On mutually 3-orthogonal diagonal cubes

Xiao-Nan Lu (Tokyo University of Science, Japan)

Joint work with Tomoko Adachi (Toho University, Japan)

JCCA 2018, Sendai
May 24, 2018.

Outline

Latin squares (cubes) \& magic squares (cubes)

Mutually 3-orthogonal diagonal cubes of type 2

Latin squares and orthogonality

A Latin square of order n is an $n \times n$ array in which n distinct symbols are arranged so that each symbol occurs once in each row and column.

$L_{1}=$| A | K | Q | J |
| :---: | :---: | :---: | :---: |
| K | A | J | Q |
| Q | J | A | K |
| J | Q | K | A |

When L_{1} is superimposed on L_{2}, each of the 16 ordered pairs appears exactly once. L_{1} and L_{2} are orthogonal.

Diagonal Latin squares

If there are n distinct symbols on the two main diagonals of L, then L is called a diagonal Latin square.

- n : odd and $3 \nmid n$.
- a, b : positive integers s.t. $a, b, a-b, a+b$ are coprime to n.
- The following is a diagonal Latin square over $\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}$.

0	a	$2 a$	\cdots	$(n-1) a$
b	$a+b$	$2 a+b$	\cdots	$(n-1) a+b$
$2 b$	$a+2 b$	$2 a+2 b$	\cdots	$(n-1) a+2 b$
\vdots	\vdots	\vdots	\ddots	\vdots
$(n-1) b$	$a+(n-1) b$	$2 a+(n-1) b$	\cdots	$(n-1) a+(n-1) b$

- L and L^{\top} are orthogonal.
- A pair of orthogonal diagonal Latin squares of order n exists for any positive integer n with the exception of $n \in\{2,3,6\}$. (Brown-Cherry-Most-Most-Parker-Wallis, 1992)

Magic squares

A magic square of order n is an arrangement of n^{2} integers from $\left\{1,2, \ldots, n^{2}\right\}$ into an $n \times n$ array with the property that the sums of each row, each column, and each of the two main diagonals are the same.

2	9	4
7	5	3
6	1	8

A magic square of order 3

- Magic constant:

$$
M_{2}(n)=\frac{1}{n} \sum_{\ell=1}^{n^{2}} \ell=\frac{1}{2} n\left(n^{2}+1\right)
$$

Magic squares \rightarrow Squares

- Reduce 1 from each cell in a magic square of order n,
- Rewrite all the integers in base n representation.

2	9	4				
7	5	3				
6	1	8	$\quad \xrightarrow{-1} \quad$	1	8	3
:---	:---	:---				
6	4	2				
5	0	7	$\xrightarrow{\text { base } 3} \quad$	01	22	10
:---:	:---:	:---:				
20	11	02				
12	00	21	$=: L$			

- Split it into two squares on $\{0,1, \ldots, n-1\}$.

$$
\begin{gathered}
L=L_{1} \boxplus L_{2} \\
\left.L_{1}=\begin{array}{|l|l|l|l|l|}
\hline 0 & 2 & 1 \\
\hline 2 & 1 & 0 \\
\hline 1 & 0 & 2 \\
\hline
\end{array} \quad L_{2}=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 0 & 1 \\
\hline 2 & 2 \\
\hline 2 & 0
\end{array} \right\rvert\, \\
\hline
\end{gathered}
$$

Magic squares \leftarrow (Diagonal) MOLS

- A pair of orthogonal Latin squares on $\{0,1, \ldots, n-1\}$ whose trace and backtrace $=\frac{1}{2} n(n-1) \quad \Longrightarrow \quad$ A magic square of order n.
- A pair of orthogonal diagonal Latin squares of order $n \Longrightarrow \mathrm{~A}$ magic square of order n.

$$
L_{1} \boxplus L_{2}=L \equiv n \cdot L_{1}+L_{2}
$$

Remark

- There does not exist orthogonal Latin squares of order 2 and 6 .
- Magic squares of order 6 do exist.

