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Abstract

Network optimization experienced a fast development, during the last few decades. While
a traditional network assumes that each flow is conserved on every arc, a flow along an arc may
increase or decrease by a fixed factor during its traversal of that arc in a generalized network.
This paper surveys combinatorial maximum flow algorithms on the generalized network and
compares algorithms for traditional network flows.

1 Introduction

Network flows are of growing interest from the point of view of both applications and theory. The
topic of network flows has applications in such diverse fields as engineering, management science,
computer science, urban traffic, communications, and economics to name but a few. Related to
theory, network flows have been proven to be an excellent indicator of things to come in mathe-
matical programming. Spurred by Ford-Fulkerson’s seminal work [15] in the 60s, studies in this
area have led to continued improvements in efficient network flow algorithms. This is especially in
respect to polynomial time algorithms for shortest paths, maximum flows, and minimum cost flows
that underwent intensive development in 80s to 90s. There have been a number of survey papers
and books that have reported on network flow algorithms. For example, [2, 6, 8, 36, 4, 39, 52, 53]
have been published in the last decade.

However, although interest on variants in flows such as generalized flows, multicommodity
flows, and dynamic flows, there have been few reviews on such flow models. For example Goldberg-
Tardos-Tarjan [23] and Wayne [60] reported on a maximum flow problem on a generalized network.
This paper gives an overview of historical developments and recent algorithmic results for a gen-
eralized maximum flow problem.

In a generalized network model, each arc (i, j) of the network has a positive multiplier γ(i, j),
which implies that if we send one unit from the node i to the node j along the arc (i, j), then
γ(i, j) units arrive at the node j. The multiplier is called a gain. This network model arises in
manufacturing, transportation, communication and financial analysis [2, 19, 21, 60]. A problem
finding a maximum flow in the generalized network is called a generalized maximum flow problem.

Since Dantzig [9] and Jewell [35] did their first studies in the 1960s, a number of general-
ized maximum flow algorithms have been developed. The problem itself is a special case of the
linear programming problem. Consequently, Dantzig [9] proposed a generalized network simplex
algorithm, which is a specialization of the simplex method. Recently, a polynomial-time dual
simplex algorithm have been proposed by Goldfarb-Jin-Lin [30] that is based on the combinato-
rial algorithm by Goldfarb-Jin-Orlin [31]. Kapoor-Vaidya [37] proposed an O(m1.5n2 log B) time
algorithm that is based on Karmarkar’s interior-point method. Here n is the number of nodes,
m is the number of arcs, and B is the largest integer in the representations of capacities and
gain multipliers, assuming that these numbers are given as the ratios of two integers. Murray
[40] also designed an interior-point algorithm for generalized flows. Goldfarb-Lin [32] presented
an interior-point algorithm with a combinatorial method, i.e., flow augmentations. These interior-
point algorithms can be applied to generalized minimum cost flows. A number of combinatorial
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algorithms for the generalized maximum flows have also been developed. In the 60s, Jewell [35] and
Onaga [43] independently proposed first combinatorial algorithms for generalized maximum flows.
In 1991, Goldberg-Plotkin-Tardos [22] designed first polynomial-time combinatorial algorithms.
Since then, many researchers have been investigating efficient combinatorial algorithms. These
algorithms will be discussed in Section 4. The current best time complexity of a combinatorial
algorithm is O(nm(m+n log n) log B) due to Radzik [49]. From algorithmic aspect, the interesting
problems on generalized maximum flows are:

1. to develop a strongly polynomial time algorithm,

2. to develop a combinatorial algorithm faster than the O(m1.5n2 log B) interior point algorithm
when m = Θ(n2), and

3. to develop a combinatorial algorithm that works well in practice.

This paper reviews combinatorial algorithms for generalized maximum flows. A generalized
maximum flow problem is a natural extension of a (no gain) maximum flow problem. Therefore,
many generalized maximum flow algorithms are related to maximum flow algorithms. Moreover,
there is a relationship between our problem and the minimum cost flow problem as we will discuss
in Section 2.3. Truemper [59] compared classical algorithms for generalized maximum flows and
minimum cost flows. We will also not only review recent generalized maximum flow algorithms,
but also compare algorithms for maximum flows and minimum cost flows. This paper will also
highlight the main ideas involved in developing efficient algorithms, i.e., we discuss a technique
using arc excesses, and will present a brief analysis for a flow-generating cycle-canceling procedure,
because we believe that it holds clues on how to develop a strongly polynomial time algorithm.

This paper is organized as follows. We first define a generalized maximum flow problem and
review fundamental facts about it in Section 2. Section 3 discusses a framework which many ap-
proaches to combinatorial algorithms have adopted. We present a flow-generating cycle-canceling
procedure which is a preprocessing. Section 4 reviews combinatorial algorithms and compares max-
imum flow algorithms and minimum cost flow algorithms. We specify a most-helpful augmenting
path algorithm, which is not faster than existing algorithms but which is naturally derived from
the development stream of efficient algorithms.

2 Generalized maximum flow problem

2.1 Problem formulation

Let G = (N,F ) be a directed graph with the set of n nodes N and the set of m arcs F . For
notational convenience, let us assume that G has at most one arc between any pair of nodes so
that each arc can be uniquely specified by its endpoints. The graph G has a distinguished node
t called a sink. On the arcs, a nonnegative capacity function u : F → IR+ and a positive gain
function γ : F → IR++ are given. A gain γ(i, j) of an arc (i, j) implies that, if x units of flow
enter the arc (i, j) at its tail node i, then γ(i, j) · x units arrive at its head node j. For a function
g : F → IR, we define an excess function eg : N → IR by

eg(i) := −
∑

{j∈N |(i,j)∈F}

g(i, j) +
∑

{j∈N |(j,i)∈F}

γ(j, i)g(j, i),

which means the net flow into a node i. A generalized flow is a function g : F → IR that satisfies
the following conditions:

capacity constraint: 0 ≤ g(i, j) ≤ u(i, j), ∀(i, j) ∈ F, and

flow conservation constraint: eg(i) = 0, ∀i ∈ N \ {t}.

