Closure for $\{K_{1,4}, K_{1,4} + e\}$ -free graphs

Zdeněk Ryjáček, Plzeň

Joint work with Petr Vrána, Plzeň, and Shipeng Wang, Beijing

The Japanese Conference on Combinatorics and its Applications, Sendai, Japan, 2018

Graph: simple finite undirected

 $\mathcal X$ - a family of graphs: a graph G is $\mathcal X$ -free if G does not contain a copy of any graph from $\mathcal X$ as an induced subgraph.

If
$$\mathcal{X} = \{X_1, \dots, X_k\}$$
: also $\{X_1...X_k\}$ -free

Graph: simple finite undirected

 $\mathcal X$ - a family of graphs: a graph G is $\mathcal X$ -free if G does not contain a copy of any graph from $\mathcal X$ as an induced subgraph.

If
$$\mathcal{X} = \{X_1, \dots, X_k\}$$
: also $\{X_1...X_k\}$ -free

G is claw-free: no claw $C = K_{1,3}$ as an induced subgraph

Graph: simple finite undirected

 $\mathcal X$ - a family of graphs: a graph G is $\mathcal X$ -free if G does not contain a copy of any graph from $\mathcal X$ as an induced subgraph.

If
$$\mathcal{X} = \{X_1, \dots, X_k\}$$
: also $\{X_1...X_k\}$ -free

G is claw-free: no claw $C = K_{1,3}$ as an induced subgraph

Line graphs

Claw-free graphs

A vertex $x \in V(G)$ is *locally connected* if its neighborhood $N_G(x)$ induces in G a connected graph.

A locally connected vertex with noncomplete neighborhood is called *eligible*.

A vertex $x \in V(G)$ is *locally connected* if its neighborhood $N_G(x)$ induces in G a connected graph.

A locally connected vertex with noncomplete neighborhood is called *eligible*.

The local completion of a graph G at x: the graph G_x^* with $V(G_x^*) = V(G)$, $E(G_x^*) = E(G) \cup \{xy | x, y \in N(x)\}$ "add to the neighborhood of x all missing edges"

A vertex $x \in V(G)$ is *locally connected* if its neighborhood $N_G(x)$ induces in G a connected graph.

A locally connected vertex with noncomplete neighborhood is called *eligible*.

The local completion of a graph G at x: the graph G_x^* with $V(G_x^*) = V(G)$, $E(G_x^*) = E(G) \cup \{xy | x, y \in N(x)\}$ "add to the neighborhood of x all missing edges"

A vertex $x \in V(G)$ is *locally connected* if its neighborhood $N_G(x)$ induces in G a connected graph.

A locally connected vertex with noncomplete neighborhood is called *eligible*.

The local completion of a graph G at x: the graph G_x^* with $V(G_x^*) = V(G)$, $E(G_x^*) = E(G) \cup \{xy | x, y \in N(x)\}$ "add to the neighborhood of x all missing edges"

A vertex $x \in V(G)$ is *locally connected* if its neighborhood $N_G(x)$ induces in G a connected graph.

A locally connected vertex with noncomplete neighborhood is called *eligible*.

The local completion of a graph G at x: the graph G_x^* with $V(G_x^*) = V(G)$, $E(G_x^*) = E(G) \cup \{xy | x, y \in N(x)\}$ "add to the neighborhood of x all missing edges"

A vertex $x \in V(G)$ is *locally connected* if its neighborhood $N_G(x)$ induces in G a connected graph.

A locally connected vertex with noncomplete neighborhood is called *eligible*.

The local completion of a graph G at x: the graph G_x^* with $V(G_x^*) = V(G)$, $E(G_x^*) = E(G) \cup \{xy \mid x, y \in N(x)\}$

"add to the neighborhood of x all missing edges"

A vertex $x \in V(G)$ is *locally connected* if its neighborhood $N_G(x)$ induces in G a connected graph.

A locally connected vertex with noncomplete neighborhood is called *eligible*.

The local completion of a graph G at x: the graph G_x^* with $V(G_x^*) = V(G)$, $E(G_x^*) = E(G) \cup \{xy | x, y \in N(x)\}$

"add to the neighborhood of x all missing edges"

A vertex $x \in V(G)$ is *locally connected* if its neighborhood $N_G(x)$ induces in G a connected graph.

A locally connected vertex with noncomplete neighborhood is called *eligible*.

