Results related to structures in Gallai colorings

Roman Čada
Department of Mathematics \& NTIS
University of West Bohemia
Czech Republic

Japanese Conference on Combinatorics and its Applications, Sendai

May 24, 2018
edge-colored graph - a triple $G=(V(G), E(G), c)$, where $(V(G), E(G))$ is a (simple finite undirected) graph and $c: E(G) \rightarrow \mathbb{Z}^{+}$(edge coloring of G)
an edge set $F \subset E(G)$ is called rainbow if no two distinct edges in F receive the same color
a graph is called rainbow if its edge set is rainbow (heterochromatic, multicolored)
$c(e)$ the color of e $d_{G}^{c}(u)$ color degree of u
$\delta^{c}(G)$ minimum color degree of G
study: colorings without a rainbow subgraph and corresponding Ramsey type problems

Theorem (Gallai, 1967)

In any rainbow triangle-free coloring of a complete graph, there exists a non-trivial partition of the vertices such that between the parts there is a total of at most two colors, and between each pair of parts there is only one color on the edges.
\Rightarrow Gallai partition
reduced graph of a Gallai partition with parts $A_{1}, A_{2}, \ldots, A_{t}$ - a 2-colored complete K_{t} graph with vertices $a_{1}, a_{2}, \ldots, a_{t}$ and color of $a_{i} a_{j}$ as the color of edges between A_{i} and A_{j}
Given two graphs G and H and an integer k, the Gallai-Ramsey number $\operatorname{gr}_{k}(G: H)$ is the minimum integer n such that every k-coloring of K_{n} contains either a rainbow copy of G or a monochromatic copy of H as a subgraph.
general behaviour of $\operatorname{gr}_{k}(G: H)$

Theorem (Gyárfás, Sárközy, Sebó, Selkow)

Let H be a fixed graph with no isolated vertices. If H is not bipartite, then $g r_{k}(G: H)$ is exponential in k. If H is bipartite, then $g r_{k}(G: H)$ is linear in k.

Ramsey number $r_{k}(H)$ of a graph H is the least positive integer n such that every k-coloring of K_{n} contains a monochromatic copy of H
clearly, $\operatorname{gr}_{k}(H) \leq r_{k}(H)$
H is a clique

Conjecture (Fox, Grinshpun, Pach)

For integers $k \geq 1$ and $t \geq 3$

$$
g r_{k}\left(K_{3}: K_{t}\right)= \begin{cases}\left(r_{2}\left(K_{t}\right)-1\right)^{k / 2}+1 & \text { if } k \text { is even } \\ (t-1)\left(r_{2}\left(K_{t}\right)-1\right)^{(k-1) / 2}+1 & \text { if } k \text { is odd }\end{cases}
$$

Constructions:
For $n=1$

Theorem (Chung, Graham, 1983)

$$
g r_{k}\left(K_{3}: K_{3}\right)= \begin{cases}5^{k / 2} & \text { if } k \text { is even } \\ 2 \cdot 5^{(k-1) / 2} & \text { if } k \text { is odd }\end{cases}
$$

For $n=2$

Theorem (Liu, Magnant, Saito, Schiermeyer, Shi)

$$
g r_{k}\left(K_{3}: K_{4}\right)= \begin{cases}\left(r_{2}\left(K_{4}\right)-1\right)^{k / 2}+1 & \text { if } k \text { is even } \\ (t-1)\left(r_{2}\left(K_{4}\right)-1\right)^{(k-1) / 2}+1 & \text { if } k \text { is odd }\end{cases}
$$

H is and odd/even cycle (non bipartite vs. bipartite graph)
Theorem (Fujita, Magnant, 2011)
For any positive integer $k \geq 2$ and $n \geq 1$,

$$
n 2^{k}+1 \leq g r_{k}\left(K_{3}: C_{2 n+1}\right) \leq k(n-1)+n(4 n+1) 3^{k-1} .
$$

Theorem (Hall, Magnant, Ozeki, Tsugaki)

For any positive integer $k \geq 1$ and $n \geq 2$,

$$
n 2^{k}+1 \leq g r_{k}\left(K_{3}: C_{2 n+1}\right) \leq\left(2^{k+3}-3\right) n \log n .
$$

classical Ramsey numbers of cycles
Theorem (Faudree, Schelp, 1974; Rosta, 1973)
For all $n \geq 2$,

$$
r\left(C_{2 n}, C_{2 n}\right)=3 n-1
$$

Theorem (Bondy, Erdös, 1973)
For all $n \geq 2$,

$$
r\left(C_{2 n+1}, C_{2 n+1}\right)=4 n+1
$$

so we have $r_{2}\left(C_{2 n}\right)$ and $r_{2}\left(C_{2 n+1}\right)$
classical Ramsey numbers of paths
Theorem (Gerencsér, Gyárfás, 1967)
For all $n \geq 2$,

$$
r\left(P_{n}, P_{n}\right)=\left\lfloor\frac{3 n}{2}\right\rfloor-1
$$

Theorem (Fujita, Magnant, 2011)

$$
g r_{k}\left(K_{3}: C_{5}\right)=2 \cdot 2^{k}+1 \text { for all } k .
$$

Theorem (Bruce, Song) $g r_{k}\left(K_{3}: C_{7}\right)=3 \cdot 2^{k}+1$ for all k.

