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Abstract. This paper aims to provide a widely applicable technique for
solving Sports Scheduling Problems. We give a set of conditions which
are often imposed in practice, and define a problem, Sports Scheduling
Problem in General Form (abbreviated to SSPGF). It is easy to formu-
late the problem as an integer program, but solving the program may
entail a tremendous computational cost in general. For the purpose of
reducing the cost, we extract a subproblem having a network structure
and propose a branch-and-bound algorithm. Computational experiments
show that our algorithm solves the SSPGF correctly.

Keywords: sports scheduling, round-robin, network structure, branch-and-bound
method

1 Introduction

Sports competition timetables have been often made by hand and individually,
because of a lot of requirements concerning maintaining fairness, athletic facili-
ties, commercial interests and so on.

Recently, several systematic algorithms have been developed in order to avoid
such a time-consuming work. De Werra [7, 8] introduce characterizations and
graph-theoretical properties of some particular schedules, which are exploited
in a schedule for Dutch major soccer league [13]. Ferland and Fleurent [9] de-
velop an interactive decision support system for constructing schedules for the
National Hockey League and other hockey leagues. Campbell and Chen [6], and
Nemhauser and Trick [11] study the problems arising in basketball leagues, based
on integer programming and enumeration techniques.

Most of these works employ case-oriented approach and hence, it is difficult
to apply one of proposed methods to other problems as it is. On the other hand,
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we see that some requirements have been imposed commonly regardless of the
kind of sports competition. In this paper, we give a set of such requirements and
introduce a problem, the Sports Scheduling Problem in General Form (abbrevi-
ated to SSPGF) of finding a solution which satisfies all of the requirements.

As we will see in Section 2, the SSPGF can be formulated as an integer pro-
gram. Therefore, several branch-and-bound algorithms are applicable for solving
the SSPGF. In fact, our algorithm is based on the branch-and-bound technique,
but completely different from typical algorithms such as using the LP relaxation:
Our intention is to give a graph representation of the SSPGF and to extract a
well-structured subproblem in order to develop an efficient branch-and-bound
algorithm.

Our paper is organized as follows.
In Section 2, we define the SSPGF in detail. We assume that teams play a

round-robin tournament in the competition, i.e., each team is expected to play
against every other team a fixed number of times throughout the competition.
The assumption leads us to three operational requirements (C.1-C.3) on the
schedule. In addition, we impose three fairness requirements (C.4-C.6), which
are sometimes indispensable to improve the quality of the schedule. We also
assume that the number of attendance for each match may depend on some
factors assigned to the match, but the organization which hosts the competition
knows an expected number of attendance for each case, and hopes to maximize
the total expected number of attendance of the competition. According to these
considerations, we formulate the SSPGF as an optimization problem with binary
variables.

In Section 3, we provide a branch-and-bound algorithm for solving the SSPGF.
To do this, we prepare a graph and show that a subproblem of the SSPGF can
be regarded as a problem of finding a longest path in the graph. We also define
a branching rule for finding an optimal solution to the SSPGF.

Some computational experiments of our algorithm are reported in Section 4.
These results show that our algorithm works well and finds an optimal solution
to the SSPGF with reasonable computation time. Thus we can conclude that
our algorithm is promising for practical use in sports scheduling.

Section 5 is concluding remarks.

2 Problem

In this section, we define our problem, the Sports Scheduling Problem in General

Form (abbreviated to SSPGF) and formulate it as an integer program.

2.1 Definition of SSPGF

We suppose that the competition is a round-robin tournament of 2r rounds and
that

– the set P of 2n teams and



– the set T of m terms in a season

are given a priori. We also suppose that each team has a specific home. We define
SSPGF as a problem of finding a schedule under the following 6 conditions. The
conditions can be divided into two categories:

– Operational requirements, and
– Fairness requirements.

The Operational requirements are concerned with the fundamental principle
of round-robin tournaments:

C.1 Each team must play exactly one match in a term.
C.2 Every match between i and j must be held at either i’s or j’s home.
C.3 The number of matches between i and j must be 2r for any i, j.