The local completion of a graph G at x: the graph G_x^* with $V(G_x^*) = V(G)$, $E(G_x^*) = E(G) \cup \{xy | x, y \in N(x)\}$

"add to the neighborhood of x all missing edges"

The closure of G: the graph cl(G) obtained from G by recursively performing the local completion operation at eligible vertices, as long as this is possible.

cl(G) is complete

Theorem [ZR 1997]. Let G be a claw-free graph. Then

- (i) cl(G) is uniquely determined,
- (ii) cl(G) is the line graph of a triangle-free graph,
- (iii) c(G) = c(cl(G)),
- (iv) G is hamiltonian if and only if cl(G) is hamiltonian.

Theorem [ZR 1997]. Let G be a claw-free graph. Then

- (i) cl(G) is uniquely determined,
- (ii) cl(G) is the line graph of a triangle-free graph,
- (iii) c(G) = c(cl(G)),
- (iv) G is hamiltonian if and only if cl(G) is hamiltonian.

The closure operation cl(G):

- turns a claw-free graph into the line graph of a triangle-free graph,
- preserves the value of circumference,
- preserves hamiltonicity or non-hamiltonicity.

Conjecture 1 [Matthews, Sumner 1984]. Every 4-connected claw-free graph is hamiltonian.

Conjecture 2 [Thomassen 1986]. Every 4-connected line graph is hamiltonian.

Conjecture 1 [Matthews, Sumner 1984]. Every 4-connected claw-free graph is hamiltonian.

Conjecture 2 [Thomassen 1986]. Every 4-connected line graph is hamiltonian.

Conjecture 3 [Ash, Jackson 1984]. Every cyclically 4-edge-connected cubic graph has a dominating cycle.

Conjecture 1 [Matthews, Sumner 1984]. Every 4-connected claw-free graph is hamiltonian.

Conjecture 2 [Thomassen 1986]. Every 4-connected line graph is hamiltonian.

Conjecture 3 [Ash, Jackson 1984]. Every cyclically 4-edge-connected cubic graph has a dominating cycle.

Conjecture 4. Every snark has a dominating cycle.

Conjecture 1 [Matthews, Sumner 1984]. Every 4-connected claw-free graph is hamiltonian.

Conjecture 2 [Thomassen 1986]. Every 4-connected line graph is hamiltonian.

Conjecture 3 [Ash, Jackson 1984]. Every cyclically 4-edge-connected cubic graph has a dominating cycle.

Conjecture 4. Every snark has a dominating cycle.

Theorem. Conjectures 1 – 4 are equivalent.

Conjecture 1 [Matthews, Sumner 1984]. Every 4-connected claw-free graph is hamiltonian.

Conjecture 2 [Thomassen 1986]. Every 4-connected line graph is hamiltonian.

Conjecture 3 [Ash, Jackson 1984]. Every cyclically 4-edge-connected cubic graph has a dominating cycle.

Conjecture 4. Every snark has a dominating cycle.

Theorem. Conjectures 1 – 4 are equivalent.

"Strongest" known, still equivalent:

Conjecture 5.

Every 4-connected claw-free graph is 1-Hamilton-connected.

Local completion

A vertex $x \in V(G)$ is *eligible* if $\langle N_G(x) \rangle_G$ has a noncomplete component.

 $V_{EL}(G)$ - the set of all eligible vertices of G

Local completion

A vertex $x \in V(G)$ is *eligible* if $\langle N_G(x) \rangle_G$ has a noncomplete component.

 $V_{EL}(G)$ - the set of all eligible vertices of G

Easy to see: if G is $\{K_{1,4}, K_{1,4} + e\}$ -free, then $\langle N_G(x)\rangle_G$ has at most one noncomplete component

Local completion

A vertex $x \in V(G)$ is *eligible* if $\langle N_G(x) \rangle_G$ has a noncomplete component.

 $V_{EL}(G)$ - the set of all eligible vertices of G

Easy to see: if G is $\{K_{1,4}, K_{1,4} + e\}$ -free, then $\langle N_G(x) \rangle_G$ has at most one noncomplete component

For $x \in V_{EL}(G)$, the local completion of G at x: the graph G_x^* , obtained from G by adding all missing edges to the noncomplete component of $\langle N_G(x) \rangle_G$ (i.e., by replacing the noncomplete component of $\langle N_G(x) \rangle_G$ with a clique).

The edges in $E(G_x^*) \setminus E(G)$: new edges.

G is $\{K_{1,4}, K_{1,4} + e\}$ -free, $x \in V_{EL}(G)$, but G_x^* contains an induced $K_{1,4} + e$.

