Domination in prism graphs

Monika Rosicka

University of Gdańsk, Poland e-mail: mrosicka@inf.ug.edu.pl

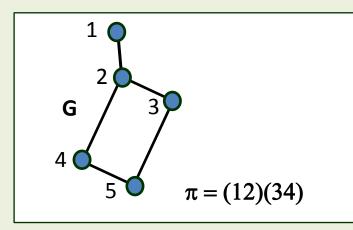
Definition

For a given graph G = (V, E) and permutation π : V \rightarrow V, the **prism graph** π G is defined as follows:

- Take two copies G, G' of G,

-Denote the copy of v in G' by v',

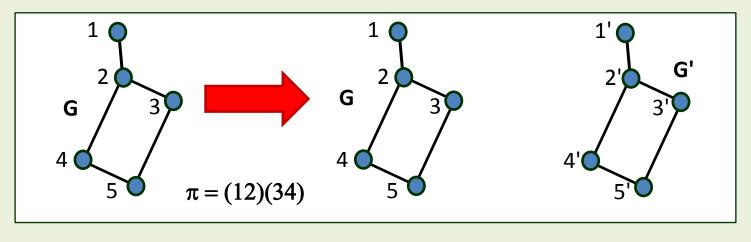
- For each v \in V, add the edge v π (v)'.



Definition

For a given graph G = (V, E) and permutation π : V \rightarrow V, the **prism graph** π G is defined as follows:

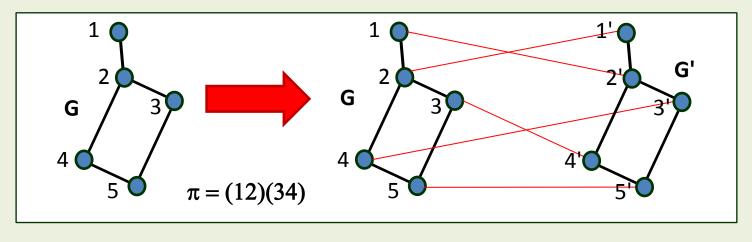
- Take two copies G, G' of G,
 - -Denote the copy of v in G' by v',
- For each v \in V, add the edge v π (v)'.



Definition

For a given graph G = (V, E) and permutation π : V \rightarrow V, the **prism graph** π G is defined as follows:

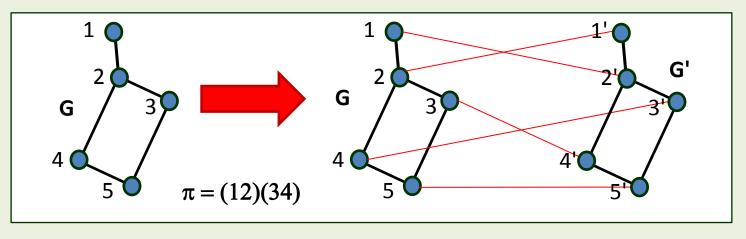
- Take two copies G, G' of G,
 - -Denote the copy of v in G' by v',
- For each v \in V, add the edge v π (v)'.



Definition

For a given graph G = (V, E) and permutation π : V \rightarrow V, the **prism graph** π G is defined as follows:

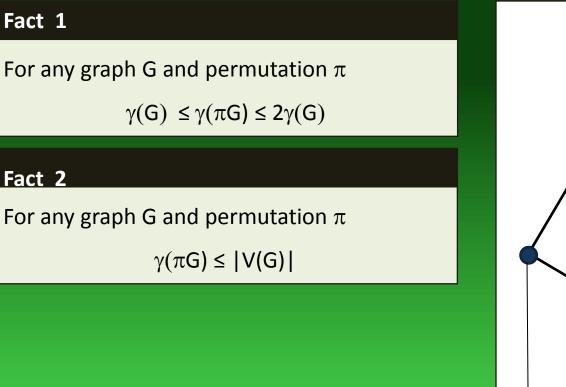
- Take two copies G, G' of G,
 - -Denote the copy of v in G' by v',
- For each v \in V, add the edge v π (v)'.