The above conditions C.1 and C.3 claim that the number of terms m should be
m = 2r(2n−1). On the other hand, we consider the following requirements as the
Fairness requirements which should be taken into consideration for maintaining
fairness of the competition.

C.4 Among the matches between i and j the number of matches at i’s (resp.
j’s) home must be r for any i, j.

C.5 At most one match between i and j can be held in w consecutive terms for
any i, j.

C.6 No team is allowed to play at its home in more than h consecutive terms.
C.6’ No team is allowed to play at the opponent’s home, i.e., away, in more

than a consecutive terms.

In what follows, we will ignore the requirement C.6’ since it is not essential in
the SSPGF due to symmetry between the requirements C.6 and C.6’.

In terms of commercial aspects, we set our goal on maximizing the total
attendance of the competition. The attendance for a match may depend on
opponents, terms and homes, and we assume that it is estimated statistically by
data of the matches of the past seasons. We define the estimated attendance of
the match between team i, j ∈ P ; i 6= j at i’s home in term t by ct

ij .

2.2 Integer Program of SSPGF

The SSPGF can be formulated into an integer program with binary variables
yt

ij(i, j ∈ P ; i 6= j, t ∈ T ):

yt
ij =

{

1 : If team i plays against team j at its home in term t.

0 : otherwise

The binary property of yt
ij directly implies that the requirement C.2 is satisfied.

Consider the following integer program (IP):



(IP) max
∑

t∈T

∑

i∈P

∑

j∈P
j 6=i

ct
ijy

t
ij (1)

s. t.
∑

j∈P
j 6=i

{yt
ij + yt

ji} = 1 ∀i ∈ P, ∀t ∈ T (2)

∑

t∈T

yt
ij = r ∀i, j ∈ P ; i 6= j (3)

s+w−1
∑

t=s

{yt
ij + yt

ji} ≤ 1 ∀i, j ∈ P ; i 6= j, ∀s ∈ {1, 2, · · · , m − (w − 1)}

(4)

s+h
∑

t=s

∑

j∈P
j 6=i

yt
ij ≤ h ∀i ∈ P, ∀s ∈ {1, 2, · · · , m − h} (5)

yt
ij ∈{0, 1} ∀i ∈ P, ∀j ∈ P, j 6= i (6)

Constraints in (2) state that each team have exactly one match in a term. Con-
straints in (3) mean that the number of matches between i and j at i’s home
is exactly r, i.e., the total number of matches between i and j is exactly 2r.
Constraints in (4) ensure that at most one match between i and j can be held
in w consecutive terms for any i, j, and (5) states that no team can play at its
home in more than h consecutive terms. Constraints in (6) are the integrality
constraints. Thus we can see that every optimal solution to (IP) above meets
all of the requirements C.1–C.6 in the SSPGF. The problem (IP) is an integer
program with 4mn2 + 4n2 + 3mn constraints and 4mn2 variables. The goal of
maximizing the total estimated attendance will be achieved by the objective
function of (IP).

3 Algorithm

In this section, we propose our algorithm based on the branch-and-bound method
for solving the SSPGF.

As we have shown in the previous section, the SSPGF can be formulated as
an integer program (IP). Thus we can adopt several decomposition techniques,
e.g.,

LP-relaxation : the subproblems consist of Constraints (2)–(5),
1-factorization [7] : the subproblems consist of Constraints (2) and (6).

Among others, we can see that the 1-factorization technique is frequently
employed in many algorithms proposed in the field of sports scheduling.

Our approach described below is completely different from the above decom-
position techniques: We prepare a graph and show that a subproblem of the



SSPGF can be represented as a problem of finding a longest path in the graph.
We describe the graph representation and our algorithm in the succeeding sub-
sections.

3.1 Graph representation and subproblems

In the remaining of this paper, we assume that the competition employs the
double round-robin tournament, i.e., r = 1. We discuss how we may extend the
results to the general 2r round-robin tournament at the last of this subsection.