In contrast to a generalized flow, we say a “traditional” flow when all gains are given by ones. A
function g satisfying only the capacity constraint is called a pseudo flow.

The flow value with respect to a flow g is given by the sink’s excess eg(t). The generalized
maximum flow problem is to find a generalized flow g maximizing its flow value. It is formulated
as

(GMF) max{eg(t) | 0 ≤ g ≤ u, eg(i) = 0 for all i ∈ N \ {t}}.
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The traditional maximum flow problem is a special case of (GMF), where a special node s called
a source has a loop with γ(s, s) > 1 and u(s, s) = ∞, and γ(i, j) = 1 holds for all arcs (i, j) but
(s, s).

There is some literature on the generalized maximum flow problem that has used the following
definition:

(GMF′) max{eg(t) | 0 ≤ g ≤ u, e0(i) ≥ −eg(i) for all i ∈ N \ {t}},

where e0(i) is an initial excess of a node i. We assume that, as usual, the initial excess is given by
a nonnegative number. For convenience, we define a function êg : N → IR as

êg(i) := e0(i) + eg(i).

We will discuss the relation between (GMF) and (GMF′) later.
Throughout this paper, it has been assumed that each capacity is given by an integer and each

gain is given by a ratio of two integers. We denote the largest integer used to represent capacities
and gains by B.

2.2 Notations and properties

For a path (or cycle) P , the gain of it is given by the product of the gains of arcs participating
in that path (or cycle), i.e.,

∏
(i,j)∈P γ(i, j), and denoted by γ(P ). Simple cycles whose gains are

exactly one, more than one, and less than one are called a unit cycle, flow-generating cycle and
flow-absorbing cycle, respectively.

The flow decomposition theorem is a fundamental property. We first define elementary flows.
An elementary flow g is a pseudo flow satisfying one of the following five types, where F g = {(i, j) ∈
F | g(i, j) > 0}.

(Type 1) F g constitutes a simple path from a node with negative excess to a node with positive
excess. Each node, except both end nodes of the path, has zero excess.

(Type 2) F g constitutes a unit cycle. All nodes have zero excess.

(Type 3) F g constitutes a flow-generating cycle and a path from a node in the cycle to a node
with positive excess. Each node, except the tail node of the path, has zero excess.

(Type 4) F g constitutes a flow-absorbing cycle and a path from a node with negative excess to
a node in the cycle. Each node, except the head node of the path, has zero excess.

(Type 5) F g constitutes a flow-generating cycle, a flow-absorbing cycle, and a path from the first
cycle to the second. All nodes have zero excess.

An empty path is possible in Types 3, 4 and 5. Then the flow decomposition theorem is given as
follows.

Theorem 1 ([33, 22]) Any pseudo flow g can represent a sum of elementary flows g1, g2, . . . , gk,
i.e., g =

∑k
h=1 gh, where k ≤ m and

gh(i, j) > 0 =⇒ g(i, j) > 0 ∀(i, j) ∈ F

egh(i) > 0 =⇒ eg(i) > 0 ; and egh(i) < 0 =⇒ eg(i) < 0 ∀i ∈ N

hold for all h. 2

When all gains are equal to one, there is neither a flow-generating cycle nor a flow-absorbing cycle.
In this case, any elementary flow constructs a simple path or a simple cycle. Thus, the above
theorem is a generalization of the traditional flow decomposition theorem.

Let us next consider optimality conditions of the generalized maximum flow problem. Let←−
F := {(j, i) | (i, j) ∈ F} denote the set of reverse arcs and A := F ∪ ←−F . An arc (j, i) ∈ ←−F
represents the possibility of pushing flow back on the arc (i, j). For each (j, i) ∈ ←−F , we define
γ(j, i) := 1/γ(i, j). With a pseudo flow g, we associate a residual graph Gg = (N,Ag), where
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Ag = {(i, j) ∈ F | g(i, j) < u(i, j)} ∪ {(j, i) ∈ ←−F | g(i, j) > 0}. A residual capacity function
ug : Ag → IR is given by

ug(i, j) :=
{

u(i, j)− g(i, j) (i, j) ∈ F,

γ(j, i)g(j, i) (i, j) ∈ ←−F .

Theorem 2 ([34, 44]) 1. Let g : F → IR be a generalized flow. The following statements are
then equivalent:

(a) g is an optimal flow to (GMF).

(b) The residual network Gg = (N,Ag) does not contain any flow-generating cycle from
which the sink t is reachable.

(c) There exists µ : N → IR++ ∪ {∞} such that µ(t) = 1, and

γ(i, j)µ(i)
µ(j)

≤ 1 (1)

holds for every (i, j) ∈ Ag.

2. Let g′ : F → IR be a feasible flow of (GMF ′). The following statements are then equivalent:

(a’) g′ is an optimal flow to (GMF ′).

(b’) The residual network Gg′ = (N,Ag′) does not contain any path from a node i with
êg′(i) > 0 to the sink t or any flow-generating cycle from which t is reachable.

(c’) There exists µ : N → IR++ ∪ {∞} such that µ(t) = 1, µ(i) = ∞ for all nodes i with
êg′(i) > 0, and Eq.(1) holds for every (i, j) ∈ Ag′ .

Proof. The relation between (a) and (b) (resp. (a’) and (b’)) is derived from the flow decomposition
theorem. Conditions (c) and (c’) originate from the primal-dual theorem of linear programming,
where µ is a reciprocal of a dual variable. 2

Let us refer to a function µ : N → IR++ ∪ {∞} with µ(t) = 1 as a label. A label µ(i) can be
interpreted as a local flow unit in a node i. To use the new unit of measurement, the capacity,
gain, and initial excess must be normalized by the label µ. The operation of normalizing is called
relabeled. With respect to a label µ, the relabeled capacity and relabeled gain are given by

uµ(i, j) := u(i, j)/µ(i), and γµ(i, j) := γ(i, j)µ(i)/µ(j),

respectively, for each arc (i, j). The relabeled initial excess is given by e0(i, j)/µ(i). Any flow g is
also relabeled as

gµ(i, j) := g(i, j)/µ(i).

