥ 0, the project is continued with zero investment

if and only if VF :t+1,k > VA:t+1,k, i.e. the salvage value due to failure is larger
than the salvage value upon decision to terminate the project.

Example 3.2 Let β(x) = bx
1+bx

with b > 0. Then β(x) satisfies the conditions
in (2.5). One has from Theorem 3.1,

x̂∗
t+1,k =

−1 +
√

b(Ât,k − Bt,k)

b
for DP − V̂(3.30)
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and

x∗
t+1,k =

−1 +
√

b(At,k − Bt,k)

b
for DP − V.(3.31)

This example will be used in Section 6 for numerical exploration.

4 Structural Properties of V̂ ∗ and V ∗

In this section, we derive various monotonicity properties of the expected
project values V̂ ∗

t,k and V ∗
t,k. Furthermore, it is shown that ROV ∗

t,k defined in

(3.26) is always nonnegative. We first show that both V̂ ∗
t,k and V ∗

t,k increase
as k increases, i.e. the more upward successes the project experiences, the
larger the expected project value is.

Theorem 4.1 Let 0 ≤ k ≤ t − 1 for 1 ≤ t ≤ T . Then:

a) V̂ ∗
t,k+1 > V̂ ∗

t,k

b) V ∗
t,k+1 > V ∗

t,k

Proof We prove part a) by backward induction. For t = T , one sees from
(3.1) that

V̂ ∗
T,k+1 − V̂ ∗

T,k = S0,0u
kdT−k−1(u − d) > 0,

since 0 < d < 1 < u.

Suppose part a) holds for t + 1 and consider the case of t. Let Ât,k and
Bt,k be as in (3.13) and (3.27) respectively. From the induction hypothesis,
one has

(4.1)

Ât,k+1 − Ât,k = {p(V̂ ∗
t+1,k+2 − V̂ ∗

t+1,k+1) + (1 − p)(V̂ ∗
t+1,k+1 − V̂ ∗

t+1,k)}e−r

> 0

i.e.

Ât,k+1 > Ât,k.(4.2)

From (2.1) and 0 < d < 1 < u, it can be readily seen that

St,k+1 = S0u
k+1dt−(k+1) > S0u

kdt−k = St,k.(4.3)
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From the monotonicity of WF (x) in (3.3) together with (3.2), (3.13) and
(3.27), it then follows that

Bt,k+1 = WF (St,k+1)e
−r > WF (St,k)e

−r = Bt,k .(4.4)

Since V̂ ∗
t,k+1 = f̂t,k+1(x̂

∗
t+1,k+1) and V̂ ∗

t,k = f̂t,k(x̂
∗
t+1,k), part a) follows from

(4.2), (4.4), and Lemma A.2.

For part b), we first note from (3.23) that

V ∗
t,k = max{Ht,k, VA:t+1,k}(4.5)

where

Ht,k = ft,k(x
∗
t+1,k) = G(β(x∗

t+1,k), At,k, Bt,k) − x∗
t+1,k,(4.6)

and At,k and Bt,k are as in (3.24). Similarly to the case of part a), we prove by

backward induction. Since V ∗
T,k = V̂ ∗

T,k, the case t = T follows from part a).
Suppose part b) holds for t + 1 and consider t. From (4.5), 4 cases should be
examined separately. We first note that, as for part a), one has At,k+1 > At,k

and Bt,k+1 > Bt,k so that from Lemma A.2

Ht,k+1 > Ht,k.(4.7)

From the monotonicity of WA(x) in (4.7) and St,k+1 > St,k from (4.3), one
has

VA:t+1,k+1 = WA(St,k+1) > WA(St,k) = VA:t+1,k.(4.8)

Case 1: V ∗
t,k+1 = Ht,k+1; V ∗

t,k = Ht,k

In this case, from (4.7), one has V ∗
t,k+1 = Ht,k > Ht,k = V ∗

t,k.

Case 2: V ∗
t,k+1 = VA:t+1,k+1; V ∗

t,k = Ht,k

From (4.5) and (4.7), one sees that

V ∗
t,k+1 − V ∗

t,k = VA:t+1,k+1 − Ht,k ≥ Ht+1,k − Ht,k > 0.