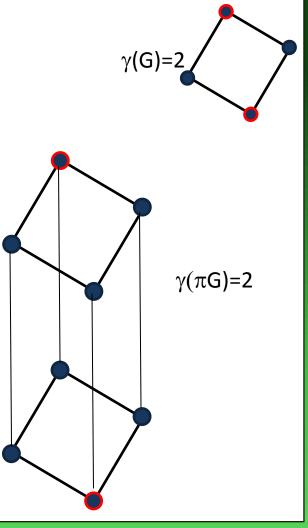


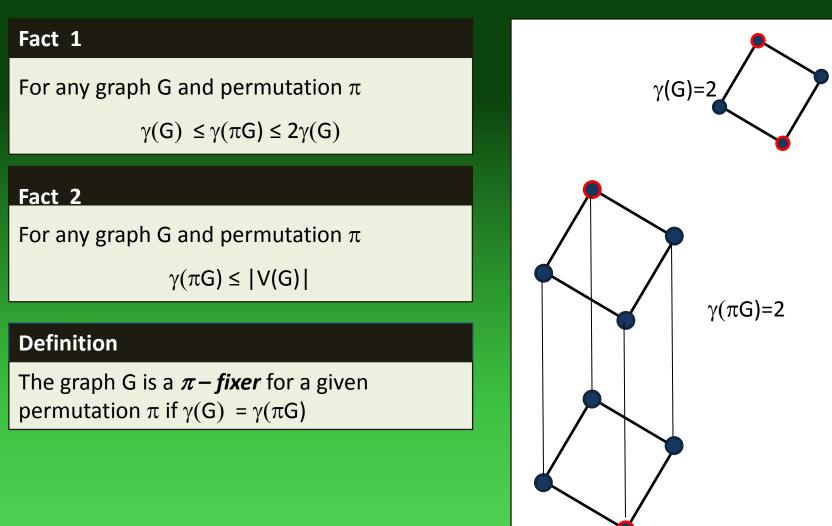
Definition

D is a **dominating set** of G if every vertex $v \in V$ -D has a neighbor in D.

Domination number, γ **(G):** the the size of the smallest dominating set in G.







Fact 1

For any graph G and permutation π

 $\gamma(G) \leq \gamma(\pi G) \leq 2\gamma(G)$

Fact 2

For any graph G and permutation $\boldsymbol{\pi}$

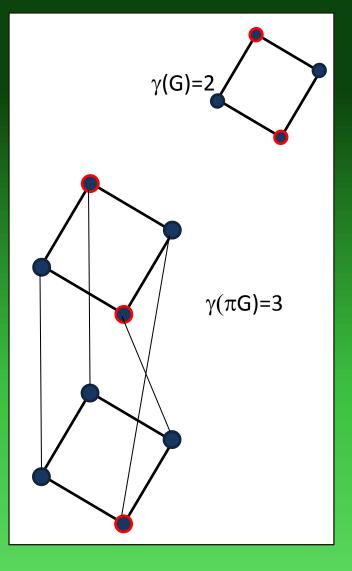
 $\gamma(\pi \mathsf{G}) \leq |\mathsf{V}(\mathsf{G})|$

Definition

The graph G is a π – *fixer* for a given permutation π if $\gamma(G) = \gamma(\pi G)$.

Definition

G is a *universal fixer* if it is a π -fixer for every permutation π .



Conjecture (Mynhardt, Xu, 2009)

Edgeless graphs are the only universal fixers.

K. Wash 2014

Conjecture (Mynhardt, Xu, 2009)

Edgeless graphs are the only universal fixers.

Conjecture (Mynhardt, Xu, 2009)

Edgeless graphs are the only universal fixers.

Known results

- A. P. Burger, C. M. Mynhardt, *Regular graphs are not universal fixers*,
Discrete Math. 310 (2010), 364-368.