For each i ∈ P and j ∈ P , define a new variable ti
j ∈ T which means that

the term t = tij is assigned for the match between i and j held at i’s home.
Here, the requirements C.2–C.4 is equivalent to the condition that for each

i ∈ P and j ∈ P, i 6= j, the match between i and j must be held exactly once at
i’s home and exactly once at j’s home, respectively, under the assumption of the
double round-robin tournament. Hence, if we can assign each term t ∈ T to the
variables ti

j(i ∈ P, j ∈ P, i 6= j) with no contradiction to the requirements C.1,
C.5 and C.6, then we fix a schedule which is a feasible solution to the SSPGF.

This can be represented in a graph as follows. Let {i, j} (i < j) be a com-
bination of teams. For each {i, j}, we first define a complete bipartite graph
Gij = (Vij ∪ Vji, Vij × Vji) where Vij = {vt

ij |t = tij ∈ T}, Vji = {vt
ji|t = t

j
i ∈

T}, Vij = Vji = T (see Fig. 1(A) ).
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Fig. 1. (a) The graph Gij. (b) The graph Gij after eliminating unnecessary arcs.

Choosing a vertex vt
ij ∈ Vij (vt′

ji ∈ Vji) in the left (right) hand side implies

that tij = t (tji = t′) . Thus choosing an arc between vt
ij and vt′

ji in the graph

Gij means that we fix the matches between i and j completely in the schedule.
Moreover, if we choose an arc in Gij for every combination {i, j}, then we obtain
a schedule which satisfies the requirements C.2-C.4 in the SSPGF.



On the other hand, by taking the requirement C.5 into consideration, we can
eliminate some unnecessary arcs from Gij . The requirement C.5 implies that the

interval |ti
j − t

j
i | of the matches must satisfy |ti

j − t
j
i | ≥ w for every combination

{i, j}. Thus the arc (vt
ij , v

t′

ji) ∈ Vij × Vji should be eliminated if |t − t′| < w,

for each graph Gij (see Fig. 1(B) ). The resultant graph Gij can be given by

Gij = (Vij ∪ Vji, Aij) where Aij = (Vij × Vji) \ {(v
t
ij , v

t′

ji)| |t − t′| < w}.
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Fig. 2. An example flow on Gij.

To represent this as a network flow problem, for each graph G ij , we add
a pair of dummy vertices denoted by vo

ij and ve
ij and the arcs associated with

the vertices Ao
ij = {(vo

ij , v
t
ij)|t ∈ T} and Ae

ij = {(vt
ji, v

e
ij)|t ∈ T}. Define the

new graph Gij = (Wij , Aij) where Wij = {Vij ∪ Vji ∪ {vo
ij , v

e
ij}} and Aij =

{Aij ∪Ao
ij ∪Ae

ij}. For each Gij , a flow from vo
ij to ve

ij shows that the variables ti
j

and t
j
i satisfy tij = vt

ij and t
j
i = vt′

ji, respectively. Fig. 2 shows an example of the
flow in Gij . A flow denoted by the thick line in Fig. 2 means that the matches
between i and j will be held at

– i’s home in the 1st term, and
– j’s home in the 4th term.

At this present, our graph
⋃

{i,j} Gij is just a union of all subgraphs Gij of

each combination {i, j} (see Fig. 3(A)). As we will see below, there still exist
several arcs which can be eliminated.

Note that each flow originated from vo
ij goes through only in the subgraph

Gij . In view of finding a feasible schedule, it is desirable that every flow knows
which vertices are chosen in other flows. Combining this with the graph

⋃

{i,j} Gij

is difficult at the stage where each flow passes a vertex v t
ij ∈ Vij , since the flow

should keep its identity of {i, j} to proceed the next vertex v t
ji ∈ Vji. However,

at the next stage, i.e., after each flow passes a vertex v t
ji ∈ Vji, the identity of
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Fig. 3. (A) The graph
⋃

{i,j}Gij
, (B) The graph G after eliminating unnecessary arcs.

