Closure for {Ki 4, K14 + e}-free graphs
Zden&k Ryjacek, Plzefi

Joint work with Petr Vrana, Plzefi, and Shipeng Wang, Beijing

The Japanese Conference on Combinatorics and its Applications,
Sendai, Japan, 2018



Graph: simple finite undirected

X - a family of graphs: a graph G is X-free if G does not contain
a copy of any graph from X" as an induced subgraph.

If X ={X1,...,Xk}: also  {Xq...Xk}-free



Graph: simple finite undirected

X - a family of graphs: a graph G is X-free if G does not contain
a copy of any graph from X" as an induced subgraph.

If X ={X1,...,Xk}: also  {Xq...Xk}-free

G is claw-free: no claw C = Ky 3

as an induced subgraph <



Graph: simple finite undirected

X - a family of graphs: a graph G is X-free if G does not contain
a copy of any graph from X" as an induced subgraph.

If X ={X1,...,Xk}: also  {Xq...Xk}-free

G is claw-free: no claw C = Ky 3
as an induced subgraph <

Line graphs Claw-free graphs




Closure for hamiltonicity in claw-free graphs

A vertex x € V(G) is locally connected if its neighborhood Ng(x)
induces in G a connected graph.

A locally connected vertex with noncomplete neighborhood is
called eligible.




Closure for hamiltonicity in claw-free graphs

A vertex x € V(G) is locally connected if its neighborhood Ng(x)
induces in G a connected graph.
A locally connected vertex with noncomplete neighborhood is

called eligible.

The local completion of a graph G at x: the graph G} with
V(GY) = V(G),

E(Gr) = E(G) U{xy| x,y € N(x)}

"add to the neighborhood of x all missing edges”




Closure for hamiltonicity in claw-free graphs

A vertex x € V(G) is locally connected if its neighborhood Ng(x)
induces in G a connected graph.

A locally connected vertex with noncomplete neighborhood is
called eligible.

The local completion of a graph G at x: the graph G} with
V(G) = V(G),

E(G) = E(G) U (x| x,y € N(x)}

X

"add to the neighborhood of x all missing edges”

The closure of G: the graph cl(G) obtained from G by recursively
performing the local completion operation at eligible vertices, as
long as this is possible.



Closure for hamiltonicity in claw-free graphs

A vertex x € V(G) is locally connected if its neighborhood Ng(x)
induces in G a connected graph.

A locally connected vertex with noncomplete neighborhood is
called eligible.

The local completion of a graph G at x: the graph G} with
V(G) = V(G),

E(G) = E(G) U (x| x,y € N(x)}

X

"add to the neighborhood of x all missing edges”

The closure of G: the graph cl(G) obtained from G by recursively
performing the local completion operation at eligible vertices, as
long as this is possible.



Closure for hamiltonicity in claw-free graphs

A vertex x € V(G) is locally connected if its neighborhood Ng(x)
induces in G a connected graph.

A locally connected vertex with noncomplete neighborhood is
called eligible.

The local completion of a graph G at x: the graph G} with
V(G) = V(G),

E(G) = E(G) U (x| x,y € N(x)}

X

"add to the neighborhood of x all missing edges”

The closure of G: the graph cl(G) obtained from G by recursively
performing the local completion operation at eligible vertices, as
long as this is possible.



Closure for hamiltonicity in claw-free graphs

A vertex x € V(G) is locally connected if its neighborhood Ng(x)
induces in G a connected graph.

A locally connected vertex with noncomplete neighborhood is
called eligible.

The local completion of a graph G at x: the graph G} with
V(G) = V(G),

E(G) = E(G) U (x| x,y € N(x)}

X

"add to the neighborhood of x all missing edges”

The closure of G: the graph cl(G) obtained from G by recursively
performing the local completion operation at eligible vertices, as
long as this is possible. 2



Closure for hamiltonicity in claw-free graphs

A vertex x € V(G) is locally connected if its neighborhood Ng(x)
induces in G a connected graph.

A locally connected vertex with noncomplete neighborhood is
called eligible.

The local completion of a graph G at x: the graph G} with
V(G) = V(G),

E(G) = E(G) U (x| x,y € N(x)}

X

"add to the neighborhood of x all missing edges”

The closure of G: the graph cl(G) obtained from G by recursively
performing the local completion operation at eligible vertices, as
long as this is possible.