Magic cubes

A magic cube is an arrangement of $\left\{1,2, \ldots, n^{3}\right\}$ into an $n \times n \times n$ array
s.t. the sums along every row and every diagonal are the same.

$$
M_{3}(n)=\frac{1}{n^{2}} \sum_{\ell=1}^{n^{3}} \ell=\frac{1}{2} n\left(n^{3}+1\right)
$$

8	15	19	12	25	5	22	2	18
24	1	17	7	14	21	11	27	4
10	26	6	23	3	16	9	13	20
($k=1$)			($k=2$)			$=3)$		

Magic cubes \rightarrow Cubes

Magic cubes \leftarrow Cubes

021	112	200
212	000	121
100	221	012

$$
(k=1)
$$

102	220	011
020	111	202
211	002	120

($k=2$)

210	001	122
101	222	010
022	110	201

($k=3$)

A construction of orthogonal cubes (Trenkler, 2005)

- n : odd positive integer
- $L^{(1)}=\left(\ell_{i, j, k}^{(1)}\right)_{1 \leq i, j, k \leq n}$ with $\ell_{i, j, k}^{(1)}=k-i+j-1(\bmod n)$,
- $L^{(2)}=\left(\ell_{i, j, k}^{(2)}\right)_{1 \leq i, j, k \leq n}$ with $\ell_{i, j, k}^{(2)}=k-i-j(\bmod n)$,
- $L^{(3)}=\left(\ell_{i, j, k}^{(3)}\right)_{1 \leq i, j, k \leq n}$ with $\ell_{i, j, k}^{(3)}=k+i+j-2(\bmod n)$.
- $L^{(1)}, L^{(2)}$, and $L^{(3)}$ are mutually orthogonal.

Outline

Latin squares (cubes) \& magic squares (cubes)

Mutually 3-orthogonal diagonal cubes of type 2

Generalization of the Latin-ness

- d : dimension $d \geq 2$
- t : type $0 \leq t \leq d-1$
- n : order (also \# of symbols)

Definition (d-cubes of type t)

A d-dimensional hypercube (simply, d-cube) of order n and type t is an $n \times n \times \cdots \times n$ (d times) array on n symbols, s.t.

- each symbol occurs exactly n^{d-t-1} times in every $(d-t)$-dim. subarray obtained by fixing t coordinates of the array.

Remark

- If dim. $d=2$ and type $t=1 \quad \Longrightarrow \quad$ Latin squares.
- "Latin d-cube" is usually used to refer to a d-cube of type 1 .
- I will focus on 3 -cubes (simply cubes) of type $2(=d-1)$.

Generalization of the orthogonality

- d : dimension $d \geq 2$
- n : order (also \# of symbols)
- Two d-cubes are orthogonal if when superimposed, each of the n^{2} ordered pairs of symbols appears exactly n^{d-2} times.
- A set of $d d$-cubes is dimensionally orthogonal (d-orthogonal), if when superimposed, each of the n^{d} ordered d-tuples appears exactly once.
- A set of $j(j \geq d) d$-cubes is mutually d-orthogonal if any choice of d of them preserves the d-orthogonality.

Generalization of the orthogonality

- d: dimension $d \geq 2$
- n : order (also \# of symbols)
- Two d-cubes are orthogonal if when superimposed, each of the n^{2} ordered pairs of symbols appears exactly n^{d-2} times.
- A set of $d d$-cubes is dimensionally orthogonal (d-orthogonal), if when superimposed, each of the n^{d} ordered d-tuples appears exactly once.
- A set of $j(j \geq d) d$-cubes is mutually d-orthogonal if any choice of d of them preserves the d-orthogonality.