{i, j} is no longer needed since every flow is only expected to go to a dummy
node ve

ij whose role does not depend on the combination {i, j}. Thus, we can
identify the vertices ve

ij in each Gij for all {i, j} with a single vertex, say ve, and
the vertices vt

ji ∈ Vji for each {i, j} with a single vertex v t for each t ∈ T.

For each t ∈ T, we also replace for each set of arcs {(v t
ji, v

e
ij) ∈ Ae

ij |{i, j}} by

an arc (vt, ve). The resulting graph, denoted by G = (V, A), is given as shown
in Fig. 3(B). Here V and A are given by

V =
⋃

{i,j}

(Wij \ (Vji ∪ {ve
ij})) ∪ {vt|t ∈ T} ∪ {ve},

A =
⋃

{i,j}

(Aij \ Ae
ij) ∪ {(vt, ve)|t ∈ T}.

By this shrink of the graph, O(n2m) = O(n3) number of arcs can be eliminated,
but the total number of the arcs is of the same order between the graph

⋃

{i,j} Gij

and the graph G. Fig. 4 shows an alternative representation which is isomorphic
to the graph G.

For each arc (p, q) ∈ Aij , we assign a triplet (cpq, upq, `pq) where cpq is the
cost, upq is the upper bound and `pq the lower bound of capacity as follows:
We set cpq to the estimated attendance for the match corresponding to the arc
(p, q) if q = vt

ij or p = vt
ji, otherwise we set cpq = 0. We set upq = 1 and

`pq = 0 for every arc (p, q) ∈ Aij . By setting cpq = 0, upq = n and `pq = 0
for (p, q) ∈ {(vt, ve)|t ∈ T}, a flow with value 1 originating from each vo

ij on G

satisfies C.2–C.5, where for each vertex v ∈ V the supply sv is given by sv = 1
if v = vo

ij , sve = −n(2n− 1) and otherwise sv = 0. A lower bound of the SSPGF
can be obtained by solving the Longest Path Problem(LPP) where xpq is a flow
of arc (p, q):
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Fig. 4. An alternative representation which is isomorphic to G.

LPP

max
∑

(p,q)∈A

cpqxpq

s. t.

∑

q:(p,q)∈A

xpq −
∑

q:(q,p)∈A

xqp=











1, p = vo
ij , ∀i, j ∈ P, i < j,

−n(2n − 1), p = ve,

0, p ∈ V \ {vo
ij , v

e|i, j ∈ P, i < j},

`pq ≤ xpq ≤ upq, ∀(p, q) ∈ A.

Fig. 5 shows an example of flow, which is a solution to the subproblem. From
any solution to the LPP, we can generate a schedule which satisfies C.2–C.5.

Now we mention how the number of matches in each term t expected by
the subproblems is affected by the shrink of the graph described above. For each
term t, let U(t) be the total number of the upper bounds upq associated with the
arc (p, q) which are connected to the vertices vt

ij or vt
ji in the graph

⋃

{i,j} Gij .

Then U(t) is computed by

U(t) ≡
∑

{i,j}























∑

(p,q)∈Ao

ij
,

q=vt
ij

upq +
∑

(p,q)∈Ae

ij
,

p=vt
ji

upq























= n(2n − 1) + n(2n − 1)

= 2n(2n − 1), (7)
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Fig. 5. An example of flow, which is a solution of the subproblem. (2n = 4)

and gives us an upper bound of the total number of matches exactly held in
term t, denoted by N(t) where

N(t) ≡
∑

{i,j}

∣

∣{(p, q) ∈ Aij |xpq = 1, p = vt
ij or q = vt

ji}
∣

∣

≤ U(t). (8)

Note that the condition C.1 forces the value of N(t) to be n. The amount of
the gap between the values N(t) and U(t) can be regarded as an index to measure
how the subproblem approximates the SSPGF. The corresponding number U ′(t)
in the shrunken graph G is given by

U ′(t) =
∑

{i,j}

∑

(p,q)∈Ao

ij
,

q=vt
ij

upq + uvtve

= n(2n − 1) + n (9)

and we can see that the amount of the gap is reduced to be nearly half. This
shows a merit of the shrink of the graph.

