# Results related to structures in Gallai colorings

# Roman Čada

Department of Mathematics & NTIS University of West Bohemia Czech Republic

Japanese Conference on Combinatorics and its Applications, Sendai May 24, 2018 edge-colored graph – a triple G = (V(G), E(G), c), where (V(G), E(G)) is a (simple finite undirected) graph and  $c : E(G) \to \mathbb{Z}^+$  (edge coloring of G)

an edge set  $F \subset E(G)$  is called rainbow if no two distinct edges in F receive the same color

a graph is called rainbow if its edge set is rainbow (heterochromatic, multicolored)

c(e) the color of e $d_G^c(u)$  color degree of u $\delta^c(G)$  minimum color degree of G study: colorings without a rainbow subgraph and corresponding Ramsey type problems

#### Theorem (Gallai, 1967)

In any rainbow triangle-free coloring of a complete graph, there exists a non-trivial partition of the vertices such that between the parts there is a total of at most two colors, and between each pair of parts there is only one color on the edges.

#### $\Rightarrow$ Gallai partition

reduced graph of a Gallai partition with parts  $A_1, A_2, \ldots, A_t - a$ 2-colored complete  $K_t$  graph with vertices  $a_1, a_2, \ldots, a_t$  and color of  $a_i a_j$  as the color of edges between  $A_i$  and  $A_j$ Given two graphs G and H and an integer k, the Gallai-Ramsey number  $gr_k(G:H)$  is the minimum integer n such that every k-coloring of  $K_n$  contains either a rainbow copy of G or a monochromatic copy of H as a subgraph.

# general behaviour of $gr_k(G:H)$

### Theorem (Gyárfás, Sárközy, Sebó, Selkow)

Let H be a fixed graph with no isolated vertices. If H is not bipartite, then  $gr_k(G:H)$  is exponential in k. If H is bipartite, then  $gr_k(G:H)$  is linear in k.

Ramsey number  $r_k(H)$  of a graph H is the least positive integer n such that every k-coloring of  $K_n$  contains a monochromatic copy of H clearly,  $gr_k(H) \leq r_k(H)$ 

## H is a clique

Conjecture (Fox, Grinshpun, Pach)

For integers  $k \ge 1$  and  $t \ge 3$ 

$$gr_k(K_3:K_t) = \begin{cases} (r_2(K_t) - 1)^{k/2} + 1 & \text{if } k \text{ is even} \\ (t - 1)(r_2(K_t) - 1)^{(k-1)/2} + 1 & \text{if } k \text{ is odd} \end{cases}$$

Constructions: For n = 1

Theorem (Chung, Graham, 1983)

$$gr_k(K_3:K_3) = \begin{cases} 5^{k/2} & \text{if } k \text{ is even} \\ 2 \cdot 5^{(k-1)/2} & \text{if } k \text{ is odd} \end{cases}$$

For n = 2

Theorem (Liu, Magnant, Saito, Schiermeyer, Shi)

$$gr_k(K_3:K_4) = \begin{cases} (r_2(K_4) - 1)^{k/2} + 1 & \text{if } k \text{ is even} \\ (t - 1)(r_2(K_4) - 1)^{(k-1)/2} + 1 & \text{if } k \text{ is odd} \end{cases}$$

# H is and odd/even cycle (non bipartite vs. bipartite graph)

Theorem (Fujita, Magnant, 2011)

For any positive integer  $k \ge 2$  and  $n \ge 1$ ,

$$n2^{k} + 1 \le gr_{k}(K_{3}: C_{2n+1}) \le k(n-1) + n(4n+1)3^{k-1}$$

# Theorem (Hall, Magnant, Ozeki, Tsugaki)

For any positive integer  $k \ge 1$  and  $n \ge 2$ ,

$$n2^{k} + 1 \le gr_{k}(K_{3}: C_{2n+1}) \le (2^{k+3} - 3)n \log n.$$

classical Ramsey numbers of cycles

Theorem (Faudree, Schelp, 1974; Rosta, 1973)

For all  $n \geq 2$ ,

 $r(C_{2n}, C_{2n}) = 3n - 1.$ 

Theorem (Bondy, Erdös, 1973)

For all  $n \geq 2$ ,

$$r(C_{2n+1}, C_{2n+1}) = 4n + 1.$$

so we have  $r_2(C_{2n})$  and  $r_2(C_{2n+1})$ 

# classical Ramsey numbers of paths

Theorem (Gerencsér, Gyárfás, 1967)

For all  $n \geq 2$ ,

$$r(P_n,P_n)=\left\lfloor\frac{3n}{2}\right\rfloor-1.$$

# Theorem (Fujita, Magnant, 2011)

 $gr_k(K_3: C_5) = 2 \cdot 2^k + 1$  for all k.