Case 3: V ∗
t,k+1 = Ht,k+1; V ∗

t,k = VA:t+1,k
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One sees from Vt,k+1 = Ht,k+1 and (4.5) that Ht,k+1 ≥ VA:t+1,k+1. It then
follows from (4.8) that

V ∗
t,k+1 − V ∗

t,k = Ht,k+1 − VA:t+1,k

≥ VA:t+1,k+1 − VA:t+1,k

> 0.

Case 4: V ∗
t,k+1 = VA:t+1,k+1; V ∗

t,k = VA:t+1,k

In this case, V ∗
t,k+1 > V ∗

t,k from (4.8). �

Parameters p, u and d represent the level of uncertainty involved in the
successful completion of the project. The next theorem shows monotonicity
of V̂ ∗

t,k and V ∗
t,k in terms of these parameters, i.e. the expected project value

increases as the level of uncertainty decreases.

Theorem 4.2 For 0 ≤ k ≤ t and 0 ≤ t ≤ T − 1, the following statements
hold.

a) V̂ ∗
t,k is strictly increasing in p, u, and d.

b) V ∗
t,k is nondecreasing in p.

c) V ∗
t,k is strictly increasing in u and d.

Proof As before, we prove the theorem by backward induction for the case
of p. Proofs for other cases are similar and omitted. Let p1 > p2. For i = 1, 2,
we define

V̂ ∗
t,k(x̂

∗
i:t+1,k, pi) = f̂t,k(x̂

∗
i:t+1,k, pi) = max

x≥0
f̂t,k(x, pi)(4.9)

where, from (3.12), (3.13) and (3.27),

f̂t,k(x, pi) = G(β(x), Ât,k(pi), Bt,k) − x(4.10)

and

Ât,k(pi) = G(pi, V̂
∗
t+1,k+1(x̂

∗
i:t+2,k+1, pi), V̂

∗
t+1,k(x̂

∗
i:t+2,k, pi))e

−r;(4.11)

Bt,k = VF :t+1,ke
−r.
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Since V̂T,k = S0u
kdT−k is independent of p, one has ÂT−1,k(p1) > ÂT−1,k(p2)

from (A.16). It then follows from (4.9), (4.10), and Lemma A.5 that

V̂ ∗
T−1,k(x̂

∗
1:T,k, p1) > V̂ ∗

T−1,k(x̂
∗
2:T,k, p2).(4.12)

Suppose (4.12) holds with t + 1 replacing T − 1 and consider t. From (A.16)
and the induction hypothesis, one sees that Ât,k(p1) > Ât,k(p2). Applying
Lemma A.5 again, it then follows that (4.12) holds with t in place of T − 1.

For the monotonicity of V ∗
t,k in p, in parallal with (4.5) and (4.6), we

introduce for i = 1, 2:

V ∗
t,k(x

∗
i:t+1,k, pi) = max{Ht,k(x

∗
i:t+1,k, pi), VA:t+1,k}(4.13)

where, from (3.12) and (3.13),

Ht,k(x
∗
i:t+1,k, pi) = ft,k(x

∗
i:t+1,k, pi) = max

x≥0
ft,k(x, pi)(4.14)

ft,k(x, pi) = G(β(x), At,k(pi), Bt,k) − x(4.15)

and

At,k(pi) = G(pi, V
∗
t+1,k+1(x

∗
i:t+2,k+1, pi), V

∗
t+1,k(x

∗
i:t+2,k, pi))e

−r;(4.16)

Bt,k = VF :t+1,ke
−r.

It is clear that V ∗
T,k(p1) = V ∗

T,k(p2) = S0u
kdT−k − XT . From (3.24), one

then has AT−1,k(p1) > AT−1,k(p2) from Theorem 4.1 and (A.16) so that
HT−1,k(x

∗
1:T−1,k, pi) > HT−1,k(x

∗
2:T−1,k, pi) from Lemma A.5. Hence from

(4.13),

V ∗
T−1,k(x

∗
1:T,k, p1) > V ∗

T−1,k(x
∗
2:T,k, p2).(4.17)

Suppose (4.17) holds with t + 1 replacing T − 1, and consider the case of
t. From (A.16), (4.16) and the induction hypothesis, one has At,k(p1) >
At,k(p2). From Lemma A.5, this in turn leads to Ht,k(x

∗
1:t+1,k, p1) > Ht,k(x

∗
2:t+1,k, p2).