Generalization of the orthogonality

- d: dimension $d \geq 2$
- n : order (also \# of symbols)
- Two d-cubes are orthogonal if when superimposed, each of the n^{2} ordered pairs of symbols appears exactly n^{d-2} times.
- A set of $d d$-cubes is dimensionally orthogonal (d-orthogonal), if when superimposed, each of the n^{d} ordered d-tuples appears exactly once.
- A set of $j(j \geq d) d$-cubes is mutually d-orthogonal if any choice of d of them preserves the d-orthogonality.

d-orth. d-cubes

- $N^{(d)}(n)$: max. \# of d-orth. d-cubes of type $d-1$ and order n.

Upper bound (Ethier-Mullen, 2012)

For $d \geq 2$,

$$
N^{(d)}(n) \leq n+d-1
$$

Construction and lower bound (Arkin-Straus, 1974)

A set of $d d$-orth. d-cubes of type $d-1 \Longleftarrow$ A set of $d-1$, ($d-1$)-orth. $(d-1)$-cubes of type $d-2$.

$$
\begin{aligned}
N^{(2)}(n) \geq 2 & \Longrightarrow N^{(3)}(n) \geq 3 \Longrightarrow \cdots \Longrightarrow N^{(d)}(n) \geq d \\
& \Longrightarrow N^{(3)}(n) \geq 4
\end{aligned}
$$

d-orth. diagonal d-cubes

A transversal of a d-cube is a set of n entries s.t. no two entries share the same row or symbol.
A d-cube is diagonal if all 2^{d-1} diagonals are transversals.

- $D^{(d)}(n)$: max. \# of d-orth. diagonal d-cubes of type $d-1$.

Basic facts

- $D^{(d)}(n) \leq N^{(d)}(n)$ (= max. \# without the diag. restriction)
- $D^{(2)}(n) \geq 2$ for $n \notin\{2,3,6\}$ (existence of diag. MOLS)

Upper bound for diag. Latin squares (Gergely, 1974)

If n is even, $D^{(2)}(n) \leq n-2$, whereas if n is odd, $D^{(2)}(n) \leq n-3$.
If n is a prime power, the equality holds.

A fundamental construction using finite fields

Fundamental construction of a d-cube over \mathbb{F}_{q}

Let $f\left(x_{1}, x_{2}, \ldots, x_{d}\right)=a_{0} x_{1}+a_{1} x_{2}+\cdots+a_{d-1} x_{d}$ be a polynomial over \mathbb{F}_{q}. If $\left(a_{0}, a_{1}, \ldots, a_{d-1}\right) \neq(0,0, \ldots, 0)$, then $f\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ gives a d-cube of order q. Moreover, if $a_{i} \neq 0$ for any $0 \leq i \leq d-1$, then the d-cube is of type $d-1$.

Fundamental construction of a set of d-orth. d-cube over \mathbb{F}_{q} (Ethier-Mullen, 2012)

Define a set of t linear polynomials over \mathbb{F}_{q} :

$$
f_{i}\left(x_{1}, x_{2}, \ldots, x_{d}\right)=a_{i, 0} x_{1}+a_{i, 1} x_{2}+\cdots+a_{i, d-1} x_{d}, \quad(1 \leq i \leq t)
$$

The d-cubes generated by $f_{1}, f_{2}, \ldots, f_{t}$ form a set of d-orthogonal d-cubes of order q iff any d rows of the matrix $M=\left(a_{i, j}\right)_{t \times d}$ are linearly independent.

3-orth. diagonal cubes

Example $\left(D^{(3)}(4) \geq 4\right.$, by Arkin-Hoggatt-Straus, 1976)

