On the Recognition of Unit Grid Intersection Graphs

Satoshi Tayu
Tokyo Institute of Technology
May 24th, 2018
We are preparing a paper:

On Unit Grid Intersection Graphs

by

Irina Mustață, Martin Pergel, Asahi Takaoka, Satoshi Tayu, and Shuichi Ueno
Grid Intersection Graph (GIG)

- \(V(G) \): set of straight line segments such that
 - line segments are parallel to the \(x \)- and \(y \)-axes, and
 - no two parallel line segments intersect

- \(E(G) = \{(u, v) \mid u \text{ and } v \text{ intersect.}\} \).

\{ GIGs \} \subset \{ \text{bigraphs} \}

bipartite graphs
Grid Intersection Graph (GIG)

grid intersection representation

grid intersection graph
Unit Grid Intersection Graph (UGIG)

grid intersection graph such that every line segment (vertex) has the same length.

\{ \text{UGIGs} \} \subseteq \{ \text{GIGs} \}
Unit Grid Intersection Graph (UGIG)

unit grid intersection representation

unit grid intersection graph \((C_{14}) \)
Unit Grid Intersection Graph (UGIG)

G: not UGIG

G': planar
Unit Grid Intersection Graph (UGIG)

G: not UGIG

G': planar

planar bipartite \Rightarrow grid intersection
Unit Grid Intersection Graph (UGIG)

G: not UGIG

G: GIG

\Downarrow

$\{\text{UGIGs}\} \subset \{\text{GIGs}\}$

planar bipartite \Rightarrow grid intersection
Orthogonal Ray Graph (ORG)

- \(V(G) \): set of axis parallel rays such that no two parallel rays intersect
- \(E(G) = \{ (u, v) \mid u \text{ and } v \text{ intersect.} \} \).
Orthogonal Ray Graph (ORG)

- orthogonal ray representation
- orthogonal ray graph
Orthogonal Ray Graph (ORG)

orthogonal ray representation

orthogonal ray graph
Orthogonal Ray Graph (ORG)

- orthogonal ray representation
- orthogonal ray graph
Orthogonal Ray Graph (ORG)

Every orthogonal ray graph has a unit grid intersection representation.
Orthogonal Ray Graph (ORG)

\{ \text{ORGs} \} \subseteq \{ \text{UGIGs} \}
Orthogonal Ray Graph (ORG)

{ ORGs } ⊆ { UGIGs }

- Cycle C_{2n} of length $2n$: orthogonal ray gray
 $\Leftrightarrow 2 \leq n \leq 6$
 (C_{14}: not ORG)
 [A.M.S. Shrestha, et.al., '10]

- even length cycle:
 unit grid intersection graph
 (C_{14}: UGIG)
Orthogonal Ray Graph (ORG)

\{ \text{ORGs} \} \subset \{ \text{UGIGs} \}

- Cycle C_{2n} of length $2n$: orthogonal ray gray
 $\Leftrightarrow 2 \leq n \leq 6$
 \cite{A.M.S. Shrestha, et.al., '10}
- even length cycle: unit grid intersection graph
 \cite{C_{14}: \text{UGIG}}
Relation between Graph Classes

\{ Bipartite Graphs \}

\cup

\{ Grid Intersection Graphs \}

\cup

\{ Unit Grid Intersection Graphs \}

\cup

\{ Orthogonal Ray Graphs \}
<table>
<thead>
<tr>
<th>Graph Class</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bigraphs</td>
<td>$O(</td>
</tr>
<tr>
<td>GlGs</td>
<td>NP-complete</td>
</tr>
<tr>
<td>UGIgs</td>
<td>?</td>
</tr>
<tr>
<td>ORGs</td>
<td>?</td>
</tr>
</tbody>
</table>

[Kratochivíl, et.al. ’94]
RECOGNITION PROBLEM

<table>
<thead>
<tr>
<th>Graph Class</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bigraphs</td>
<td>$O(</td>
</tr>
<tr>
<td>GIΓGs</td>
<td>NP-complete</td>
</tr>
<tr>
<td>UGIΓGs</td>
<td>NP-complete</td>
</tr>
<tr>
<td>ORΓGs</td>
<td>?</td>
</tr>
</tbody>
</table>

[Kratochivíl, et.al. ’94]
Theorem The recognition of unit grid intersection graphs is NP-complete.

Proof:

- The recognition of unit grid intersection graph is in NP.

- A polynomial time reduction from CONSTRAINT GRAPH SATISFIABILITY (NP-C) to our problem.
Characterization of ORGs

Theorem

G: ORG \iff

G has a UGIR lying inside an open square of side length $1 + \epsilon$ for any $\epsilon > 0$.
Theorem
\(G: \text{ORG} \iff G \text{ has a UGIR lying inside an open square of side length } 1 + \epsilon \text{ for any } \epsilon > 0. \)
Theorem

\[G : \text{ORG} \iff G \text{ has a UGIR lying inside an open square of side length } 1 + \varepsilon \text{ for any } \varepsilon > 0. \]
Theorem
G: ORG \iff
G has a UGIR lying inside an open square of side length $1 + \epsilon$ for any $\epsilon > 0$.

Characterization of ORGs
The complexity of the recognition of orthogonal ray graphs is open.

[Mustață, et.al., '16]
References