It then follows from (4.13) that (4.17) holds for t, completing the proof. �

Similar arguments lead to following theorem. Proof is omitted here.

Theorem 4.3 Let β = β(x, b) = bx
1+bx

as in Example 3.2. Then V̂ ∗
t,k is

strictly increasing and V ∗
t,k is nondecreasing in b.
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We next show that the optimal project value with options, V ∗
t,k, is larger

than that without options, V̂ ∗
t,k so that the optimal option value ROV ∗

t,k is
nonnegative for all t, k.

Theorem 4.4 For 0 ≤ k ≤ t and 0 ≤ t ≤ T , ROV ∗
t,k = V ∗

t,k − V̂ ∗
t,k ≥ 0.

Proof One sees from (3.1) that VT,k = V̂T,k and ROV ∗
T,k = 0. Suppose

ROV ∗
t+1,k ≥ 0 and consider the case of t. By the induction hypothesis, one

has Vt+1,k ≥ V̂t+1,k. From (3.13), (3.24) and (A.16), this in turn implies that

At,k > Ât,k.(4.18)

It then follows from Lemma A.2, (4.5) and (4.6) that V ∗
t,k ≥ V̂ ∗

t,k completing
the proof. �

5 Structural Properties of x̂∗ and x∗

In parallel with the preceding section, we establish similar monotonicity
properties for the optimal invest amount without option for termination, x̂∗

t,k,
and that with option x∗

t,k. Oue first theorem below shows that having the
option for termination prevides an incentive to invest more because the risk
involved can be controlled better.

Theorem 5.1 If it is decided to continue the project at state (t,k), then
x∗

t+1,k ≥ x̂∗
t+1,k, 0 ≤ k ≤ t, 0 ≤ t ≤ T − 1.

Proof From (4.18) together with (3.12), (3.27), and (4.6), Lemma A.3
implies that x∗

t,k ≥ x̂∗
t,k. �

We next derive the monotonicity property of x̂∗
t,k and x∗

t,k in k, i.e. as more
upward succeses are experienced, the optimal investment amount increases.
In contrast with the monotonicity results for V̂ ∗

t,k and V ∗
t,k given in Section

4, the proof for x̂∗
t,k and x∗

t,k involves certain subtlety and the following two
assumptions are needed.

Assumption 5.2

a) WF (x) = αx, α > 0

15



b) pu + (1 − p)d > 1

For notational convenience, the first difference of a sequence (ak)
∞
k=0 is de-

noted by

∆kak = ak − ak−1, k ≥ 1.(5.1)

Theorem 5.3 Under Assumption 5.2, one has for 0 ≤ k ≤ t, 0 ≤ t ≤ T −1:

a) ∆kÂt,k − ∆kBt,k ≥ 0; ∆kAt,k − ∆kBt,k ≥ 0

b) x∗
t+1,k and x̂∗

t+1,k are strictly increasing in k.

Proof We prove the theorem for x̂∗
t+1,k by backward induction. The proof

for x∗
t+1,k is similar and omitted here. Since Ât,k > Bt,k from (3.27), one has,

in particular, ÂT−1,k > BT−1,k. From (2.1), (3.13), (3.14), and Assumption
5.2 a), it then follows that

ÂT−1,k − BT−1,k = G(p, V̂T,k+1, V̂T,k) − WF (ST−1,k)

= p(ST,k − XT ) + (1 − p)(ST,k − XT ) − αST−1,k,

i.e.

ÂT−1,k − BT−1,k = ST−1,k{pu + (1 − p)d − α} − XT > 0.(5.2)

This, in turn, implies that

pu + (1 − p)d − α > 0.(5.3)

By taking the first difference of both sides of (5.2) with respect to k, one
then sees that

∆kÂT−1,k − ∆kB̂T−1,k = {pu + (1 − p)d − α}∆kST−1,k

= {pu + (1 − p)d − α}
(

1 − d

u

)
ST−1,k.