In the above discussions, we assume that the competition employs the double
round-robin tournament. However, by following augmentation we see that the
results above can be extended to the general 2r round-robin tournament: We
make r copies of Vij and Vji with indices for every combination {i, j}, let these
sets be V 1

ij , V
2
ij , · · ·V

r
ij , V

1
ji, V

2
ji, · · · , V r

ji, where V 1
ij = V 2

ij = · · ·V r
ij = V 1

ji = V 2
ji =

· · · = V r
ji = T. Then construct a 2r-partite graph G2r

ij = (V 2r, A2r) instead



of Gij , where V 2r = {V 1
ij ∪ V 2

ij ∪ · · ·V r
ij ∪ V 1

ji ∪ V 2
ji ∪ · · · ∪ V r

ji}, and A2r =

{{V 1
ij × V 1

ji} ∪ {V 1
ji × V 2

ij} ∪ · · · ∪ {V r−1
ji × V r

ij} ∪ {V r
ij × V r

ji}}. Unfortunately

a flow on the graph G2r
ij may not satisfy C.5. We have not developed other

augmentation techniques which can maintain C.2–C.5 yet.

3.2 Branch-and-bound algorithm

As we have described above, every flows on the graph G gives a schedule satisfies
the conditions C.2–C.5. We define our branching rules to find an optimal solution
based on the best bound search so that the other condition C.1 and C.6 are
also satisfied. The branching rules are stated in Fig. 6. We repeat branching
procedures according to the rules while the conditions C.1 is violated. In what
follows, we describe the rules in detail.

First of all, we will find a team which violates for C.1 by Rule.1. If C.1 is
violated in term t, i.e., ∃t ∈ T,

∑

(p,q)∈At xpq 6= n, where At is the set of arcs
which corresponds with the matches held in term t and given by

At = {(vo
ij , v

t
ij)|{i, j}} ∪ (vt, ve)},

then we choose a team i such that i matches more than one team in t, i.e., we
choose i ∈ P ;

∑

(p,q)∈At
i
xpq > 1, where At

i is the set of arcs which corresponds

with matches of i in t,

At
i = {(vo

ij , v
t
ij)|j ∈ P, i < j} ∪ {(vo

ji, v
t
ji)|j ∈ P, j < i}

∪{(vt
ji, v

t′)| j ∈ P, j < i, t′ ∈ T, |t − t′| ≥ w}

∪{(vt
ji, v

t′)| j ∈ P, i < j, t′ ∈ T, |t − t′| ≥ w}.

Next, as stated in Rule.2, we will find an arc (p∗, q∗) corresponding to a
match which i plays in term t with the maximum attendance. Let the opponent
be team k. The homes are determined by where the arc (p∗, q∗) lies. Let the
home be i’s if (p∗, q∗) ∈ Ht

i ⊆ At
i, where H t

i is the set of arcs corresponding to
the matches which are held at i’s home in t, and given by

Ht
i = {(vo

ij , v
t
ij)|j ∈ P, i < j}

∪ {(vt
ji, v

t′)| j ∈ P, j < i, t′ ∈ T, |t − t′| ≥ w},

otherwise let it be j’s home.
Then as Rule.3, we will construct two new subproblems: one is ”team i plays

against team k at i′s (or j’s) home in term t”, i.e., x′
p∗q∗ = 1 and the other is

”team i never plays against team k at i’s (or j’s) home in term t”, i.e., x ′
p∗q∗ = 0.

In the example in Fig. 5, team 1 plays against more than one team, say team
2, 3 and 4, in the first term. If the match between 1 and 2 has the maximum
attendance, we choose the arc (vo

12, v
1
12) as (p∗, q∗), then construct following

subproblems. In one of the subproblems, ”team 1 plays against team 2 at i’s
home in the first term” must be fixed, and in the other, ”team 1 never plays
against team 2 at i’s home in the first term”, inversely.



We also add two extra rules, Rule.4 and Rule.5, to tighten our lower bounds.
We call these two procedures, “pegging tests”, because each variable fixed by
Rule.4 and Rule.5 in a branching procedure corresponds with the match which
can not be held in term t, we can fix them to 0 after the branching.