## Theorem (Bruce, Song)

 $gr_k(K_3: C_7) = 3 \cdot 2^k + 1$  for all k.

#### Theorem (Bosse, Song)

 $gr_k(K_3: C_9) = 4 \cdot 2^k + 1$  for all k.

## Theorem (Bosse, Song)

 $gr_k(K_3:C_{11}) = 5 \cdot 2^k + 1$  for all k.

# Theorem (Bosse, Song, Zhang)

 $gr_k(K_3: C_{13}) = 6 \cdot 2^k + 1$  for all k.

# Theorem (Bosse, Song, Zhang)

 $gr_k(K_3: C_{15}) = 7 \cdot 2^k + 1$  for all k.

#### back to classical Ramsey numbers

Conjecture (Bondy, Erdös, 1973)

$$egin{aligned} &r_k(\mathcal{C}_n)=2^{k-1}(n-1)+1 \ ext{for odd} \ n>3\ equivalently\ &r_k(\mathcal{C}_{2\ell+1})=\ell\cdot 2^k+1 \ ext{for} \ \ell>1 \end{aligned}$$

## Theorem (Bondy, Erdös, 1973)

 $r_2(C_n) = 2n - 1$  $r_k(C_n) \le (k+2)!n \ (n \ odd)$ 

# Bondy-Erdös conjecture proved if k = 3 for large n

Theorem (Luczak, 1999)

 $r_3(C_n) = 4n + o(n), n odd$ 

Theorem (Kohayakawa, Simonovits, Skokan, 2005)

 $r_3(C_n) = 4n - 3$ , n odd, sufficiently large

for  $k \ge 4$ 

Theorem (Luczak, Simonovits, Skokan, 2011)

For every  $k \ge 4$  and odd n

$$r_k(C_n) \leq k2^k n + o(n)$$
 as  $n \to +\infty$ .

it is a k vs. n problem an optimization problem on r(k, n)what is going on if  $k \to +\infty$  or  $n \to +\infty$ 

## Theorem (Day, Johnson, 2017)

For all odd n and all k sufficiently large, there exists a constant  $\epsilon = \epsilon(n) > 0$  such that

$$r_k(C_n) > (n-1)(2+\epsilon)^{k-1}$$

so Bondy-Erdös conjecture disproved in case if k much larger than n but on the other hand...

## Theorem (Jenssen, Skokan)

For any fixed  $k \ge 2$  and odd n sufficiently large,

$$r_k(C_n) = 2^{k-1}(n-1) + 1.$$

n must be large with respect to kso Bondy-Erdös conjecture proved in case if n much larger than k let G = (V(G), E(G)), denote e(G) = |E(G)|let A, B be two disjoint subsets of V(G)then e(A, B) denotes the number of edges vw with  $v \in A$  and  $w \in B$ a pair (A, B) is  $(\epsilon, G)$ -regular for some  $\epsilon > 0$  if for every  $A' \subseteq A$ and  $B' \subseteq B$  with  $|A'| \ge \epsilon |A|$  and  $|B'| \ge \epsilon |B|$ , we have

$$\left|\frac{e(A',B')}{|A'||B'|} - \frac{e(A,B)}{|A||B|}\right| < \epsilon$$

a partition  $\Pi = (V_i)_{i=0}^k$  of the vertex set V(G) of G is  $(\epsilon, k)$ -equitable if  $|V_0| \le \epsilon |V(G)|$  and  $|V_1| = |V_2| = \ldots = |V_k|$ an  $(\epsilon, k)$ -equitable partition  $\Pi$  is  $(k, \epsilon, G)$ -regular if at most  $\epsilon {k \choose 2}$ pairs  $(V_i, V_j)$  with  $1 \le i < j \le k$  are not  $(\epsilon, G)$ -regular

#### Lemma (special case of Szemerédi's Regularity lemma)

For every  $\epsilon > 0$  and  $k_0$  there exists  $K_0 = K_0(\epsilon, k_0) \ge k_0$  such that the following holds. For all graphs,  $G_1, G_2, G_3, G_4$ , where  $V(G_1) = V(G_2) = V(G_3) = V(G_4) = V$  and  $|V| \ge k_0$ , there exists a partition  $\Pi = (V_0, V_1, V_2, \dots, V_k)$  of V such that  $k_0 \le k \le K_0$ and  $\Pi$  is  $(k, \epsilon, G_s)$ -regular for s = 1, 2, 3, 4.