G is $\{K_{1,4}, K_{1,4} + e\}$ -free, $x \in V_{EL}(G)$, but G_x^* contains an induced $K_{1,4} + e$.

Can we choose another eligible vertex???

G is obtained by joining each of the double-circled vertices of G_1 with all vertices of one of the cliques K_{p_1} , K_{p_2} , K_{p_3} , K_{p_4} of G_2 :

G is obtained by joining each of the double-circled vertices of G_1 with all vertices of one of the cliques K_{p_1} , K_{p_2} , K_{p_3} , K_{p_4} of G_2 :

G is obtained by joining each of the double-circled vertices of G_1 with all vertices of one of the cliques K_{p_1} , K_{p_2} , K_{p_3} , K_{p_4} of G_2 :

G is obtained by joining each of the double-circled vertices of G_1 with all vertices of one of the cliques K_{p_1} , K_{p_2} , K_{p_3} , K_{p_4} of G_2 :

G is $\{K_{1,4}, K_{1,4} + e\}$ -free, but G_x^* contains an induced $K_{1,4} + e$ for any $x \in V_{EL}(G)$!!!

 \mathcal{F} is the class of all graphs G satisfying the following conditions: (1) G is $K_{1,4}$ -free,

- (1) G is $K_{1,4}$ -free,
- (2) $\delta(G) \geq 6$,

- (1) G is $K_{1,4}$ -free,
- (2) $\delta(G) \geq 6$,
- (3) if G is not $(K_{1,4}+e)$ -free, then G contains a uniquely determined maximal clique \mathcal{K}_G such that, for every induced $K_{1,4}+e$ in G, we have

- (1) G is $K_{1,4}$ -free,
- (2) $\delta(G) \geq 6$,
- (3) if G is not $(K_{1,4}+e)$ -free, then G contains a uniquely determined maximal clique \mathcal{K}_G such that, for every induced $K_{1,4}+e$ in G, we have
 - (i) $\{q_1, q_2, q_3\} \subset V(\mathcal{K}_G)$,

- (1) G is $K_{1,4}$ -free,
- (2) $\delta(G) \geq 6$,
- (3) if G is not $(K_{1,4}+e)$ -free, then G contains a uniquely determined maximal clique \mathcal{K}_G such that, for every induced $K_{1,4}+e$ in G, we have
 - (i) $\{q_1, q_2, q_3\} \subset V(\mathcal{K}_G)$,
 - (ii) $|N_{\mathcal{K}_G}(\{q_4,q_5\})\setminus\{q_1\}|\geq 1$,

- (1) G is $K_{1,4}$ -free,
- (2) $\delta(G) \geq 6$,
- (3) if G is not $(K_{1,4} + e)$ -free, then G contains a uniquely determined maximal clique \mathcal{K}_G such that, for every induced $K_{1,4} + e$ in G, we have
 - (i) $\{q_1, q_2, q_3\} \subset V(\mathcal{K}_G)$,
 - (ii) $|N_{\mathcal{K}_G}(\{q_4,q_5\})\setminus\{q_1\}|\geq 1$,
 - (iii) $|(N_{\mathcal{K}_G}(\{q_4, q_5\}) \setminus \{q_1\}) \cup (N_G(q_4) \cap N_G(q_5) \cap N_G(q_1))| \ge 3.$ $q_4 \bullet q_5$

 $\mathcal F$ is the class of all graphs G satisfying the following conditions:

- (1) G is $K_{1,4}$ -free,
- (2) $\delta(G) \geq 6$,
- (3) if G is not $(K_{1,4} + e)$ -free, then G contains a uniquely determined maximal clique \mathcal{K}_G such that, for every induced $K_{1,4} + e$ in G, we have
 - (i) $\{q_1, q_2, q_3\} \subset V(\mathcal{K}_G)$,
 - (ii) $|N_{\mathcal{K}_G}(\{q_4, q_5\}) \setminus \{q_1\}| \geq 1$,
 - (iii) $|(N_{\mathcal{K}_G}(\{q_4, q_5\}) \setminus \{q_1\}) \cup (N_G(q_4) \cap N_G(q_5) \cap N_G(q_1))| \ge 3.$ $q_4 \bullet q_5$

Clearly: \mathcal{F} contains all $\{K_{1,4}, K_{1,4} + e\}$ -free graphs.

Although G_{x}^{*} is not $\{K_{1,4},K_{1,4}+e\}$ -free, we have $G_{x}^{*}\in\mathcal{F}.$

Although G_x^* is not $\{K_{1,4}, K_{1,4} + e\}$ -free, we have $G_x^* \in \mathcal{F}$.