Theorem (Bosse, Song)
$g r_{k}\left(K_{3}: C_{9}\right)=4 \cdot 2^{k}+1$ for all k.
Theorem (Bosse, Song) $g r_{k}\left(K_{3}: C_{11}\right)=5 \cdot 2^{k}+1$ for all k.

Theorem (Bosse, Song, Zhang)
$g r_{k}\left(K_{3}: C_{13}\right)=6 \cdot 2^{k}+1$ for all k.
Theorem (Bosse, Song, Zhang)
$g r_{k}\left(K_{3}: C_{15}\right)=7 \cdot 2^{k}+1$ for all k.
back to classical Ramsey numbers
Conjecture (Bondy, Erdös, 1973)
$r_{k}\left(C_{n}\right)=2^{k-1}(n-1)+1$ for odd $n>3$
equivalently
$r_{k}\left(C_{2 \ell+1}\right)=\ell \cdot 2^{k}+1$ for $\ell>1$
Theorem (Bondy, Erdös, 1973)
$r_{2}\left(C_{n}\right)=2 n-1$
$r_{k}\left(C_{n}\right) \leq(k+2)!n(n$ odd $)$

Bondy-Erdös conjecture proved if $k=3$ for large n
Theorem (Luczak, 1999)
$r_{3}\left(C_{n}\right)=4 n+o(n), n$ odd
Theorem (Kohayakawa, Simonovits, Skokan, 2005)
$r_{3}\left(C_{n}\right)=4 n-3$, n odd, sufficiently large
for $k \geq 4$
Theorem (Luczak, Simonovits, Skokan, 2011)
For every $k \geq 4$ and odd n

$$
r_{k}\left(C_{n}\right) \leq k 2^{k} n+o(n) \quad \text { as } n \rightarrow+\infty
$$

it is a k vs. n problem an optimization problem on $r(k, n)$ what is going on if $k \rightarrow+\infty$ or $n \rightarrow+\infty$

Theorem (Day, Johnson, 2017)

For all odd n and all k sufficiently large, there exists a constant $\epsilon=\epsilon(n)>0$ such that

$$
r_{k}\left(C_{n}\right)>(n-1)(2+\epsilon)^{k-1}
$$

so Bondy-Erdös conjecture disproved in case if k much larger than n
but on the other hand...

Theorem (Jenssen, Skokan)

For any fixed $k \geq 2$ and odd n sufficiently large,

$$
r_{k}\left(C_{n}\right)=2^{k-1}(n-1)+1
$$

n must be large with respect to k
so Bondy-Erdös conjecture proved in case if n much larger than k
let $G=(V(G), E(G))$, denote $e(G)=|E(G)|$
let A, B be two disjoint subsets of $V(G)$ then $e(A, B)$ denotes the number of edges $v w$ with $v \in A$ and $w \in B$
a pair (A, B) is (ϵ, G)-regular for some $\epsilon>0$ if for every $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$ with
$\left|A^{\prime}\right| \geq \epsilon|A|$ and $\left|B^{\prime}\right| \geq \epsilon|B|$, we have

$$
\left|\frac{e\left(A^{\prime}, B^{\prime}\right)}{\left|A^{\prime}\right|\left|B^{\prime}\right|}-\frac{e(A, B)}{|A||B|}\right|<\epsilon
$$

a partition $\Pi=\left(V_{i}\right)_{i=0}^{k}$ of the vertex set $V(G)$ of G is (ϵ, k)-equitable if $\left|V_{0}\right| \leq \epsilon|V(G)|$ and $\left|V_{1}\right|=\left|V_{2}\right|=\ldots=\left|V_{k}\right|$ an (ϵ, k)-equitable partition Π is (k, ϵ, G)-regular if at most $\epsilon\binom{k}{2}$ pairs $\left(V_{i}, V_{j}\right)$ with $1 \leq i<j \leq k$ are not (ϵ, G)-regular

Lemma (special case of Szemerédi's Regularity lemma)

For every $\epsilon>0$ and k_{0} there exists $K_{0}=K_{0}\left(\epsilon, k_{0}\right) \geq k_{0}$ such that the following holds.
For all graphs, $G_{1}, G_{2}, G_{3}, G_{4}$, where
$V\left(G_{1}\right)=V\left(G_{2}\right)=V\left(G_{3}\right)=V\left(G_{4}\right)=V$ and $|V| \geq k_{0}$, there exists a partition $\Pi=\left(V_{0}, V_{1}, V_{2}, \ldots, V_{k}\right)$ of V such that $k_{0} \leq k \leq K_{0}$ and Π is $\left(k, \epsilon, G_{s}\right)$-regular for $s=1,2,3,4$.