In the Rule.4, if the match between i and k is fixed in term t, i and k can
not have other match in t by C.1, that is, for all j ∈ P ; j 6= i, j 6= k matches
between i and j and matches between k and j in t can be prohibited. Every
variables xpq which correspond with all arcs (p, q) ∈ {At

i ∪At
k} \ {(p

∗, q∗)} must
be fixed by 0. The resulting flow satisfies the condition C.1 for i and k.

Rule.5 is concerned with the feasibility checking of C.6. When a match be-
tween i and k at i’s home is fixed in term t, we check the feasibility of C.6. If
the result of fixing the match will coincide with one of these patterns shown in
Table 1, no more matches can be held at i’s home in the term has “F” because
it makes the subproblem infeasible inevitably.

In order to prevent the violation of C.6, we scan every series of h + 1 terms
Zz ∈ Z for each z ∈ S = {s ∈ T |t− h ≤ s ≤ t} where

Z = {Zz|z ∈ S} and

Zz = {t − h − 1 + z, t − h − 1 + z + 1, · · · , t − h − 1 + z + h}

= {t − h − 1 + z, t − h + z, · · · , t − 1 + z}.

If we recognize a pattern by scanning, i.e., ∃z ∈ S; Zz ∈ Z ,
∑

s∈Zz

∑

(p,q)∈Hs
i
xpq =

h, let Hz
i be the set of arcs corresponding to home-games for i which can not be

held in Zz, and it is given by

Hz
i = {(p, q)|s ∈ Zz, (p, q) ∈ Hs

i , xpq 6= 1}.

Then for each arc (p, q) ∈ Hz
i we fix the variables to 0, i.e., x′

pq = 0. After
prohibiting, team i does not break C.6 in and around t.

To give an example, we suppose that h = 3, and team i has two home-games
in term t − 2 and t + 1, and another home-game for i has just assigned in term
t = s3 by this branching procedure, i.e., ∃z = 2, and case 2 in the Table 1 is
occurring in Z2 = {t − 2, t − 1, t, t + 1}. If one more home-game for i will be
assigned in term t − 1, then C.6 is violated in the series of 4 terms Z2. We set
H2

i = {(vo
ij , v

t−1
ij )} then fix x′

vo

ij
v

t−1

ij

= 0.



Table 1. Pattern of series of matches at one’s home

term · · · s1 s2 s3 · · · sh−1 sh sh+1 · · ·

case 1 F H H · · · H H H

case 2 H F H · · · H H H
...

case h H H H · · · H F H

case h + 2 H H H · · · H H F

Rule.1 If ∃t ∈ T,
∑

(p,q)∈At

xpq 6= n,

where At = {(vo
ij , v

t
ij)|{i, j}} ∪ (vt, ve)}

then choose i ∈ P ;
∑

(p,q)∈At
i

xpq > 1,

where A
t
i = {(vo

ij , v
t
ij)|j ∈ P, i < j} ∪ {(vo

ji, v
t
ji)|j ∈ P, j < i}

∪{(vt
ji, v

t′)| j ∈ P, j < i, t
′ ∈ T, |t − t

′| ≥ w}

∪{(vt
ji, v

t′)| j ∈ P, i < j, t
′ ∈ T, |t − t

′| ≥ w}.

Rule.2 Set (p∗, q∗) ∈ argmax{cpq |(p, q) ∈ At
i, xpq = 1}.

Rule.3 Construct two new subproblems:
– x′

p∗q∗ = 1 and
– x′

p∗q∗ = 0.

Rule.4 Prohibit some matches which can not be held in term t.