Proposition. Let $G \in \mathcal{F}$, and let $x \in V_{EL}(G) \cap V(\mathcal{K}_G)$, or $x \in V_{EL}(G)$ if $V(\mathcal{K}_G) = \emptyset$. Then $G_x^* \in \mathcal{F}$.

Although G_x^* is not $\{K_{1,4}, K_{1,4} + e\}$ -free, we have $G_x^* \in \mathcal{F}$.

Proposition. Let $G \in \mathcal{F}$, and let $x \in V_{EL}(G) \cap V(\mathcal{K}_G)$, or $x \in V_{EL}(G)$ if $V(\mathcal{K}_G) = \emptyset$. Then $G_x^* \in \mathcal{F}$.

Theorem. Let $G \in \mathcal{F}$, and let $x \in V_{EL}(G) \cap V(\mathcal{K}_G)$, or $x \in V_{EL}(G)$, if $V(\mathcal{K}_G) = \emptyset$. Then G_x^* is hamiltonian if and only if G is hamiltonian.

Closure. Let $G \in \mathcal{F}$. The *h-closure of* G, denoted $\operatorname{cl}^h(G)$, is the graph obtained from G by recursively performing the local completion operation at vertices $x \in V_{EL}(G) \cap V(\mathcal{K}_G)$, or $x \in V_{EL}(G)$ if $V(\mathcal{K}_G) = \emptyset$, as long as this is possible.

(More precisely, there is a sequence of graphs G_1, \ldots, G_k such that

- (i) $G_1 = G$,
- (ii) $G_{i+1} = (G_i)_{x_i}^*$ for some $x_i \in V_{EL}(G_i) \cap V(\mathcal{K}_G)$, or $x_i \in V_{EL}(G_i)$ if $V(\mathcal{K}_G) = \emptyset$, $i = 1, \dots, k-1$,
- (iii) $V_{EL}(G_k) = \emptyset$;

and we set $\operatorname{cl}^h(G) = G_k$.

Closure. Let $G \in \mathcal{F}$. The *h-closure of* G, denoted $\operatorname{cl}^h(G)$, is the graph obtained from G by recursively performing the local completion operation at vertices $x \in V_{EL}(G) \cap V(\mathcal{K}_G)$, or $x \in V_{EL}(G)$ if $V(\mathcal{K}_G) = \emptyset$, as long as this is possible.

- (More precisely, there is a sequence of graphs G_1, \ldots, G_k such that
 - $(i) G_1 = G,$
 - $\begin{array}{l} (ii) \ G_{i+1} = (G_i)_{x_i}^* \ \text{for some} \ x_i \in V_{EL}(G_i) \cap V(\mathcal{K}_G), \ \text{or} \ x_i \in V_{EL}(G_i) \ \text{if} \\ V(\mathcal{K}_G) = \emptyset, \ i = 1, \ldots, k-1, \end{array}$
 - (iii) $V_{EL}(G_k) = \emptyset$;

and we set $\operatorname{cl}^h(G) = G_k$).

Theorem. Let $G \in \mathcal{F}$. Then

- (i) $cl^h(G)$ is well-defined (i.e., uniquely determined),
- (ii) $cl^h(G)$ is the line graph of a triangle-free graph,
- (iii) $cl^h(G)$ is hamiltonian if and only if G is hamiltonian.

Applications of the closure.

Applications of the closure.

Thomassen's, Matthews-Sumner's and Bondy's conjectures Recall equivalent conjectures:

Conjecture A. Every 4-connected line graph is hamiltonian.

Conjecture B. Every 4-connected claw-free graph is hamiltonian.

Conjecture C. Every cyclically 4-edge-connected cubic graph has a dominating cycle.

Conjecture D. Every snark has a dominating cycle.

Applications of the closure.

Thomassen's, Matthews-Sumner's and Bondy's conjectures Recall equivalent conjectures:

Conjecture A. Every 4-connected line graph is hamiltonian.

Conjecture B. Every 4-connected claw-free graph is hamiltonian.

Conjecture C. Every cyclically 4-edge-connected cubic graph has a dominating cycle.

Conjecture D. Every snark has a dominating cycle.

As a weaker version of Conjecture C, Bondy [1989] suggested:

Conjecture E. There is a constant c_0 with $0 < c_0 \le 1$ such that every cyclically 4-edge-connected cubic graph H of order n has a cycle of length at least $c_0 n$.