Theorem (Erdös, Gallai)

Each graph with n vertices and at least $(m-1)(n-1) / 2+1$ edges $(3 \leq m \leq n)$, contains a cycle of length at least m.

Dirac's and Ore's degree (sum) conditions for hamiltonian-connectivity

Lemma (Luczak)

For every small $\delta, \alpha>2 \delta$ and $n=n(\delta / \alpha)$ sufficiently large the following holds. Each graph G on n vertices which contains no odd cycles longer than α n contains subgraphs G^{\prime} and $G^{\prime \prime}$ such that:

- $V\left(G^{\prime}\right)$ and $V\left(G^{\prime \prime}\right)$ form a partition of $V(G)$ and each of the sets $V\left(G^{\prime}\right)$ and $V\left(G^{\prime \prime}\right)$ is either empty or contains at least $\alpha \delta n / 2$ vertices,
- G^{\prime} is bipartite,
- $G^{\prime \prime}$ contains not more than $\alpha n\left|V\left(G^{\prime \prime}\right)\right| / 2$ edges,
- all except no more than δn^{2} edges of G belong to either G^{\prime} or $G^{\prime \prime}$.

Lemma (Luczak)

Let η be small and $n=n(\eta)$ sufficiently large. Furthermore, let G be a graph with $\approx 2 n$ vertices and at least $\binom{V(G) \mid}{ 2}-f(\eta, n)$ vertices. Then every 2 -coloring of the edges of G leads to a monochromatic odd cycle of length at least ($1+\eta$ /const)n

Let G and H be k-colored graphs with $V(H) \subseteq V(G)$. Let $\epsilon>0$, then we say that G is ϵ-close to H if $\left|G_{i} \Delta H_{i}\right| \leq \epsilon v(G)^{2}$ for all $i \in[k]$.
Let F be a connected graph whose largest matching saturates m vertices, then F is called a connected matching (Luczak).

Jenssen, Skokan's proof:
transformation to a nonlinear optimization problem $\max f(\|x\|)$ (linear)
subject to
$F(x)=w^{T} x+x^{T} H x$
H relates to matchings in a hypercube Q_{k}
in Gallai coloring the two colors joining particular sets of partitions are from orthogonal subspaces

Theorem

$g r_{k}\left(K_{3}: C_{2 n+1}\right)=n 2^{k}+1$
structure of the set $\boldsymbol{X}(\gamma)$ (defined by Jenssen and Skokan):
For $\gamma \geq 0$, let $X(\gamma)$ denote the set of elements $x \in R^{\ell}$ satisfying:

- $F(x) \leq \gamma$

■ $x_{\tau} \leq 1+\gamma$ whenever $w(\tau)=1$ ("dimension")
■ $x_{\tau} x_{\sigma} \leq \gamma$ whenever τ and σ are incompatible

- $x_{\tau} \geq 0$ for all τ

Kuhn+Karush+Tucker conditions
Let $f, g_{1}, g_{2}, \ldots, g_{r}: R^{m} \rightarrow R$ be convex, differentiable functions and let

$$
S=\left\{x \in R^{m}: g_{i}(x) \leq 0 \text { for } i=1,2, \ldots, r\right\} .
$$

Suppose that there exists an $x_{0} \in R^{m}$ such that $g_{i}\left(x_{0}\right)<0$ for $i=1,2, \ldots, r$. Then if $x^{*} \in S$ is such that

$$
f\left(x^{*}\right)=\sup _{x \in S} f(x)
$$

then there exist $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r} \in R$ such that

- $\nabla f\left(x^{*}\right)=\sum_{i=1}^{r} \lambda_{i} \nabla g_{i}\left(x^{*}\right)$

■ $\lambda_{i} \geq 0, i=1,2, \ldots, r$,

- $\lambda_{i} g_{i}\left(x^{*}\right)=0, i=1,2, \ldots, r$.
even n remains...
Theorem (Sung, Young, Xu, Li, 2006)
$r_{k}\left(C_{n}\right) \geq(k-1) n-2 k+4$ for n even
Theorem (Luczak, Simonovits, Skokan, 2011)
For every $k \geq 2$ and even n

$$
r_{k}\left(C_{n}\right) \leq k n+o(n) \quad \text { as } n \rightarrow+\infty .
$$

Theorem (Sárközy, 2016)

For every $k \geq 2$ and even n

$$
r_{k}\left(C_{n}\right) \leq\left(k-\frac{1}{16 k^{3}+1}\right) n+o(n) \quad \text { as } n \rightarrow+\infty
$$

Theorem (Davies, Jenssen, Roberts, 2017)
For every $k \geq 2$ and even n

$$
r_{k}\left(C_{n}\right) \leq\left(k-\frac{1}{4}\right) n+o(n) \quad \text { as } n \rightarrow+\infty .
$$

Theorem (Knierim, Su)
For every $k \geq 2$ and even n

$$
r_{k}\left(C_{n}\right) \leq\left(k-\frac{1}{2}\right) n+o(n) \quad \text { as } n \rightarrow+\infty .
$$

Thank you for your attention.

