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edge-colored graph – a triple G = (V (G),E (G), c), where
(V (G),E (G)) is a (simple finite undirected) graph and
c : E (G)→ Z+ (edge coloring of G)

an edge set F ⊂ E (G) is called rainbow if no two distinct edges
in F receive the same color

a graph is called rainbow if its edge set is rainbow
(heterochromatic, multicolored)

c(e) the color of e
dc

G(u) color degree of u
δc(G) minimum color degree of G



study: colorings without a rainbow subgraph and corresponding
Ramsey type problems



Theorem (Gallai, 1967)

In any rainbow triangle-free coloring of a complete graph, there
exists a non-trivial partition of the vertices such that between the
parts there is a total of at most two colors, and between each pair
of parts there is only one color on the edges.

⇒ Gallai partition
reduced graph of a Gallai partition with parts A1,A2, . . . ,At – a
2-colored complete Kt graph with vertices a1, a2, . . . , at and color
of aiaj as the color of edges between Ai and Aj
Given two graphs G and H and an integer k, the Gallai-Ramsey
number grk(G : H) is the minimum integer n such that every
k-coloring of Kn contains either a rainbow copy of G or a
monochromatic copy of H as a subgraph.



general behaviour of grk(G : H)

Theorem (Gyárfás, Sárközy, Sebó, Selkow)

Let H be a fixed graph with no isolated vertices. If H is not
bipartite, then grk(G : H) is exponential in k. If H is bipartite,
then grk(G : H) is linear in k.



Ramsey number rk(H) of a graph H is the least positive integer n
such that every k-coloring of Kn contains a monochromatic copy
of H
clearly, grk(H) ≤ rk(H)



H is a clique

Conjecture (Fox, Grinshpun, Pach)

For integers k ≥ 1 and t ≥ 3

grk(K3 : Kt) =
{

(r2(Kt)− 1)k/2 + 1 if k is even
(t − 1)(r2(Kt)− 1)(k−1)/2 + 1 if k is odd



Constructions:
For n = 1
Theorem (Chung, Graham, 1983)

grk(K3 : K3) =
{

5k/2 if k is even
2 · 5(k−1)/2 if k is odd

For n = 2
Theorem (Liu, Magnant, Saito, Schiermeyer, Shi)

grk(K3 : K4) =
{

(r2(K4)− 1)k/2 + 1 if k is even
(t − 1)(r2(K4)− 1)(k−1)/2 + 1 if k is odd



H is and odd/even cycle (non bipartite vs. bipartite graph)

Theorem (Fujita, Magnant, 2011)

For any positive integer k ≥ 2 and n ≥ 1,

n2k + 1 ≤ grk(K3 : C2n+1) ≤ k(n − 1) + n(4n + 1)3k−1.



Theorem (Hall, Magnant, Ozeki, Tsugaki)

For any positive integer k ≥ 1 and n ≥ 2,

n2k + 1 ≤ grk(K3 : C2n+1) ≤ (2k+3 − 3)n log n.



classical Ramsey numbers of cycles

Theorem (Faudree, Schelp, 1974; Rosta, 1973)

For all n ≥ 2,
r(C2n,C2n) = 3n − 1.

Theorem (Bondy, Erdös, 1973)

For all n ≥ 2,
r(C2n+1,C2n+1) = 4n + 1.

so we have r2(C2n) and r2(C2n+1)



classical Ramsey numbers of paths

Theorem (Gerencsér, Gyárfás, 1967)

For all n ≥ 2,
r(Pn,Pn) =

⌊3n
2

⌋
− 1.



Theorem (Fujita, Magnant, 2011)

grk(K3 : C5) = 2 · 2k + 1 for all k.

Theorem (Bruce, Song)

grk(K3 : C7) = 3 · 2k + 1 for all k.

Theorem (Bosse, Song)

grk(K3 : C9) = 4 · 2k + 1 for all k.

Theorem (Bosse, Song)

grk(K3 : C11) = 5 · 2k + 1 for all k.



Theorem (Bosse, Song, Zhang)

grk(K3 : C13) = 6 · 2k + 1 for all k.

Theorem (Bosse, Song, Zhang)

grk(K3 : C15) = 7 · 2k + 1 for all k.



back to classical Ramsey numbers

Conjecture (Bondy, Erdös, 1973)

rk(Cn) = 2k−1(n − 1) + 1 for odd n > 3
equivalently
rk(C2`+1) = ` · 2k + 1 for ` > 1

Theorem (Bondy, Erdös, 1973)

r2(Cn) = 2n − 1
rk(Cn) ≤ (k + 2)!n (n odd)



Bondy-Erdös conjecture proved if k = 3 for large n

Theorem (Luczak, 1999)

r3(Cn) = 4n + o(n), n odd

Theorem (Kohayakawa, Simonovits, Skokan, 2005)

r3(Cn) = 4n − 3, n odd, sufficiently large

for k ≥ 4

Theorem (Luczak, Simonovits, Skokan, 2011)

For every k ≥ 4 and odd n

rk(Cn) ≤ k2kn + o(n) as n→ +∞.



it is a k vs. n problem
an optimization problem on r(k, n)
what is going on if k → +∞ or n→ +∞



Theorem (Day, Johnson, 2017)

For all odd n and all k sufficiently large, there exists a constant
ε = ε(n) > 0 such that

rk(Cn) > (n − 1)(2 + ε)k−1.

so Bondy-Erdös conjecture disproved in case if k much larger than
n
but on the other hand. . .