Note that, if g is a feasible flow in the original network (G = (N,F ), u, γ), then the relabeled flow
gµ with respect to a label µ is also a feasible flow in the relabeled network (G = (N,F ), uµ, γµ),
because the excess egµ(i) in a relabeled network is equivalent to eg(i)/µ(i). Moreover, we have
eg(t) = egµ(t), since µ(t) = 1. Therefore, the relabeled network is an equivalent instance of the
generalized maximum flow problem. This relabeling operation was initially introduced by Glover-
Klingman [20] to prove that if the incidence matrix of a network has rank n− 1, the network with
gains can be converted into a traditional no gain network. A residual relabeled network can also
be defined similarly.

A label µ satisfying Eq.(1) for every arc (i, j) ∈ Ag is called a canoncial label for g if, for any
node i from which the sink t is reachable in Gg, there is an i-t path in Gg with arcs of γµ(i, j) = 1.
The canonical label µ(i) is given by the inverse of the maximum gain of an i-t path in the residual
network. A maximum gain i-t path is called a highest-gain path from i.
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2.3 Generalized maximum flows versus minimum cost flows

While the generalized maximum flow problem is a generalization of the traditional maximum
flow problem, it is associated with the traditional minimum cost circulation problem, which is
formulated as

(MCF)

min{
∑

(i,j)∈F

c(i, j)g(i, j) | 0 ≤ g ≤ u,
∑

{j∈N |(i,j)∈F}

g(i, j) =
∑

{j∈N |(j,i)∈F}

g(j, i) for all i ∈ N},

where c : F → IR is a cost function. This relationship was first pointed out by Truemper [59].
There is one-to-one correspondence between flow-generating cycles and negative-cost cycles, by
substituing c(i, j) = − log γ(i, j). Thus, the optimality conditions resemble each other. The
corresponding optimality conditions for minimum cost flows are as follows. For a flow g satisfying
the restrictions of (MCF), the following statements are equivalent:

MCF-(a) g is minimum cost flow.

MCF-(b) the residual network Gg does not have any negative-cost cycles.

MCF-(c) there exists π : N → IR such that c(i, j) + π(i)− π(j) ≥ 0 holds for every (i, j) ∈ Ag.

Indeed, the minimum cost flow algorithms are good guides to developing algorithms for generalized
maximum flow problems. In Section 4, we will overview generalized maximum flow algorithms and
contrast then with minimum cost flow algorithms.

The transformation from − log γ(i, j) to the cost c(i, j) also makes it easy to compute highest-
gain paths and the canonical label. Under this transformation, a highest-gain path corresponds to
a shortest path. Hence, when Gg does not contain any flow-generating cycles, highest-gain paths
and the canonical label can be determined using Bellman-Ford shortest path computation.

3 Framework of algorithms

Almost all combinatorial algorithms for (GMF) transform the problem to (GMF′) on networks
with no flow-generating cycles and solve this as (GMF′). These algorithms can be outlined as
follows:

Step 1: Transform (GMF) into (GMF′) on a network having no flow-generating cycles.

Step 2: Find an optimal flow g′ of (GMF′).

Step 3: Convert g′ into an optimal flow of (GMF).

Step 1 is implemented by repeatedly finding a flow-generating cycle in a residual network
and pushing as much flow as possible along the cycle. This process, called the flow-generating
cycle-canceling procedure, creates positive excesses at nodes on the flow-generating cycles, but no
negative excesses at any node. The details on this procedure will be described in Section 3.1. We
assume that a flow-generating cycle-canceling procedure finds a flow g0. Step 2 solves (GMF′) on
the network (Gg0

, γ, ug0) with the initial excess eg0 . There are several algorithms solving (GMF′),
which will be discussed in Section 4. Almost all polynomial time algorithms for (GMF′) do not use
the optimality conditions of Theorem 2, but depend on a property such that the difference between
the value of an optimal flow and the current flow is very small and there are no flow-generating
cycles on the residual network, then flow can be rounded to an optimal flow.

Lemma 3 ([60, Lemma 2.5.1]) Let g∗ be an optimal flow and g a feasible flow with eg∗(t) −
eg(t) < B−m and Gg does not contain any flow-generating cycle. We can then find an optimal
flow by solving a traditional maximum flow in the subgraph of Gg induced by arcs with γµ(i, j) = 1,
where µ is the canonical label for g. 2
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We can find the similar results in Goldberg-Plotkin-Tardos [22] and Goldfarb-Jin-Orlin [31].
Finally, Step 3 is used to find an optimal flow of (GMF) from g0 and g′ as follows. Let us first

decompose a flow g0 + g′ into elementary flows. Since eg0+g′(i) ≥ 0 for any i ∈ N , the decomposed
elementary flow is Type 2, 3, or 5. Let g1, g2, . . . , gl be the decomposed elementary flow of Type 3
where the tail node of the path is not the sink. Then g0 + g′ − (g1 + g2 + · · ·+ gl) is a generalized
flow and its flow value does not decrease from g0 + g′. Because (GMF′) is a relaxation of (GMF),
the resulting flow is optimal for (GMF). Since the flow decomposition can be performed in O(nm),
Step 3 runs in O(nm) time.

3.1 Flow-generating cycle-canceling procedure

Since flow-generating cycles correspond to negative-cost cycles, efficient selection rules for can-
celed cycles are derived from negative-cost cycle-canceling algorithms for minimum cost flows.
The following maximum-mean-gain cycle-canceling procedure is an adaptation of the minimum-
mean cycle-canceling algorithm in Goldberg-Tarjan [25], which is one of the basic polynomial time
algorithms for minimum cost flows.