Nas

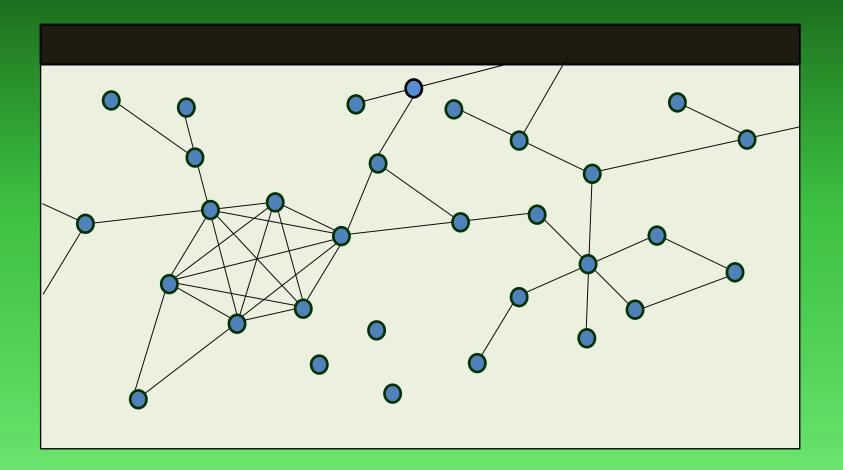
-E. J. Cockayne, R. G. Gibson, C. M. Mynhardt, *Claw-free graphs are not*

universal fixers, Discrete Math. 309 1 (2009), 128-133.

-R. G. Gibson, *Bipartite graphs are not universal fixers*, Discrete Math. 308 24 (2008), 5937-5943.

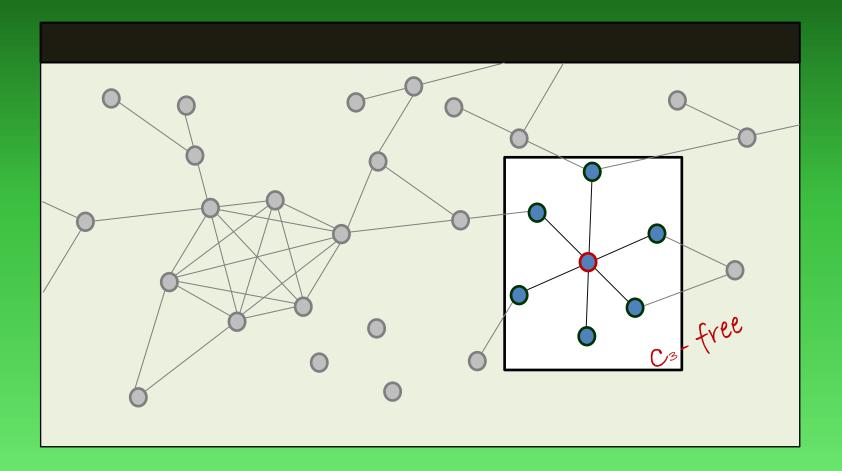
Theorem (R., Lemańska, Zuazua)

Graphs with C₃-free vertices are not universal fixers.



Theorem (R., Lemańska, Zuazua)

Graphs with C₃-free vertices are not universal fixers.



Definition

A γ–set A is a *separable γ-set* if it can be

Pu-V-Set partitioned into two nonempty subsets A1

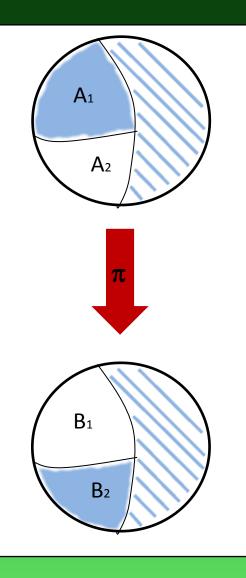
and A_2 such that A_1 dominates V-A.

Definition

For a given permutation π , a separable

 γ -set A is *effective* under π if the set B = π (A)

is a B₂- γ set, where B₂ = π (A₂).