Since 0 < d < u, from (5.3), this then leads to

∆kÂT−1,k > ∆kBT−1,k.(5.4)

This inequality (5.4) and Lemma A.4 imply that

∆kx̂
∗
T,k > 0.(5.5)
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Suppose (5.4) and (5.5) hold true when T − 1 is replaced by t + 1 and T
is replaced by t + 2 respectively. We first show that

∆kV̂
∗

t+1,k > ∆kBt+1,k.(5.6)

Noting ∆k[akbk] = bk∆kak + ak−1∆kbk, one sees from (3.5) and (3.12) that

∆kV̂
∗
t+1,k − ∆kBt+1,k

= ∆k[β(x̂∗
t+2,k)Ât+1,k + (1 − β(x̂∗

t+2,k))Bt+1,k − x̂∗
t+2,k] − ∆kBt+1,k

= [Ât+1,k − Bt+1,k]∆kβ(x̂∗
t+2,k) − ∆kx̂

∗
t+2,k

+β(x̂∗
t+2,k−1)[∆kÂt+1,k − ∆kBt+1,k].

By the induction hypothesis of (5.4) replacing T − 1 by t + 1, the last term
in the above expression is positive so that

∆kV̂
∗
t+1,k − ∆kBt+1,k > [Ât+1,k − Bt+1,k]∆kβ(x̂∗

t+2,k) − ∆kx̂
∗
t+2,k.(5.7)

From the induction hypothesis, one has ∆kx̂
∗
t+2,k > 0. From strict concavity

of β(x) together with (3.28), it can be seen that

β′(x̂∗
t+2,k)∆kx̂

∗
t+2,k =

∆kx̂
∗
t+2,k

Ât+1,k − Bt+1,k

< ∆kβ(x̂∗
t+2,k).(5.8)

Employing (5.8) in (5.7) then yields (5.6). Finally, one sees from (3.5) and
(3.13) that

(∆kÂt,k − ∆kBt,k)e
r

= G(p,∆kV̂t+1,k+1,∆kV̂t+1,k) − ∆kBt,k

> G(p,∆kBt+1,k+1,∆kBt+1,k) − ∆kBt,k,

where (5.6) is used to derive the last inequality. From Assumption 5.2 a)
together with (3.2), it can be readily seen that

∆kBt+1,k+1 = αu

(
1 − d

u

)
St,k;(5.9)

∆kBt+1,k = αd

(
1 − d

u

)
St,k;

∆kBt,k = α

(
1 − d

u

)
St,k.
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Substituting (5.9) into the last inequality above, it follows that

(∆kÂt,k − ∆kBt,k)e
r > α

(
1 − d

u

)
St,k{pu + (1 − p)d − 1}.

Hence one concludes from Assumption 5.2 b) that

∆kÂt,k > ∆kBt,k.(5.10)

Using (5.10) and Lemma A.4 then yields ∆kx̂
∗
t+1,k > 0, completing the proof.

�

For a function ξ(z) with z1 > z2, we define

∆zξ(z) = ξ(z1) − ξ(z2).(5.11)

With this notation, the monotonicity properties of x̂∗
t,k and x∗

t,k with respect
to u and d can be shown as in the theorem below. The proof is almost
identical to that of Theorem 5.3, and is omitted here.

Theorem 5.4

a) Let u1 > u2 and suppose Assumption 5.2 is satisfied where u = u2. Then

min{∆uAt,k(u), ∆uÂt,k(u)} > ∆uBt,k(u)

and both x∗
t,k and x̂∗

t,k are strictly increasing in u.

b) Let d1 > d2 and suppose Assumption 5.2 is satisfied where d = d2. Then

min{∆dAt,k(d),∆dÂt,k(d)} > ∆dBt,k(d)

and both x∗
t,k and x̂∗

t,k are strictly increasing in d.

The monotonicity properties of x̂∗
t,k and x∗

t,k with respect to p hold true
without Assumption 5.2 as we prove next.

Theorem 5.5 Let p1 > p2. Then

min{∆pAt,k(p), ∆pÂt,k(p)} > ∆pBt,k(p)

and both x∗
t,k and x̂∗

t,k are strictly increasing in p.