Step 1: If the residual network does not have any flow-generating cycles, stop.

Step 2: Find a cycle C maximizing the mean-gain value γ(C)1/|C| in the residual network.

Step 3: Send flow around C until an arc is saturated. Go back to Step 1.

We can directly extend an analysis in Goldberg-Tarjan [25], which gives a weakly polynomial time
bound on the number of iterations for the minimum-mean cycle-canceling algorithm, to the above
procedure. Let εh be the maximum mean-gain value γ(C)1/|C| of the cycle C canceled at the hth
iteration. The following lemma is associated with Lemmas 3.5 and 3.6 in [25].

Lemma 4 The sequence of ε1, ε2, . . . , is nonincreasing. Moreover, after m cancellations, the

maximum mean-gain value εh reduces at most ε
n−1

n

h . Hence we have εh+nm < (εh)1/2 for any h
with εh > 1. 2

It follows from this lemma that the iteration number of the procedure is bounded by O(mn2 log B).
By modifying the maximum-mean-gain cycle-canceling procedure, Goldberg-Plotkin-Tardos

[22] developed an O(mn2 log n log B) time procedure, which is parallel with the cancel-and-tighten
algorithm for minimum cost flows [25]. We can construct another flow-generating cycle cancel-
ing procedure, which is an adaptation of the other minimum cost flow algorithm that iteratively
cancels negative-cost cycles (See [55], for a survey of cycle-canceling algorithms for minimum cost
flows). Radzik [48] and Tardos-Wayen [57], respectively, proposed flow-generating cycle-canceling
procedures accommodated to the algorithms solving (GMF′).

The end of this section discusses a strongly polynomial time bound for the maximum-mean-gain
cycle-canceling procedure. Unfortunately, we cannot obtain any strongly polynomial time bound
on the iteration number of either procedure, the maximum-mean-gain canceling or Goldberg-
Plotkin-Tardos’ cancel-and-tighten, by extending the minimum cost flow case in [25], because the
flow decomposition theorem is used in analysis. Applying a more general analysis, Radzik [47]
found that an O(m2n log2 n) bound on the running time of Goldberg-Plotkin-Tardos’ procedure,
which matches the strongly polynomial bound of Goldberg-Tarjan[25]. Although Radzik [47] gives
a bound for the cancel-and-tighten type algorithm, we will give a brief outline of his analysis for
the maximum-mean-gain cycle-canceling procedure.

Let g0 be a flow output of the procedure. Since there is no flow-generating cycle in Gg0
, we

have a label µ0 such that γµ0
(a) ≤ 1 for all a ∈ Ag0

. Let E := {a ∈ A | γµ0
(a) > 1}. We assume

that E = {a1, a2, . . . , am′} and γµ0
(a1) ≥ γµ0

(a2) ≥ . . . ≥ γµ0
(am′). By k0, k1, . . . , kP , denote a

strictly increasing maximal sequence of indices of E such that k0 = 1 and

γµ0
(akp−1) > (γµ0

(akp) · γµ0
(akp+1) · . . . · γµ0

(am′))2 (2)

holds for each p = 1, 2, . . . , P . For convenience, let us assume that kP+1 := m′ + 1. Since, when
k 6= k1, k2, . . . , kP , γµ0

(ak−1) ≤ (γµ0
(ak) · γµ0

(ak+1) · . . . · γµ0
(am′))2 holds, we have

γµ0
(akp

) · γµ0
(akp+1) · . . . · γµ0

(am′) <
(
γµ0

(akp+1−1)
) 3

(kp+1−kp)

2
, (3)
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for any p = 0, 1, . . . , P − 1.
We next partition the iterations of the procedure into several intervals of successive iterations

I0, I1, . . . , IP , where after the iterations in Ip have ended, the canceled cycles do not contain any
arc in {ak ∈ E | 1 ≤ k < kp+1} or its reverse arc. We estimate the number of iterations in Ip for
any p = 0, 1, . . . , P −1. Let Ip start at the lth iteration and end at the rth iteration. We then have

εl < γ(Cl) = γµ0
(Cl) ≤ γµ0

(akp
) · . . . · γµ0

(am′),

where Cl is the cycle cancled at the lth iteration. Moreover, it holds that

εr ≥ (γ(Cr))
1/n = (γµ0

(Cr))
1/n
≥

(
γµ0

(akp+1−1)/(γµ0
(akp+1) · . . . · γµ0

(am′))
)1/n

because the canceled cycle at the rth iteration contains at least one arc in {ak ∈ E | kp ≤ k < kp+1}
but do not contain any reverse arc in the set since g0(a) = u(a) for arcs in E. Combining these
relations and Eq.(2) and (3), we obtain

(εr)
3(kp+1−kp)

> (εl)
1/n

.

When p = P , we similarly obtain the same relation but using the inequalities γµ0
(akP

)·γµ0
(akP +1)·

. . . · γµ0
(am′) <

(
γµ0

(am′)
)3(kp+1−kp)

, instead of Eq.(3), and εr ≥ (γµ0
(am′))

1/n
. Hence we have

εs > (ε1)1/(nP+13m′
) ≥ (ε1)1/(3n)m

, when the procedure terminates at the sth iteration. Together
with Lemma 4, we can conclude that the total iteration number s is bounded by O(m2n log n).

4 Combinatorial algorithms

This section surveys algorithms for (GMF′) on a network with no flow-generating cycles. We also
compare generalized maximum flow algorithms with maximum flow algorithms and minimum cost
flow algorithms.