Let $\mathbb{F}_{4}:=\mathbb{F}_{2}[\beta] /\left(\beta^{2}+\beta+1\right)$ and $h(\alpha)=1+\beta \alpha+\alpha^{2} \in \mathbb{F}_{4}[\alpha]$. Here, $h(\alpha)$ is irreducible over \mathbb{F}_{4}. Now we take $\left(y_{1}, y_{2}, y_{3}\right)=\left(1, \beta, \beta^{2}\right)$. Then, $h_{i}(\alpha)=\beta^{i-1}+\beta^{2-i} \alpha+\alpha^{2}$ for $i \in\{1,2,3\}$. We have

$$
\left(\begin{array}{l}
f_{0}\left(x_{1}, x_{2}, x_{3}\right) \\
f_{1}\left(x_{1}, x_{2}, x_{3}\right) \\
f_{\beta}\left(x_{1}, x_{2}, x_{3}\right) \\
f_{\beta}\left(x_{1}, x_{2}, x_{3}\right) \\
f_{\infty}\left(x_{1}, x_{2}, x_{3}\right) \\
f^{\prime}\left(x_{1}, x_{2}, x_{3}\right)
\end{array}\right)=\left(\begin{array}{ccc}
1 & \beta & \beta^{2} \\
\beta & \beta & 1 \\
1 & \beta^{2} & 1 \\
\beta & \beta^{2} & \beta^{2} \\
1 & 1 & 1 \\
1 & \beta^{2} & \beta
\end{array}\right) \cdot\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

where $f_{0}(1,1,1)=f^{\prime}(1,1,1)=0$ and hence the corresponding cubes are not diagonal. While, the remaining four cubes are diagonal.
Moreover, $\operatorname{rank}_{\mathbb{F}_{4}}($ coefficient matrix $)=3$, these six cubes are 3 -orth.

Lower bounds for diagonal d-cubes

Theorem (Arkin-Hoggatt-Straus, 1976)

Let q be a prime power with $q \geq d>2$. Then the following holds.
(i) If q is odd, then there exists a set of $q+1$, d-orthogonal magic-associated d-cubes of order q and type $d-1$, of which at least $q-(d-1) 2^{d-1}$ are diagonal. $D^{(d)}(q) \geq q-(d-1) 2^{d-1}$.
(ii) If q is a power of 2 , then there exists a set of $q+1, d$-orthogonal d-cubes of order q and type $d-1$, of which at least $q+2-d$ are diagonal. $D^{(d)}(q) \geq q+2-d$.
(iii) If $q \geq 4$ is a power of 2 , then there exists a set of $q+2$, 3 -orthogonal cubes $(d=3)$ of order q and type 2 , of which at least q are diagonal. $D^{(3)}(q) \geq q$.

Our fundamental constructions for diagonal d-cubes

Lemma 1 (iff-condition for diag. d-cubes)

Let $f\left(x_{1}, \ldots, x_{d}\right)=a_{0} x_{1}+a_{1} x_{2}+\cdots+a_{d-1} x_{d}$ be a polynomial over \mathbb{F}_{q}. The d-cube generated by f is diagonal iff $f\left(1, \sigma_{2}, \sigma_{3}, \ldots, \sigma_{d}\right) \neq 0$ for any $\left(\sigma_{2}, \sigma_{3}, \ldots, \sigma_{d}\right) \in\{1,-1\}^{d-1}$.

Theorem 2 (a corollary of the fundamental construction)

Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q-1}$ be distinct non-zero elements of \mathbb{F}_{q}. Let
$f_{i}\left(x_{1}, x_{2}, \ldots, x_{d}\right)=x_{1}+\alpha_{i} x_{2}+\alpha_{i}^{2} x_{3}+\cdots+\alpha_{i}^{d-1} x_{d}, \quad(1 \leq i \leq q-1)$.
The d-cubes generated by $f_{1}, f_{2}, \ldots, f_{q-1}$ form a set of d-orth. d-cubes of order q and type $d-1$.
Moreover, if $f_{i}\left(1, \sigma_{2}, \sigma_{3}, \ldots, \sigma_{d}\right) \neq 0, \forall\left(\sigma_{2}, \ldots, \sigma_{d}\right) \in\{1,-1\}^{d-1}, \forall i$, we have a set of d-orth. diagonal d-cubes.

This construction was also proposed in terms of an MDS code.