Proof We first note from (3.2) and (3.24) that Bt,k = WF (St,k) which is
independent of p. Hence ∆pBt,k = 0. On the other hand, one sees from (3.13),

Theorem 4.2 a) and (A.16) that ∆pÂt,k > 0 = ∆pBt,k and ∆pAt,k > 0 =
∆pBt,k. Lemma A.4 then implies that ∆px̂

∗
t+1,k(p) > 0 and ∆px

∗
t+1,k(p) > 0,

i.e. both x̂∗
t+1,k and x∗

t+1,k are strictly increasing in p, proving the theorem.
�
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6 Numerical Results

In this section, we present numerical results to demonstrate the monotonic-
ity properties derived in the previous two sections. Throughout this section,
it is assumed that the success probability β(x) is of the form given in Exam-
ple 3.2, and two salvage value functions WA(x) for option to terminate and
WF (x) for failure are both linear. More specifically, we define:

β(x) =
bx

1 + bx
, b > 0,(6.1)

WA(x) = αAx, αA > 0,(6.2)

and

WF (x) = αF x, 0 < αF < αA.(6.3)

As a basic model, we adopt parameter values specified in the table below.
The monetary unit is one million yen and the time unit is one year. These
parameter values are assumed throughout this section unless specified oth-
erwise.

Symbol Definition Value

S0 the estimated future cash flow of the project outcome 3,000
T the planning horizon 5
p the upward probability given success 0.7
r the risk-free interest rate 0.1
u the increasing rate given an upward success 1.25
d the decreasing rate given a downward success 0.75

XT the operational cost 100
b the success probability parameter in (6.1)† 0.02

αA the salvage value parameter in (6.2) 0.25
αF the salvage value parameter in (6.3) 0.2

Remark 6.1† This value is set so that β(x) would likely to lie between 0.7
and 0.95 for the basic model.

Table 6.1 summarizes computational results for the basic model, while
Table 6.2 exhibits those for a model similar to the basic model except that
p is reduced from 0.7 to 0.55. We note that V̂ ∗

t,k+1 ≥ V̂ ∗
t,k and V ∗

t,k+1 ≥ V ∗
t,k

as they should be from Theorem 4.1. This monotonicity is also observed for
the investment amounts, i.e. x̂∗

t,k+1 ≥ x̂∗
t,k and x∗

t,k+1 ≥ x∗
t,k. This means that

the investment amount increases as more upward successes are experienced.
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Comparing Table 6.1 with Table 6.2, one finds that both V̂0,0 and V ∗
0,0 de-

crease as p decreases, which is expected form Theorem 4.2. Furthermore it
can be seen that the option value in Table 6.2 with p=0.55 is 177, while that
for the basic model with p=0.7 is 0. This suggests that the risk potential
of the project increases as p decreases, and the option for terminating the
project becomes a viable alternative. The increase of the risk potential can
also be observed in the fact that the investment amounts with p = 0.55 are
uniformly smaller than those with p = 0.7, i.e. x∗

t,k with p=0.55 are less than
x∗

t,k with p=0.7 for all 0 ≤ k ≤ t, 0 ≤ t ≤ T − 1 = 4.

In order to explore monotonicity properties of V̂ ∗
t,k and V ∗

t,k, further, nu-
merical experiments are conducted by varying parameters p (Figure 6.3), u
(Figure 6.4), d (Figure 6.5), and b (Figure 6.6). As we already observed, the
risk potential increases as p decreases. From Example 3.2, one has ∂

∂b
β > 0

so that the success probability β increases as b increases, which in turn leads
to reduction of the risk potential. It is clear that increasing u or d results in
larger V̂ ∗

0,0 and V ∗
0,0 and the risk potential decreases. Figures 6.7 through 6.10

exhibit similar monotonicity properties for x̂∗ and x∗. Assumption 5.2 b) is
satisfied for p > 0.5, u > 1.108, and d > 0.416. However the monotonicity
of x̂∗ and x∗ is observed outside these ranges. Indeed, for nonlinear concave
functions WA(x) = 100(1 + log0.25x) and WF (x) = 1 + log0.2x tested in
Figures 6.11 through 6.18, all of V̂ ∗, V ∗, x̂∗, and x∗ are monotone as before.
This is expected for V̂ ∗ and V ∗ from Theorems 4.2 and 4.3, but the results
for x̂∗ and x∗ are outside the scope of Theorems 5.4 and 5.5.