4.1 Basic algorithms

Jewell [35] and Onaga [43] proposed first combinatorial algorithms generalizing on Ford-Fulkerson’s
augmenting path algorithm of traditional maximum flows [14]. Onaga [43] observed that if flow
augmentation is done along a highest-gain path in a network with no flow-generating cycles, then
the residual network of the resulting flow contains no flow-generating cycles. Thus, his algorithm
iteratively augments a flow along a highest-gain path from a node with a positive excess until no
such a path exists. Truemper [58] proposed an algorithm that augments flows by solving traditional
maximum flow on a residual network induced by arcs which may construct some highest-gain path,
i.e., induced by arcs with γµ(i, j) = 1 for the canonical label µ. Both algorithms maintain a
feasible flow and a label function µ that satisfies Eq.(1). After each maximum flow is computed
in Truemper’s algorithm, the canonical label µ(i) with a positive excess strictly increasing. Hence
we have

Lemma 5 The number of iterations in Truemper’s algorithm is bounded by n plus the number of
different gains of paths in the original network. 2

However, both Onaga’s and Truemper’s algorithms run in pseudo-polynomial time, since they is
specialized to Ford-Fulkerson’s augmenting path algorithm.

Truemper [59] surveyed other basic algorithms and overviewed the relationship between these
algorithms and algorithms for traditional minimum cost flows. By using the cost function defined
by − log γ, he pointed out that Onaga’s algorithms was analogous to the successive shortest path
algorithm and Truemper’s to the primal-dual algorithm for minimum cost flows. (Here, we call
minimum cost flow algorithms by following Ahuja-Magnanti-Orlin [2]. )

For traditional maximum flows, on the other hand, Edmonds-Karp [11] suggested two polynomial-
time implementations of the augmenting path algorithm. One is to augment flow along a path
which produces a maximum increase in the flow value. The other is to augment flow along a
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path with a minimum number of arcs. These respective implementations are closely related to the
most-helpful cycle-canceling algorithm [5] and the minimum-mean cycle-canceling algorithm [25]
for minimum cost flows, in the translated network that follows. For a network of a maximum flow
instance, add a new arc (t, s) with infinite capacity. Define the costs of all original arcs as zero
and the cost of (t, s) as −1. Then, a minimum cost flow in the resulting network restricted to the
original network is a maximum flow. In this network, Ford-Fulkerson’s algorithm corresponds to
Klein’s negative cycle-canceling algorithm [38].

We now describe a polynomial-time implementation of the augmenting path algorithm for
generalized maximum flows using Edmonds-Karp’s idea. Instead of a highest-gain path, we use a
most-helpful path, which is a path from a node with positive excess to the sink and which produces
a maximum increase in the flow value.

Lemma 6 Assume that a residual network Gg for a feasible flow g does not have any flow-
generating cycles. When we augment a flow along a most-helpful path in Gg and obtain a feasible
flow g′, then

eg∗(t)− eg′(t) ≤
m− 1

m
(eg∗(t)− eg(t)),

where g∗ denotes an optimal flow.

Proof. Since Gg does not have any flow-generating cycles, the flow g∗ − g can be decomposed into
at most m elementary pseudo flows of types 1, 2 and 4. Then a similar argument to the proof of
Lemma 2 in Barahona-Tardos [5] establishes the lemma. 2

Unfortunately, flow augmentation along a most-helpful path may result in flow-generating cycles
in the residual network. Therefore, one needs to cancel such cycles in each iteration. A terminal
condition is derived from Lemmas 3 and 6. The algorithm is expresseed by the following:

Step 1 Cancel all flow-generating cycles.

Step 2 If the flow value increment was less than 1/(mBm) at the last iteration, find the canonical
label µ and obtain an optimal flow by computing a maximum flow in the subgraph of Gg

induced by arcs with γµ(i, j) = 1.

Step 3 Find a most-helpful path. If there is no path from a node with positive excess to the sink,
then stop. Otherwise, augment a flow along the path and go to Step 1.

Let ḡ and g′ be feasible flows at the beginning and end of an iteration. Since Step 1 does not
decrease the flow value, it follows from Lemma 6 that eg′(t)−eḡ(t) ≥ (1/m)(eg∗(t)−eg′(t)), where
g∗ is an optimal flow. Hence, when the increment of the flow value eg′(t) − eḡ(t) is less than
1/(mBm), the conditions of Lemma 3 hold at Step 2 and we can obtain an optimal flow. Since the
discrepancy eg∗(t) − eg(t) decreases at least half after m iterations, after O(m2 log B) iterations,
eg′(t) − eḡ(t) ≤ eg∗(t) − eḡ(t) ≤ 1/(mBm) holds and the algorithm terminates. As most-helpful
path can be found in polynomial time at Step 3, the most-helpful augmenting path algorithm
runs in polynomial time. However the time complexity cannot be strengthened to be strongly
polynomial, since the algorithm is specialized to Edmonds-Karp’s maximum-capacity augmenting
path algorithm, which is not a strongly polynomial algorithm [46]. It is also costly to cancel flow-
generating cycles in each iteration. One of the implementations of this algorithm is a fat-path
algorithm that will be described in the next section.

The relationship between basic algorithms described in this section are in Fig. 1. There is
not doubt that one of the keys to deriving a strongly polynomial time algorithm of generalized
maximum flows is through a generalization of Edmonds-Karp’s shortest path algorithm. Moreover,
Dinic [10] introduced a concept of shortest path networks and established blocking flow for tradi-
tional maximum flow problems. His algorithm is meant to augment flows along several shortest
paths, simultaneously. Recently, Fujishige [16] proposed an algorithm that augments flows along
several big capacity paths, simultaneously. Extensions of these algorithms are also interesting.

4.2 Scaling algorithms

Scaling methods have been used extensively to derive polynomial-time algorithms for a wide variety
of networks. In generalized maximum flows, there are two scaled factors, capacity and gain.

8



Maximum Flow Min Cost Flow Generalized Max Flow
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Fujishige [16]
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Edmonds-Karp [11]

shortest path
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Block flow

Klein [38]

negative cycle canceling algo.

Barahona-Tardos [5]
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Goldberg-Tarjan [25]

min-mean cycles
canceling algo.

most-helpful
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algo.

?
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?

?

?

?
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?