Closure for hamiltonicity in claw-free graphs

A vertex x € V(G) is locally connected if its neighborhood Ng(x)
induces in G a connected graph.

A locally connected vertex with noncomplete neighborhood is
called eligible.

The local completion of a graph G at x: the graph G} with
V(G) = V(G),

E(G) = E(G) U (x| x,y € N(x)}

X

"add to the neighborhood of x all missing edges”

The closure of G: the graph cl(G) obtained from G by recursively
performing the local completion operation at eligible vertices, as
long as this is possible.
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Theorem [ZR 1997]. Let G be a claw-free graph. Then
(1) cl(G) is uniquely determined,
(if) cl(G) is the line graph of a triangle-free graph,
(iii) ¢(G) = c(cG)),
)

(iv) G is hamiltonian if and only if cl(G) is hamiltonian.

The closure operation cl(G):
e turns a claw-free graph into the line graph of a triangle-free
graph,
e preserves the value of circumference,
e preserves hamiltonicity or non-hamiltonicity.
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Applications.
Conjecture 1 [Matthews, Sumner 1984]. Every 4-connected
claw-free graph is hamiltonian.

Conjecture 2 [Thomassen 1986]. Every 4-connected line graph
is hamiltonian.

Conjecture 3 [Ash, Jackson 1984]. Every cyclically
4-edge-connected cubic graph has a dominating cycle.

Conjecture 4. Every snark has a dominating cycle.

Theorem. Conjectures 1 — 4 are equivalent.

“Strongest” known, still equivalent:

Conjecture 5.
Every 4-connected claw-free graph is 1-Hamilton-connected.
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P2 P3 g4 as
T, V.
Ps Pa q2 a3

The claw K13 Ki,a Kia+e

{K1’4, K1,4 -+ e}—free
graphs

Ws claw-free We {Ki4, K14 + e}-free
(not claw-free)

Claw-free graphs
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Local completion

A vertex x € V(G) is eligible if (Ng(x)) has a noncomplete
component.

Ve (G) - the set of all eligible vertices of G

Easy to see: if G is {K14, K14 + e}-free, then (Ng(x))¢ has at
most one noncomplete component

For x € Vg(G), the local completion of G at x:

the graph G}, obtained from G by adding all missing edges to the
noncomplete component of (Ng(x))¢

(i.e., by replacing the noncomplete component of (Ng(x))g with a
clique).

The edges in E(G) \ E(G): new edges.
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A problem: G; is not necessarily {K1 4, K14 + e}-free !l

G is {K14, K14 + e}-free, x € Vg (G), but G} contains an
induced Ki4 + e.

Can we choose another eligible vertex???
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No!

G is obtained by joining each of the double-circled vertices of Gy
with all vertices of one of the cliques K, , Kp,, Ky, , Kp, of Go:

G is {K14, K14 + e}-free, but G} contains an induced Ky 4 + e
for any x € Vg (G) !
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Class F

F is the class of all graphs G satisfying the following conditions:
(1) G is Kyas-free,
(2) 9(G) > 6,
(3) if G is not (Ki 4 + e)-free, then G contains a uniquely

determined maximal clique C¢ such that, for every induced
K14 + e in G, we have

(i) {g1,92, a3} C V(K¢),
(i) [Nke({aa,a5}) \ {a1}| > 1,

(iii) [(Nicg ({94, g5}) \ {g1}) U (NG(qa) N Ng(gs) N
Ng(q1))] > 3. q4

as
::iql K174 +e
q2 a3

Clearly: F contains all {Kj 4, K1 4 + e}-free graphs.
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Although G is not {Ki 4, K14 + e}-free, we have G} € F.

Proposition. Let G € F, and let x € Vg (G) N V(Kg), or
x € Ve (G) if V(Kg) = 0. Then G € F.

Theorem. Let G € F, and let x € Vg (G) N V(Kg), or
x € VeL(G), if V(Kg) = 0. Then G} is hamiltonian if and only if
G is hamiltonian.
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graph obtained from G by recursively performing the local
completion operation at vertices x € Vg (G) N V(Kg), or
x € Ve (G) if V(Kg) =0, as long as this is possible.
(More precisely, there is a sequence of graphs G, ..., G such that

(i) G1 =G,

(II) G,'+1 = (G,); for some x; € VEL(G,') N V(IC(;), or X; € VEL(G,') if

V(Ke)=0,i=1,... k-1,

(III) VE[_(Gk) = @;

and we set cl”(G) = Gy).