# Theorem (Erdös, Gallai)

Each graph with n vertices and at least (m-1)(n-1)/2 + 1 edges  $(3 \le m \le n)$ , contains a cycle of length at least m.

Dirac's and Ore's degree (sum) conditions for hamiltonian-connectivity

## Lemma (Luczak)

For every small  $\delta$ ,  $\alpha > 2\delta$  and  $n = n(\delta/\alpha)$  sufficiently large the following holds. Each graph G on n vertices which contains no odd cycles longer than  $\alpha n$  contains subgraphs G' and G'' such that:

- V(G') and V(G'') form a partition of V(G) and each of the sets V(G') and V(G'') is either empty or contains at least αδn/2 vertices,
- G' is bipartite,
- G'' contains not more than  $\alpha n |V(G'')|/2$  edges,
- all except no more than  $\delta n^2$  edges of G belong to either G' or G".

## Lemma (Luczak)

Let  $\eta$  be small and  $n = n(\eta)$  sufficiently large. Furthermore, let G be a graph with  $\approx 2n$  vertices and at least  $\binom{V(G)}{2} - f(\eta, n)$  vertices. Then every 2-coloring of the edges of G leads to a monochromatic odd cycle of length at least  $(1 + \eta/const)n$ 



Let *G* and *H* be *k*-colored graphs with  $V(H) \subseteq V(G)$ . Let  $\epsilon > 0$ , then we say that *G* is  $\epsilon$ -close to *H* if  $|G_i \Delta H_i| \le \epsilon v(G)^2$  for all  $i \in [k]$ . Let *F* be a connected graph whose largest matching saturates *m* 

vertices, then F is called a connected matching (Luczak).

Jenssen, Skokan's proof: transformation to a nonlinear optimization problem max f(||x||) (linear) subject to  $F(x) = w^T x + x^T H x$ H relates to matchings in a hypercube  $Q_k$  in Gallai coloring the two colors joining particular sets of partitions are from orthogonal subspaces

#### Theorem

 $gr_k(K_3: C_{2n+1}) = n2^k + 1$ 

structure of the set  $X(\gamma)$  (defined by Jenssen and Skokan): For  $\gamma \ge 0$ , let  $X(\gamma)$  denote the set of elements  $x \in R^{\ell}$  satisfying:

• 
$$F(x) \leq \gamma$$

- $x_{ au} \leq 1 + \gamma$  whenever w( au) = 1 ("dimension")
- $x_{\tau}x_{\sigma} \leq \gamma$  whenever  $\tau$  and  $\sigma$  are incompatible
- $x_{ au} \geq 0$  for all au

Kuhn+Karush+Tucker conditions Let  $f, g_1, g_2, \ldots, g_r : R^m \to R$  be convex, differentiable functions and let

$$S = \{x \in R^m : g_i(x) \le 0 \text{ for } i = 1, 2, \dots, r\}.$$

Suppose that there exists an  $x_0 \in R^m$  such that  $g_i(x_0) < 0$  for i = 1, 2, ..., r. Then if  $x^* \in S$  is such that

$$f(x^*) = \sup_{x \in S} f(x),$$

then there exist  $\lambda_1, \lambda_2, \ldots, \lambda_r \in R$  such that

• 
$$\nabla f(x^*) = \sum_{i=1}^r \lambda_i \nabla g_i(x^*)$$
  
•  $\lambda_i \ge 0, \ i = 1, 2, \dots, r,$   
•  $\lambda_i g_i(x^*) = 0, \ i = 1, 2, \dots, r.$ 

even n remains...

Theorem (Sung, Young, Xu, Li, 2006)

 $r_k(C_n) \ge (k-1)n - 2k + 4$  for n even

Theorem (Luczak, Simonovits, Skokan, 2011)

For every  $k \ge 2$  and even n

$$r_k(C_n) \leq kn + o(n)$$
 as  $n \to +\infty$ .

### Theorem (Sárközy, 2016)

For every  $k \ge 2$  and even n

$$r_k(C_n) \leq \left(k - \frac{1}{16k^3 + 1}\right)n + o(n) \quad as \ n \to +\infty.$$

# Theorem (Davies, Jenssen, Roberts, 2017)

For every  $k \ge 2$  and even n

$$r_k(C_n) \leq \left(k - \frac{1}{4}\right)n + o(n) \quad as \ n \to +\infty.$$

# Theorem (Knierim, Su)

For every  $k \ge 2$  and even n

$$r_k(C_n) \leq \left(k - \frac{1}{2}\right)n + o(n) \quad as \ n \to +\infty.$$

Thank you for your attention.