Figure 1: Relationship between basic algorithms for maximum flows, minimum cost flows, and
generalized maximum flows. The algorithms in the first , second and third columns are for max-
imum flows, minimum cost flows, and generalized maximum flows, respectively. The boxes with
double lines mean that the algorithm in it runs in polynomial time. The boxes with thick double
lines mean that the algorithm in it runs in strongly polynomial time.
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Let us first overview capacity scaling type algorithms for maximum flow, minimum cost flow,
and generalized maximum flow problems. Let ∆ be a scaling parameter. In a ∆-scaling phase,
each flow augmentation carries ∆ units of flow.

The first capacity scaling type algorithm for a generalized maximum flow problem is the fat-
path algorithm by Goldberg-Plotkin-Tardos [22]. A simple i-t path is ∆-fat if, given unlimited
excess at i, at least ∆ units of additional flow can be sent to t along this path. Let Ag

∆ = {(i, j) ∈
Ag | ug(i, j)γ(Pi) ≥ ∆}, where Pi is a highest-gain path from i in Gg. Note that any path to
the sink in Gg

∆ = (N,Ag
∆) is ∆-fat. Each ∆-scaling phase constructs Gg

∆ and augments flow
along a highest-gain path in Gg

∆. Similar to the most-helpful augmenting path algorithm, this flow
augmentation may result in flow-generating cycles in the residual network Gg, although Gg

∆ does
not contain any flow-generating cycles. Therefore, one needs to cancel such cycles in the beginning
of each scaling phase. We specify the fat-path algorithm as follows:

Step 0 Set ∆ := B2.

Step 1 Construct Gg
∆.

Step 2 Find a highest-gain path and augment flow along this path. If there is no path from a
node with positive excess to the sink in Gg

∆, then go to Step 3. Otherwise, repeat Step 2.

Step 3 Reduce ∆ by a factor of two and perform a flow-generating cycle-canceling procedure. If
∆ < B−3m/(n+m), then find the canonical label µ and obtain an optimal flow by computing
a maximum flow in the subgraph of Gg induced by arcs with γµ(i, j) = 1. Otherwise, go to
Step 1.

Since eg∗(t)− eg(t) ≤ (n + m)∆ holds for a flow g after Step 2, each scaling phase augments flow
at most 2(n+m) times. When ∆ < B−3m/(n+m), the conditions of Lemma 3 hold at Step 3 and
we can obtain an optimal flow. Hence the algorithm terminates after O(m log B) scaling phases.
Since each augmentation can be done in O(m+n log n), the total time complexity of the algorithm
is O((m2 + mn log n + CC)m log B), where CC denotes the running time of a flow-generating
cycle-canceling procedure. The fat-path algorithm reduces the number of times a flow-generating
cycle-canceling procedure is called, which is costly in the time complexity, from the most-helpful
augmenting path algorithm. Radzik [47] improved the running time of the fat-path algorithm
by canceling flow-generating cycles that only consists of big capacity arcs. Tardos-Wayne [57]
improved the fat-path algorithm through the same idea, using a gain scaling technique, which will
be described later.

When all gains are given by one, the algorithm corresponds to Gabow’s capacity scaling al-
gorithm [17] for maximum flows. Although Gabow originally designed a bit-scaling algorithm, a
∆-scaling type algorithm is described in Ahuja-Magnanti-Orlin [2]. For a traditional maximum
flow problem with integral capacities, the algorithm can be find an optimal flow when ∆ < 1.
Terefore, there are O(log B) scaling phases. Moreover, after a ∆-scaling phase, we only need to
reduce the parameter ∆.

There are two types of corresponding capacity scaling algorithms for minimum cost flows. One
is a variant of the successive shortest path algorithm and the other is a variant of the negative cycle
canceling algorithm. The former was developed by Edmods-Karp [11] and Röck [51], independently.
Each scaling phase sends flow along a shortest path in Gg

∆ from a positive excess node to a negative
excess node. At the beginning of each scaling phase, the flow is changed such that the optimality
condition MCF-(c) holds. For the current π, if c(i, j) + π(i) − π(j) < 0 then the flow value
g(i, j) is updated to ug(i, j), which causes a positive excess and a negative excess at the end
nodes of (i, j). This preprocessing of each scaling phase is associated with the flow-generating
cycle-canceling procedure in the fat-path algorithm. The second capacity scaling algorithm for a
minimum cost flow problem is Sokkalingam-Ahuja-Orlin’s cycle-canceling algorithm [56]. Their
algorithm is regarded as a variant of the cancel-and-tighten algorithm by Goldberg-Tarjan [25],
since it uses a dual variable. Unfortunately, this algorithm does not coincide with the capacity
scaling algorithm for maximum flows, even if it is applied to a translated network from a maximum
flow problem.

Excess scaling methods are similar to capacity scaling methods in that each flow augmentation
carries ∆ units of flow. Orlin [45] developed an excess scaling algorithm for minimum cost flows.
The algorithm transforms the problem to an uncapacitated problem (for details, see [2, Section
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2.4]) and repeats to augment flow along a path from a node with a positive excess more than ∆ to a
node with a negative excess less than −∆. Goldfarb-Jin [29] proposed an excess scaling algorithm
that works directly with the original network without being transformed for an uncapacitated
network. Their algorithm uses arc excesses, which were originally introduced by Goldfarb-Jin[28]
for generalized flows. When one augments flow along a path from a node with excess more than
∆ to a node with excess less than −∆, if the path contains an arc (i, j) with ug(i, j) < ∆, the
overflow ∆− ug(i, j) is stored in the excess of the arc (i, j). Let eg : A→ IR be an arc excess with
respect to a flow g. When one augments ∆ units of flow on an arc (i, j), the following process is
performed.

Arc-augmentaion I
eg(i) := eg(i)−∆;
α := min{eg(i, j) + ∆, ug(i, j)};
g(i, j) := g(i, j) + α; eg(i, j) := eg(i, j) + ∆− α;
β := min{eg(j, i) + α, ∆};
eg(j) := eg(j) + β; eg(j, i) := eg(j, i) + α− β.