Theorem. Let G € F. Then
(i) c"(G) is well-defined (i.e., uniquely determined),
(i) cI"(G) is the line graph of a triangle-free graph,
(iii) c/"(G) is hamiltonian if and only if G is hamiltonian.
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As a weaker version of Conjecture C, Bondy [1989] suggested:
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Known: Conj. A,B,C,D = Conj. E = Conj. F:

Conjecture F. Every 4-connected line graph with minimum degree
at least 5 is hamiltonian.

We state here the following conjecture.

Conjecture G. Every 4-connected {Ki1 4, K14 + e}-free graph with
minimum degree at least 6 is hamiltonian.

It seems that Conjecture G and Conjectures A — F should be
independent, as Conjecture G deals with a larger class of graphs,
but under an additional assumption on §(G). However:

Theorem. Conjecture F and Conjecture G are equivalent.
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Hamiltonicity of graphs with high connectivity

[Jackson 1989]: Every 7-connected line graph is hamiltonian.
[Zhan 1991]: Every 7-connected line graph is Hamilton-connected.

Best known:

[Kaiser, ZR, Vrdna, 2014]: Every 5-connected claw-free graph with
minimum degree at least 6 is 1-Hamilton-connected.

Immediately by the h-closure:

Theorem. Every 5-connected {Ki 4, K14 + e}-free graph with
minimum degree at least 6 is hamiltonian.
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[Matthews, Sumner 1985] Every 2-connected claw-free graph G
with §(G) > 52 is hamiltonian.
[Zhang 1988| Every k-connected (k > 2) claw-free graph G with

0k+1(G) > n — Kk is hamiltonian.

[Favaron et al. 2001] For any k > 0, a method to generate families
F1,...,Fy, of line graphs such that
- each Fj is generated by a single graph, and
- every “sufficiently large” claw-free graph G satisfying

ok(G) > n+k? — 4k +7 is either hamiltonian, or cl(G) € U, F;.
(As a corollary, §(G) > L}(‘”‘”)

Performed for k = 6 (manually), and for kK = 8, with a computer.

Easy: can be directly extended to {Ki 4, K1 4 + e}-free graphs with
minimum degree at least 6 using the h-closure operation.




We formulate this fact in the form of the following “metatheorem”.

Theorem. Let k an k be positive integers, and let f(n) be a
function and Fy a family of line graphs such that every
k-connected claw-free graph G of order n satisfying o, (G) > fx(n)
is either hamiltonian, or cl(G) € Fi. Then every k-connected
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We formulate this fact in the form of the following “metatheorem”.

Theorem. Let k an k be positive integers, and let f(n) be a
function and Fy a family of line graphs such that every
k-connected claw-free graph G of order n satisfying o, (G) > fx(n)
is either hamiltonian, or cl(G) € Fi. Then every k-connected
{K14, K14 + e}-free graph G of order n satisfying 5(G) > 6 and
o(G) > fi(n) is either hamiltonian, or cl"(G) € Fy.

Similar: sufficient conditions in terms of the neighborhood union
[NG(x1) U...U Ng(xk)| taken over all independent sets
{x1,...,x¢} C V(G) can be also directly extended to

{Ki.4, K14 + e}-free graphs with 6(G) > 6 using the h-closure.
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Examples.

1.
G1 G

G1: nonhamiltonian and {Kj 4, K14 + e}-free; however, since G is
locally connected, cl”(G) is complete, thus hamiltonian.

G: an infinite family of graphs with similar properties
(nonhamiltonian {Kj 4, K14 + e}-free with hamiltonian h-closure).

Thus: the results cannot be true without an assumption on 6(G).
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H* is obtained from H
by attaching at least

two pendant edges to
each of its black vertices,

G = L(H"),

G is obtained from G by
removing the edge Xe, Xe, -

G is nonhamiltonian, but G = cI"(G) is hamiltonian.

Since 6(G) = 4 (and, moreover, G is 3-connected), the results
cannot be true even for 6(G) > 4.



Open question.

We admit that the results could be true for §(G) > 5, but, since
our proof heavily relies on the condition 6(G) > 6, the proof of
such an improvement would require a new idea, and we leave this
as an open question.
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