Known: Conj. A,B,C,D \Rightarrow Conj. E \Rightarrow Conj. F:

Conjecture F. Every 4-connected line graph with minimum degree at least 5 is hamiltonian.

Conjecture F. Every 4-connected line graph with minimum degree at least 5 is hamiltonian.

Conjecture F. Every 4-connected line graph with minimum degree at least 5 is hamiltonian.

We state here the following conjecture.

Conjecture G. Every 4-connected $\{K_{1,4}, K_{1,4} + e\}$ -free graph with minimum degree at least 6 is hamiltonian.

Conjecture F. Every 4-connected line graph with minimum degree at least 5 is hamiltonian.

We state here the following conjecture.

Conjecture G. Every 4-connected $\{K_{1,4}, K_{1,4} + e\}$ -free graph with minimum degree at least 6 is hamiltonian.

It seems that Conjecture G and Conjectures A - F should be independent, as Conjecture G deals with a larger class of graphs, but under an additional assumption on $\delta(G)$.

Conjecture F. Every 4-connected line graph with minimum degree at least 5 is hamiltonian.

We state here the following conjecture.

Conjecture G. Every 4-connected $\{K_{1,4}, K_{1,4} + e\}$ -free graph with minimum degree at least 6 is hamiltonian.

It seems that Conjecture G and Conjectures A – F should be independent, as Conjecture G deals with a larger class of graphs, but under an additional assumption on $\delta(G)$. However:

Theorem. Conjecture F and Conjecture G are equivalent.

Hamiltonicity of graphs with high connectivity

[Jackson 1989]: Every 7-connected line graph is hamiltonian.

[Zhan 1991]: Every 7-connected line graph is Hamilton-connected.

Hamiltonicity of graphs with high connectivity

[Jackson 1989]: Every 7-connected line graph is hamiltonian.

[Zhan 1991]: Every 7-connected line graph is Hamilton-connected.

Best known:

[Kaiser, ZR, Vrána, 2014]: Every 5-connected claw-free graph with minimum degree at least 6 is 1-Hamilton-connected.

Hamiltonicity of graphs with high connectivity

[Jackson 1989]: Every 7-connected line graph is hamiltonian.

[Zhan 1991]: Every 7-connected line graph is Hamilton-connected.

Best known:

[Kaiser, ZR, Vrána, 2014]: Every 5-connected claw-free graph with minimum degree at least 6 is 1-Hamilton-connected.

Immediately by the h-closure:

Theorem. Every 5-connected $\{K_{1,4}, K_{1,4} + e\}$ -free graph with minimum degree at least 6 is hamiltonian.

Degree and neighborhood conditions for hamiltonicity

[Matthews, Sumner 1985] Every 2-connected claw-free graph G with $\delta(G) \geq \frac{n-2}{3}$ is hamiltonian.

[Zhang 1988] Every κ -connected ($\kappa \geq 2$) claw-free graph G with $\sigma_{\kappa+1}(G) \geq n - \kappa$ is hamiltonian.

Degree and neighborhood conditions for hamiltonicity

[Matthews, Sumner 1985] Every 2-connected claw-free graph G with $\delta(G) \geq \frac{n-2}{3}$ is hamiltonian.

[Zhang 1988] Every κ -connected ($\kappa \geq 2$) claw-free graph G with $\sigma_{\kappa+1}(G) \geq n - \kappa$ is hamiltonian.

[Favaron et al. 2001] For any k > 0, a method to generate families $\mathcal{F}_1, \ldots, \mathcal{F}_{r_k}$ of line graphs such that

- each \mathcal{F}_i is generated by a single graph, and
- every "sufficiently large" claw-free graph G satisfying $\sigma_k(G) \geq n+k^2-4k+7$ is either hamiltonian, or $\operatorname{cl}(G) \in \cup_{i=1}^{r_k} \mathcal{F}_i$. (As a corollary, $\delta(G) \geq \frac{n+k^2-4k+7}{k}$)

Performed for k = 6 (manually), and for k = 8, with a computer.

Degree and neighborhood conditions for hamiltonicity

[Matthews, Sumner 1985] Every 2-connected claw-free graph G with $\delta(G) \geq \frac{n-2}{3}$ is hamiltonian.

[Zhang 1988] Every κ -connected ($\kappa \geq 2$) claw-free graph G with $\sigma_{\kappa+1}(G) \geq n - \kappa$ is hamiltonian.