Armstrong-Jin [3] developed a more simple augmentation rule which is used in a dual network
simplex algorithm for minimum cost flows.

Arc-augmentaion II
eg(i) := eg(i)−∆;
α := min{∆, ug(i, j)};
g(i, j) := g(i, j) + α; eg(i, j) := eg(i, j) + ∆− α;
eg(j) := eg(j) + α;
if (α < ∆) then {eg(j) := eg(j) + eg(j, i); eg(j, i) = 0;}.

The flow augmentation along a shortest path can be implemented by applying either process
to an arc (i, j) in the order of the shortest path from the tail node, until the process is done
for all arcs on the path or eg(i) < ∆ holds. Both arc-augmentation rules satisfy the condition
0 ≤ eg(i, j) + eg(j, i) < ∆ for all arcs (i, j). Hence by putting each arc excess back into the excess
of its head node after each ∆ scaling phase, the number of flow augmentations in a scaling phase
is O(n + m).

For the generalized maximum flow problem, Goldfarb-Jin-Orlin [31] developed an excess scaling
algorithm with arc excesses. Each scaling phase repeats to compute the canonical label and to
augment flow along a highest-gain path from a node with more than ∆ relabeled excess. Since
γµ(i, j) = 1 for any arc (i, j) in a highest-gain path with the canonical label µ, each flow augmenta-
tion adapts the rule of Arc-augmentation I for the relabeled network. That is, in Arc-augmentation
I, eg(i), g(i, j), ug(i, j) and eg(i, j) are replaced by eµ

g (i), gµ(i, j), uµ
g (i, j) and eµ

g (i, j) = eg(i, j)/µ(i),
respectively. (Unfortunately, the rule Arc-augmentation II may not be appropriate for generalized
flows.) Note that flow-generating cycles are not generated by these flow augmentations and we no
longer need to perform a flow-generating cycle-canceling procedure. Therefore, each scaling phase
runs in O(m(m+n log n)) time, and the total time complexity of Goldberg-Jin-Orlin’s excess scal-
ing algorithm is O(m2(m + n log n) log B). This excess scaling algorithm also give us an idea for
an efficient dual network simplex algorithm for generalized flow due to Goldfarb-Jin-Lin [30].

Let us return to Orlin’s excess scaling algorithm [45] for minimum cost flows. He not only
introduced an excess scaling technique, but also a graph contraction process. By contracting arcs
whose flow is so large in a ∆-scaling phase that they are guaranteed to have positive flow in all
subsequent scaling phases, his algorithm runs in strongly polynomial time, O((m+n log n)m log n).
Recently, Radzik [49] developed a framework that reduced the size of a given graph for generalized
network flows. There are three operations: contracting large-capacity arcs, shortcutting small
reverse-flow paths, and by-passing and removing some nodes. Combining this framework with
Goldfarb-Jin-Orlin’s excess scaling algorithm, he proved an O(nm(m + n log n) log B) bound on
the running time of the resulting algorithm.

Let us turn to gain scaling methods. Tardos-Wayne [57] introduced gain scaling technique.
Each gain γ(i, j) is rounded down to γ̃(i, j) = bblogb γ(i,j)c, where b > 1. It is obvious that
γ(i, j)/b ≤ γ̃(i, j) ≤ γ(i, j) holds for all arcs (i, j). This gain scaling is associated with a scaling
technique b c(i,j)

ε cε with scaling parameter ε, which often appears in cost scaling algorithms.
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At the beginning of a gain scaling algorithm, we find the canonical label and construct a
relabeled network. Note that in this relabeled network, no gain is more than one. We next round
down the relabeled gains. Denote by Ñ the resulting network. If g is a feasible flow in Ñ , then
g is also feasible in the original network, because this replacement may cause additional positive
excesses at some nodes, but no negative excesses. The following lemma shows that the flow value
of g, which is an optimal flow in Ñ , is close to the optimal value of the original network.

Lemma 7 ([57]) If g∗ and g are optimal flows in the original network and in Ñ , respectively,
then eg(t) ≥ eg∗(t)/bn holds. When b = (1 + ξ)1/n for 0 < ξ < 1, we have eg(t) ≥ (1− ξ)eg∗(t). 2

When ξ = 1/(nBm+2), we can find an optimal flow using Lemma 3, since eg∗(t) ≤ nB2. Whereas,
gain-scaling algorithms find an optimal flow without reducing a scaling parameter b. Radzik
[48] proposed a fascinating scheme called a recursion. It is used to speed up computations for
generalized maximum flows. A flow g is called an η-optimal when eg(t) ≥ (1 − η)eg∗(t) holds,
where g∗ is an optimal flow.

Lemma 8 ([48]) Let g1 be an η1-optimal flow in a network and g2 an η2-optimal flow in the
residual network Gg1 . Then g1 + g2 is an (η1η2)-optimal flow in the original network. 2

Hence, if we have a subroutine that finds a 1/2-optimal flow, we can find a 1/(nBm+2)-optimal
flow by calling this subroutine log(nBm+2) times. The framework of gain scaling algorithms with
the recursion can be described as follows.

Step 1 Find the canonical label and construct a relabeled network.

Step 2 Scale down the relabeled gains and find an optimal flow g in Ñ .

Step 3 Cancel all flow-generating cycles. If the total excess of all nodes is less than B−2m, go to
Step 4, otherwise, go to Step 1.

Step 4 Find the canonical label and obtain an optimal flow by computing a maximum flow in the
subgraph of Gg induced by arcs with γµ(i, j) = 1.

From now, let us assume that b = (3/2)1/n, which implies that Step 2 in the above framework will
find a 1/2-optimal flow.