Numerical results presented in this section suggest that the option value
ROV ∗

0,0 increases as the risk potential increases. Theoritical proof for this
conjecture is difficult and is being attempted.
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DP-V DP-V̂

t k V ∗
t,k x∗

t,k V̂ ∗
t,k x̂∗

t,k ROV ∗
t,k

0 0 824 119 824 119 0
1 1 1474 199 1474 199 0
1 0 654 111 654 111 0
2 2 2510 288 2510 288 0
2 1 1225 189 1225 189 0
2 0 556 112 556 112 0
3 3 4034 386 4034 386 0
3 2 2144 275 2144 275 0
3 1 1088 188 1088 188 0
3 0 517 120 517 120 0
4 4 6166 492 6166 492 0
4 3 3498 368 3498 368 0
4 2 1943 271 1943 271 0
4 1 1045 195 1045 195 0
4 0 535 135 535 135 0

Table 6.1 p = 0.7

DP-V DP-V̂

t k V ∗
t,k x∗

t,k V̂ ∗
t,k x̂∗

t,k ROV ∗
t,k

0 0 750 49 573 39 176

1 1 1024 131 1024 131 0
1 0 563 57 471 57 91
2 2 1923 232 1923 232 0
2 1 929 145 929 145 0
2 0 423 77 423 77 0

3 3 3424 343 3424 343 0
3 2 1806 241 1806 241 0
3 1 908 162 908 162 0
3 0 427 100 427 100 0

4 4 5715 469 5715 469 0
4 3 3237 350 3237 350 0
4 2 1792 256 1792 256 0
4 1 959 184 959 184 0
4 0 488 126 488 126 0

Table 6.2 p = 0.55
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7 Concluding Remarks and Future Research

In this paper, two DP models have been developed to investigate the op-
timal investment policy (x∗

t,k), the present value of the project (V ∗
0,0), and

the option value ROV ∗
0,0 based on ROA (Real Option Approach) defined by

Yamamoto and Kariya [12]. Structural properties of V̂ ∗
t,k and V ∗

t,k are exam-
ined analytically, proving the unique existence of optimal investment policy
and yielding useful monotonicity results. Analytical results combined with
extensive numerical experiments revealed the following observations.

(7.1) Both the project value at time t with k upward successes, V ∗
t,k, and the

associated investment amount x∗
t,k increase as a function of k.
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(7.2) As the risk-potential of the project increases: 1) V ∗
0,0 decreases to the

lower bound determined by the value of doing nothing from the very
beginning, and then stays at the level; 2) V̂ ∗

0,0 decreases; and the option
value ROV ∗

0,0 increases.

As for the future research, the following issues will be addressed in due
course.

(7.3) It will be attempted with best efforts to prove the monotonicity prop-
erties of ROV ∗

0,0 observed throughout the numerical experiments.

(7.4) A capital constraint will be incorporated in the DP formulation.

(7.5) An optimal resource allocation problem will be considered, where a
central management allocates common resources to individual business
units which manage various projects through the DP model developed
in this paper.
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Appendix

In this appendix, we establish various lemmas which will provide useful
tools for proving key theorems in the main text. We largely focus on struc-
tural properties of a function f defined by

f(x) = G(β(x), A,B) − x

= β(x)A + {1 − β(x)}B − x.(A.1)

We recall that β(x) is the probability that the project can be continued
successfully for one period given that the investment amount for the period
is x. It was assumed that, for x ≥ 0,

β(0) = 0, 0 ≤ β(x) ≤ 1, β′(x) > 0, β′′(x) < 0,(A.2)

where β′(x) = d
dx

β(x) and β′′(x) = d2

dx2β(x). We also define

f(x∗) = max
x≥0

f(x).(A.3)

It can be readily seen that

f ′(x) = β′(x)(A − B) − 1(A.4)

and

f ′′(x) = β′′(x)(A − B).(A.5)

Because of (3.12) and (3.20), it is assumed that

A > B.(A.6)

The next lemma is immediate from (A.2), (A.5), and (A.6).

Lemma A.1 f(x) is strictly concave in x.

For notational convenience, let

fi(x) = G(β(x), Ai, Bi) − x, i = 1, 2(A.7)

and

fi(x
∗
i ) = max

x≥0
fi(x).(A.8)
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We assume that x∗
i can be determined uniquely. As in (A.6), we assume that

Ai > Bi, i = 1, 2.(A.9)

The following lemmas then hold true.