∀(p, q) ∈ {At
i ∪ At

k} \ {(p∗, q∗)}, x′
pq = 0

Rule.5 Prevent the violations for C.6.
If ∃z ∈ S = {s ∈ T |t − h ≤ s ≤ t}; Zz ∈ Z,

∑

s∈Zz

∑

(p,q)∈Hs
i

xpq = h,

where Z = {Zz|z ∈ S},

Zz = {t − h − 1 + z, t − h − 1 + z + 1, · · · , t − h − 1 + z + h}

= {t − h − 1 + z, t − h + z, · · · , t − 1 + z}, and

H
t
i = {(vo

ij , v
t
ij)|j ∈ P, i < j} ∪ {(vt

ji, v
t′)| j ∈ P, j < i, t

′ ∈ T, |t − t
′| ≥ w},

let Hz
i be the set of arcs, Hz

i = {(p, q)|s ∈ Zz, (p, q) ∈ Hs
i , xpq 6= 1},

then ∀(p, q) ∈ Hz
i x′

pq = 0.

Fig. 6. Branching Rules



4 Computational Results

For experiments, we use Dell Precision Workstation 530 with Intel XEON 1.7GHz
CPU and 512MB memory. Our program is written in C++ with LEDA version
4.3 and compiled by gcc version 2.95. The data sets used in this experiment are
generate at random from 1000 to 10000, and the number of teams in the league
is 6.

The algorithm solves all problems correctly. The computational results are
summarized in Table 2. The first column is the index of the data sets. The second
column shows the total CPU time in hours and minutes. #ITR denotes the total
number of iterations. #ITRini and #ITRopt indicates the number of iterations
until we find the initial incumbent solution and the optimal solution, respectively.
The three ratios in the 4th, 5th and 7th column are given by following equations:

r ITRini ≡
#ITRini

#ITR

r VALini ≡
the initial incumbent val.

the optimal val.

r ITRopt ≡
#ITRopt

#ITR

#INC shown in the 9th column is the number of feasible solutions we found. In
Table 2, “–” stands for the number less than 0.1%.

Table 2. The Summary of Computational Results.

data CPU #ITRini r ITRini r VALini #ITRopt r ITRopt #ITR #INC
set (h:m) (%) (%) (%)

1 3:37 2,597 0.1 89.5 54,441 3.0 1,808,501 5

2 18:58 640,398 4.3 89.3 5,654,361 37.7 14,984,509 13

3 10:12 17,879 0.3 89.1 2,417,819 45.4 5,326,227 10

4 5:39 90,241 2.0 77.7 2,536,635 55.2 4,599,231 9

5 22:27 1,063,090 5.6 85.9 4,338,884 22.7 19,125,389 14

6 95:30 149,860 0.2 79.9 59,300,579 39.2 81,964,927 19

7 12:23 437 – 83.7 4,275,369 42.2 10,130,817 8

8 2:52 8,933 0.4 88.0 1,026,300 45.3 2,264,687 12

9 16:58 679,831 5.0 83.7 2,149,349 15.8 13,576,650 10

10 32:44 9,075 – 78.0 10,396,527 38.5 27,025,407 14

We can see that the values r ITRini are less than 6% and most of r VALinis
are greater than 80%. These imply that

– the initial incumbent solution can be found in a very short time, and
– it is close on its optima,



which support the validity of the search direction. Furthermore, most of r ITRopt

are less than 50%,

– an optimal solution also can be found at a relatively early stage.

The optimal solution can be found in reasonable CPU time, however, the check-
ing of the optimality takes much time. In order to solve in more practical time, it
might be expected to develop other efficient network representation, some extra
procedures to obtain more tight lower bounds, and effective bounding rules.

5 Conclusion

In this study, we have introduced Sports Scheduling Problems in General Form.
By generalization of SSP, the model is not case oriented. We also have proposed a
branch-and-bound algorithm for solving SSPGF, where the subproblems, being
the Longest Path Problems, are solved efficiently by use of network structure. In
our approach, by the construction of the network subproblems, we can generate
a sequence of solutions which always satisfy the condition of the number of
matches in each term and integrality constraints. Applying our algorithm, we
can solve SSPGF correctly. From computational results, we can see that the
search direction is valid, however, the checking of the optimality takes much
time.

As future works, we have to develop other network representation, some extra
procedures to obtain more tight lower bounds, and effective bounding rules.
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