Tardos-Wayne [57] presented three gain scaling algorithms where Truemper’s maximum-flow
algorithm, the fat-path algorithm, and a preflow-push type algorithm are adopted in Step 2. Since
scaled gains are all integer powers of b, there are at most 1+logb B2n different gains of paths. Hence,
it follows from Lemma 5 that Truemper’s algorithm computes a maximum flows O(n2 log B) times
at each Step 2. Adapting Goldberg-Tarjan’s O(mn log(n2/m)) maximum flow algorithm [24], this
gain scaling algorithm runs in O(m2n3 log(n2/m) log B log(nB)) time. If the fat-path algorithm
is adopted in Step 2, we can speed up the flow-generating cycle-canceling procedure in each ∆-
scaling. By substituting c(i, j) = − logb γ̃(i, j), each c becomes an integer bounded by O(n log B).
We can then improve the running time of a cycle-canceling procedure by using a weakly-polynomial
negative-cycle canceling algorithm. Although this fat-path type gain scaling algorithm uses two
scaling parameters, i.e., capacity and gain, the workings of the algorithm are different from Ahuja-
Goldberg-Orlin-Tarjan’s double scaling algorithm [1] for a minimum cost flow problem which also
uses two scaling parameters, capacity and cost. The preflow-push type gain scaling algorithm is
associated with a cost scaling algorithm due to Goldberg-Tarjan [26]. An active node is a node
with a positive excess and a path to the sink t in the residual network. The algorithm consists of
two operations: Operation Relabel(i) applies if a node i has an positive excess and γ̃µ(i, j) < 1
for all arcs (i, j) ∈ Ag emanating from i. It increases a node label µ(i) by a factor of b1/n.
Operation Push(i, j) applies if i has an positive excess, (i, j) ∈ Ag and γ̃µ(i, j) > 1. It pushs
δ = min{eg(i), ug(i, j)}units of flow along the arc (i, j). The push-relabel algorithm repeats to
apply these push and relabel operations to an active node until the residual network does not have
any active nodes. An analogous analysis in Goldberg-Tarjan [26] leads to the time complexity of
this algorithm. By using a data structure called dynamic tree, it runs in O(m2n3 log n log B) time.

We illustrate the relationship between scaling algorithms described in this section in Fig. 2.

12



Maximum Flow Min Cost Flow Generalized Max Flow

Edmonds-karp [11]

max capacity
path algo.

primal-dual algo.

Barahona-Tardos [5]

most-helpful cycles
canceling algo.

Truemper [58]

max-flow algo.

most-helpful
augmenting path
algo.

Gabow [17]

capacity scaling algo.

Sokkalingam-Ahuja-

Orlin [56]

Edmods-Karp [11],
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Figure 2: Relationship between scaling algorithms for maximum flows, minimum cost flows, and
generalized maximum flows. The algorithms in the first, second and third columns are for maximum
flows, minimum cost flows, and generalized maximum flows, respectively. The boxes with double
lines mean that the algorithm in it runs in polynomial time. The boxes with thick double lines
mean that the algorithm in it runs in strongly polynomial time.
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4.3 Other algorithms

Goldberg-Plotkin-Tardos[22] designed two polynomial-time algorithms, fat-path algortihm de-
scribed in Section 4.2 and MCF algorithm. Algorithm MCF maintains a pseudo flow with no
positive excess nodes except the sink. It repeats to perform a traditional minimum cost flow com-
putation with cost c(i, j) = −γ(i, j). In contrast to augmenting path type algorithm, this algorithm
draws back flows from the sink to nodes with negative excesses. It is exciting that we obtain a
polynomial time bound without using any scaling technique. Goldfarb-Jin [28] improve the MCF
algorithm. Instead of using a traditional minimum cost flow computation at each iteration, they
augment flow along highest-gain paths using arc excess.

The combinatorial approach turns out to be superior to the linear programming approach
when only an approximate solution is sought. For generalized maximum flows, several strongly
polynomial approximation algorithms are developed. Cohen-Megiddo [7] presented the first fully
polynomial approximate algorithm based on solving linear programs with two variables per in-
equality (TVPI). Their algorithm finds an η-optimal flow in O(m2n2(log m+ log2 n) log η−1) time.
Oldham [42] and Fleisher-Wayne [13] proposed fully polynomial approximation algorithms based
on a fractional packing framework due to Garg-Könemann [18]. These approximation algorithms
also solve a variant of generalized network flows as generalized minimum cost flows and generalized
multicommodity flows.

Finally, the history and the state of the art of the combinatorial algorithms for generalized
maximum flows are summarized in Table 1, where CC, MF, and MC stand for the time complexities
for performing a flow-generating cycle canceling procedure, for computing a traditional maximum
flow, and for computing a traditional minimum cost flow, respectively. The time complexity
containing η implies the time bound to find an η-optimal flow.

5 Conclusion and Further Research

This paper emphasizes algorithmic aspects of the generalized maximum flows. A big open problem
is development of a strongly polynomial time algorithm. Another research direction is to design
an algorithm which runs practically fast. Radzik-Yang [50] presented experimental evaluation
of Goldfarb-Jin-Orlin’s excess-scaling algorithm and Tardos-Wayne’s preflow-push algorithm for
generalized maximum flows. In their result, the combinatorial generalized flow algorithms are not
superior to a commercial linear programming package.

In generalized network, Wayne [61] proposed a first polynomial combinatorial algorithm for
minimum cost flow. For multicommodity flow, there are no known exact polynomial combinatorial
algorithms. It is plausible that further exploitation of the combinatorial structure of these prob-
lem will eventually lead to bounds unattainable by general-purpose linear programming methods.
Recently, general models of generalized maximum flows have been discussed. Nakayama-Su [41]
extended Minoux’s maximum balanced flow problem in generalized network, which finds maxi-
mum flow satisfying the constraint that a flow of any arc is bounded by a fixed proportion of the
flow value. Eguchi-Fujishige-Takabatake [12] studyed a generalized independent-flow problem. A
maximum flow problem with concave gains was explored in [54].
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