3 -orth. diagonal cubes

Lemma 2

For any odd prime power $q \geq 7$, there exists $c_{1}, c_{2} \in \mathbb{F}_{q}^{*}$, such that the trinomials $1 \pm c_{1} \alpha \pm c_{2} \alpha^{2} \in \mathbb{F}_{q}[\alpha]$ are irreducible over \mathbb{F}_{q}.
Proof. Set $c_{2}=4^{-1}$. Then $1 \pm c_{1} \alpha \pm 4^{-1} \alpha^{2} \in \mathbb{F}_{q}[\alpha]$ are irreducible iff both $c_{1}^{2}+1$ and $c_{1}^{2}-1$ are non-squares. We could show that for every $\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right) \in\{1,-1\}^{3}$, there exists $c_{1}^{2}=x \in \mathbb{F}_{q}$ s.t. $\left(\frac{x+i}{q}\right)=\epsilon_{i}$ (quadratic residue) for $i \in\{1,2,3\}$, whenever $q \geq 19$.

Theorem

If $q \geq 7$ is an odd prime power, then $D^{(3)}(q) \geq q-1$.
Proof. Let $f_{i}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+c_{1} \alpha_{i} x_{2}+c_{2} \alpha_{i}^{2} x_{3}$ with $\alpha_{i} \in \mathbb{F}_{q}^{*}$ for $1 \leq i \leq q-1$, such that $1 \pm c_{1} \alpha \pm c_{2} \alpha^{2} \in \mathbb{F}_{q}[\alpha]$ are irreducible (existence is guaranteed by Lemma 2). Then, using the fundamental constructions, we reach the conclusion.

Conclusions and Future Work

Theorem

For any prime power $q \geq 4, D^{(3)}(q) \geq \begin{cases}q-1 & \text { if } q \text { is odd, } \\ q & \text { if } q \text { is even. }\end{cases}$

Theorem by combining with Kronecker product construction
Let $n=q_{1} q_{2} \ldots q_{r}$, where q_{i} is a prime power for each $1 \leq i \leq r$ with $q_{1}<q_{2}<\cdots<q_{r}$ and $\operatorname{gcd}\left(q_{i}, q_{j}\right)=1$ for any $1 \leq i<j \leq r$.

- If $q_{1}=3$ and $n \neq 3$, then $D^{(3)}(n) \geq 3$.
- If $q_{1} \geq 4$ is even, then $D^{(3)}(n) \geq q_{1}$.
- If $q_{1} \geq 5$ is odd, then $D^{(3)}(n) \geq q_{1}-1$.

Conjecture. $D^{(3)}(n) \leq n-1$ if n is odd. $D^{(3)}(n) \leq n$ if n is even.
Conjecture. $\quad D^{(d)}(n) \geq d$ for any positive integer $n \notin\{2,3,6\}$.

Conclusions and Future Work

Theorem

For any prime power $q \geq 4, D^{(3)}(q) \geq \begin{cases}q-1 & \text { if } q \text { is odd, } \\ q & \text { if } q \text { is even. }\end{cases}$
Theorem by combining with Kronecker product construction
Let $n=q_{1} q_{2} \ldots q_{r}$, where q_{i} is a prime power for each $1 \leq i \leq r$ with $q_{1}<q_{2}<\cdots<q_{r}$ and $\operatorname{gcd}\left(q_{i}, q_{j}\right)=1$ for any $1 \leq i<j \leq r$.

- If $q_{1}=3$ and $n \neq 3$, then $D^{(3)}(n) \geq 3$.
- If $q_{1} \geq 4$ is even, then $D^{(3)}(n) \geq q_{1}$.
- If $q_{1} \geq 5$ is odd, then $D^{(3)}(n) \geq q_{1}-1$.

Conjecture. $D^{(3)}(n) \leq n-1$ if n is odd. $D^{(3)}(n) \leq n$ if n is even.
Conjecture. $\quad D^{(d)}(n) \geq d$ for any positive integer $n \notin\{2,3,6\}$.
Thank you very much for your attention.