Lemma A.2 If A1 ≥ A2 and B1 ≥ B2, then f1(x
∗
1) ≥ f2(x

∗
2). Equality holds

if and only if A1 = A2 and B1 = B2.

Proof We note from the definition of x∗
1 in (A.8) that f1(x

∗
1) ≥ f1(x

∗
2). We

can also see from the assumption that

f1(x
∗
2) − f2(x

∗
2) = β(x∗

2)(A1 − A2) + (1 − β(x∗
2))(B1 − B2)

≥ 0.

It then follows that

f1(x
∗
1) − f2(x

∗
2)

= f1(x
∗
1) − f1(x

∗
2) + f1(x

∗
2) − f2(x

∗
2)

≥ 0.

It is clear that if A1 �= A2 or B1 �= B2, then f1(x
∗
1) ≥ f1(x

∗
2) from the

uniqueness of x∗
1, and f1(x

∗
1) ≥ f2(x

∗
2), completing the proof. �

Lemma A.3 If A1 ≥ A2 and B1 = B2, then x∗
1 ≥ x∗

2. Equality holds if and
only if A1 = A2.

Proof We first note from (A.2), (A.5) and (A.6) that f is strictly concave.
From (A.4), it can be readily seen that for i = 1, 2, f ′(xi) = 0 at x∗

i if and
only if

β′(x∗
i ) =

1

(Ai − Bi)
.(A.10)

One then sees from A1 ≥ A2 and B1 = B2 together with (A.9) that

β′(x∗
1) =

1

(A1 − B1)
≤ 1

(A2 − B2)
= β′(x∗

2).

The lamma now follows from the strict concavity of β(x) given in (A.2). �

Lemma A.4 If A1 ≥ A2, B1 ≥ B2 and A1 − A2 ≥ B1 − B2, then x∗
1 ≥ x∗

2.
Equality holds if and only if A1 − A2 = B1 − B2.
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Proof From (A.6), (A.9), and the assumption, one sees that A1 − B1 ≥
A2 − B2 and

β′(x1) =
1

A1 − B1

≤ 1

A2 − B2

= β′(x2).

The lamma then follows from (A.2). �

In order to observe monotonicity properties concerning p, we modify f(x)
as

f(x, p,A,B) = G(β(x), G(p,A,B), C) − x(A.11)

where

G(p,A,B) > C, 0 ≤ p ≤ 1(A.12)

and

f(x∗, p,A,B) = max
x≥0

f(x, p,A,B).(A.13)

As for (A.7) and (A.8), we also define

fi(x, pi) = f(x, pi, Ai, Bi)(A.14)

and

fi(x
∗
i , pi) = max

x≥0
fi(x, pi).(A.15)

We assume that x∗ in (A.13) or x∗ in (A.15) can be determined uniquely.

Lemma A.5 If A1 ≥ A2, B1 ≥ B2, and p1 > p2, then:

a) f1(x
∗
1, p1) > f2(x

∗
2, p2)

b) x∗
1 > x∗

2

Proof We note from (3.5) that G(λ,A1, B1) ≥ G(λ,A2, B2). Since ∂
∂λ

G(λ,A,B) =
λ(A − B) > 0 from (A.6), one has, for λ1 > λ2,

G(λ1, A1, B1) > G(λ2, A1, B1) ≥ G(λ2, A2, B2).(A.16)
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Let Āi = G(pi, Ai, Bi) for i = 1, 2. From (A.12) and (A,16), one has Ā1 >
Ā2 > C, for p1 > p2. It then follows from (A.11), (A.14), and (A.16) that

f1(x, p1) = G(β(x), Ā1, C) − x(A.17)

> G(β(x), Ā2, C) − x

= f2(x, p2).

One has f1(x
∗
1, p1) > f1(x

∗
2, p1) from (A.15) and f1(x

∗
2, p1) > f2(x

∗
2, p2) from

(A.17), so that f1(x
∗
1, p1) > f2(x

∗
2, p2), proving part a).

From (A.9) and (A.16), one sees that

β′(x∗
1) =

1

Ā1 − C
<

1

Ā2 − C
= β′(x∗

2).

Part b) then follows from (A.2). �
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