Theorem (Jenssen, Skokan)

For any fixed k ≥ 2 and odd n sufficiently large,

rk(Cn) = 2k−1(n − 1) + 1.

n must be large with respect to k
so Bondy-Erdös conjecture proved in case if n much larger than k



let G = (V (G),E (G)), denote e(G) = |E (G)|
let A, B be two disjoint subsets of V (G)
then e(A,B) denotes the number of edges vw with v ∈ A and
w ∈ B
a pair (A,B) is (ε,G)-regular for some ε > 0 if for every A′ ⊆ A
and B′ ⊆ B with
|A′| ≥ ε|A| and |B′| ≥ ε|B|, we have∣∣∣∣e(A′,B′)

|A′||B′| −
e(A,B)
|A||B|

∣∣∣∣ < ε



a partition Π = (Vi )k
i=0 of the vertex set V (G) of G is

(ε, k)-equitable if |V0| ≤ ε|V (G)| and |V1| = |V2| = . . . = |Vk |
an (ε, k)-equitable partition Π is (k, ε,G)-regular if at most ε

(k
2
)

pairs (Vi ,Vj) with 1 ≤ i < j ≤ k are not (ε,G)-regular

Lemma (special case of Szemerédi’s Regularity lemma)

For every ε > 0 and k0 there exists K0 = K0(ε, k0) ≥ k0 such that
the following holds.
For all graphs, G1,G2,G3,G4, where
V (G1) = V (G2) = V (G3) = V (G4) = V and |V | ≥ k0, there exists
a partition Π = (V0,V1,V2, . . . ,Vk) of V such that k0 ≤ k ≤ K0
and Π is (k, ε,Gs)-regular for s = 1, 2, 3, 4.



Theorem (Erdös, Gallai)

Each graph with n vertices and at least (m − 1)(n − 1)/2 + 1
edges (3 ≤ m ≤ n), contains a cycle of length at least m.

Dirac’s and Ore’s degree (sum) conditions for
hamiltonian-connectivity



Lemma (Luczak)

For every small δ, α > 2δ and n = n(δ/α) sufficiently large the
following holds. Each graph G on n vertices which contains no odd
cycles longer than αn contains subgraphs G ′ and G ′′ such that:

V (G ′) and V (G ′′) form a partition of V (G) and each of the
sets V (G ′) and V (G ′′) is either empty or contains at least
αδn/2 vertices,
G ′ is bipartite,
G ′′ contains not more than αn|V (G ′′)|/2 edges,
all except no more than δn2 edges of G belong to either G ′ or
G ′′.



Lemma (Luczak)

Let η be small and n = n(η) sufficiently large. Furthermore, let G
be a graph with ≈ 2n vertices and at least

(V (G)|
2
)
− f (η, n)

vertices. Then every 2-coloring of the edges of G leads to a
monochromatic odd cycle of length at least (1 + η/const)n





Let G and H be k-colored graphs with V (H) ⊆ V (G). Let ε > 0,
then we say that G is ε-close to H if |Gi ∆Hi | ≤ εv(G)2 for all
i ∈ [k].
Let F be a connected graph whose largest matching saturates m
vertices, then F is called a connected matching (Luczak).



Jenssen, Skokan’s proof:
transformation to a nonlinear optimization problem
max f (‖x‖) (linear)
subject to
F (x) = wT x + xTHx
H relates to matchings in a hypercube Qk



in Gallai coloring the two colors joining particular sets of partitions
are from orthogonal subspaces

Theorem
grk(K3 : C2n+1) = n2k + 1

structure of the set X (γ) (defined by Jenssen and Skokan):
For γ ≥ 0, let X (γ) denote the set of elements x ∈ R` satisfying:

F (x) ≤ γ
xτ ≤ 1 + γ whenever w(τ) = 1 ("dimension")
xτxσ ≤ γ whenever τ and σ are incompatible
xτ ≥ 0 for all τ



Kuhn+Karush+Tucker conditions
Let f , g1, g2, . . . , gr : Rm → R be convex, differentiable functions
and let

S = {x ∈ Rm : gi (x) ≤ 0 for i = 1, 2, . . . , r}.

Suppose that there exists an x0 ∈ Rm such that gi (x0) < 0 for
i = 1, 2, . . . , r . Then if x∗ ∈ S is such that

f (x∗) = supx∈S f (x),

then there exist λ1, λ2, . . . , λr ∈ R such that
∇f (x∗) =

∑r
i=1 λi∇gi (x∗)

λi ≥ 0, i = 1, 2, . . . , r ,
λigi (x∗) = 0, i = 1, 2, . . . , r .



even n remains. . .
Theorem (Sung, Young, Xu, Li, 2006)

rk(Cn) ≥ (k − 1)n − 2k + 4 for n even

Theorem (Luczak, Simonovits, Skokan, 2011)

For every k ≥ 2 and even n

rk(Cn) ≤ kn + o(n) as n→ +∞.

Theorem (Sárközy, 2016)

For every k ≥ 2 and even n

rk(Cn) ≤
(
k − 1

16k3 + 1

)
n + o(n) as n→ +∞.



Theorem (Davies, Jenssen, Roberts, 2017)

For every k ≥ 2 and even n

rk(Cn) ≤
(
k − 1

4

)
n + o(n) as n→ +∞.

Theorem (Knierim, Su)

For every k ≥ 2 and even n

rk(Cn) ≤
(
k − 1

2

)
n + o(n) as n→ +∞.



Thank you for your attention.
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