[Favaron et al. 2001] For any k > 0, a method to generate families $\mathcal{F}_1, \ldots, \mathcal{F}_{r_k}$ of line graphs such that

- each \mathcal{F}_i is generated by a single graph, and
- every "sufficiently large" claw-free graph G satisfying $\sigma_k(G) \geq n + k^2 4k + 7$ is either hamiltonian, or $\operatorname{cl}(G) \in \cup_{i=1}^{r_k} \mathcal{F}_i$. (As a corollary, $\delta(G) \geq \frac{n + k^2 4k + 7}{k}$)

Performed for k = 6 (manually), and for k = 8, with a computer.

Easy: can be directly extended to $\{K_{1,4}, K_{1,4} + e\}$ -free graphs with minimum degree at least 6 using the *h*-closure operation.

We formulate this fact in the form of the following "metatheorem".

Theorem. Let k an κ be positive integers, and let $f_k(n)$ be a function and \mathcal{F}_k a family of line graphs such that every κ -connected claw-free graph G of order n satisfying $\sigma_k(G) \geq f_k(n)$ is either hamiltonian, or $cl(G) \in \mathcal{F}_k$. Then every κ -connected $\{K_{1,4}, K_{1,4} + e\}$ -free graph G of order n satisfying $\delta(G) \geq 6$ and $\sigma_k(G) \geq f_k(n)$ is either hamiltonian, or $cl^h(G) \in \mathcal{F}_k$.

We formulate this fact in the form of the following "metatheorem".

Theorem. Let k an κ be positive integers, and let $f_k(n)$ be a function and \mathcal{F}_k a family of line graphs such that every κ -connected claw-free graph G of order n satisfying $\sigma_k(G) \geq f_k(n)$ is either hamiltonian, or $cl(G) \in \mathcal{F}_k$. Then every κ -connected $\{K_{1,4}, K_{1,4} + e\}$ -free graph G of order n satisfying $\delta(G) \geq 6$ and $\sigma_k(G) \geq f_k(n)$ is either hamiltonian, or $cl^h(G) \in \mathcal{F}_k$.

Similar: sufficient conditions in terms of the neighborhood union $|N_G(x_1) \cup \ldots \cup N_G(x_k)|$ taken over all independent sets $\{x_1, \ldots, x_k\} \subset V(G)$ can be also directly extended to $\{K_{1,4}, K_{1,4} + e\}$ -free graphs with $\delta(G) \geq 6$ using the h-closure.

1.

1.

 G_1 : nonhamiltonian and $\{K_{1,4}, K_{1,4} + e\}$ -free; however, since G is locally connected, $\operatorname{cl}^h(G)$ is complete, thus hamiltonian.

1.

 G_1 : nonhamiltonian and $\{K_{1,4}, K_{1,4} + e\}$ -free; however, since G is locally connected, $cl^h(G)$ is complete, thus hamiltonian.

 G_2 : an infinite family of graphs with similar properties (nonhamiltonian $\{K_{1,4}, K_{1,4} + e\}$ -free with hamiltonian h-closure).

1.

 G_1 : nonhamiltonian and $\{K_{1,4}, K_{1,4} + e\}$ -free; however, since G is locally connected, $cl^h(G)$ is complete, thus hamiltonian.

 G_2 : an infinite family of graphs with similar properties (nonhamiltonian $\{K_{1,4}, K_{1,4} + e\}$ -free with hamiltonian h-closure).

Thus: the results cannot be true without an assumption on $\delta(G)$.

2. Н

$$\overline{G} = L(H^+),$$

$$\overline{G} = L(H^+),$$

G is obtained from \overline{G} by removing the edge $x_{e_3}x_{e_4}$.

$$\overline{G} = L(H^+),$$

G is obtained from \overline{G} by removing the edge $x_{e_3}x_{e_4}$.

G is nonhamiltonian, but $\overline{G} = cl^h(G)$ is hamiltonian.

$$\overline{G} = L(H^+),$$

G is obtained from \overline{G} by removing the edge $x_{e_3}x_{e_4}$.

G is nonhamiltonian, but $\overline{G} = cl^h(G)$ is hamiltonian.

Since $\delta(G) = 4$ (and, moreover, G is 3-connected), the results cannot be true even for $\delta(G) \geq 4$.

Open question.

We admit that the results could be true for $\delta(G) \geq 5$, but, since our proof heavily relies on the condition $\delta(G) \geq 6$, the proof of such an improvement would require a new idea, and we leave this as an open question.

Thank you