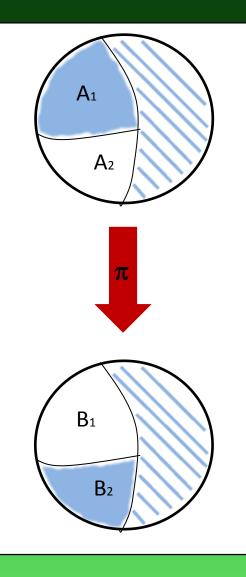
Theorem (Mynhardt, Xu)

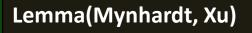
A graph G is a $\pi\text{-}\text{fixer}$ if and only if it has a

 γ -set effective under π .

Theorem (Mynhardt, Xu)

A graph G is a universal fixer if and only if for every permutation π it has a γ -set effective under π .

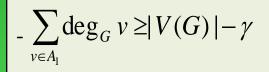




If $A=A_1 \cup A_2$ is an $A_1-\gamma$ -set of $G \neq \overline{K_n}$, then:

- A_2 is a 2-packing

- E(A₁, A₂) = φ



$$\sum_{v \in A_2} \deg_G v \leq |V(G)| - \gamma$$

Lemma(Mynhardt, Xu)

If $A=A_1 \cup A_2$ is an $A_1-\gamma$ -set of $G \neq \overline{K_n}$, then:

- A2 is a 2-packing

- $E(A_1, A_2) = \varphi$

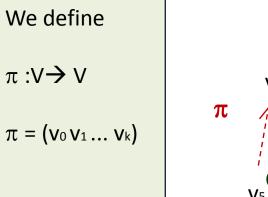
$$\sum_{v \in A_{1}} \deg_{G} v \geq |V(G)| - \gamma$$

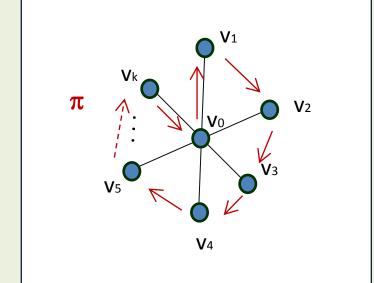
$$\sum_{v \in A_2} \deg_G v \leq |V(G)| - \gamma$$

Proof

Let v_0 be a C₃-free vertex in a graph G

and let $N = N_G[v_0] = \{v_0, v_1, v_2, ..., v_k\}.$





For every γ -set A of G we can show that A is not effective under π .

Lemma(Mynhardt, Xu)

If $A=A_1 \cup A_2$ is an $A_1-\gamma$ -set of $G \neq \overline{K_n}$, then:

- A2 is a 2-packing

- E(A₁, A₂) = φ

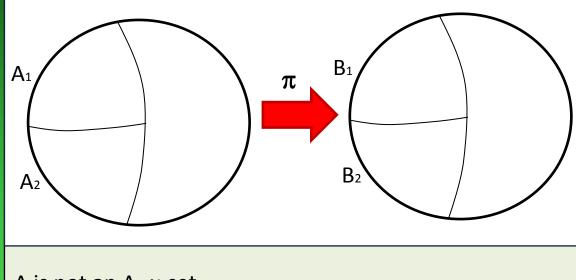
$$\sum_{v \in A_1} \deg_G v \ge |V(G)| - \gamma$$

$$\sum_{v \in A_2} \deg_G v \leq |V(G)| - \gamma$$

Proof

Let $A = A_1 \cup A_2$ be an A_1 - γ -set of G. We will prove that it is not effective under π .

0. If $A \cap N = \Phi$, A is asymmetric



A is not an A₂- γ -set

Lemma(Mynhardt, Xu)

If $A=A_1 \cup A_2$ is an $A_1-\gamma$ -set of $G \neq \overline{K_n}$, then:

- A2 is a 2-packing
- E(A₁, A₂) = φ

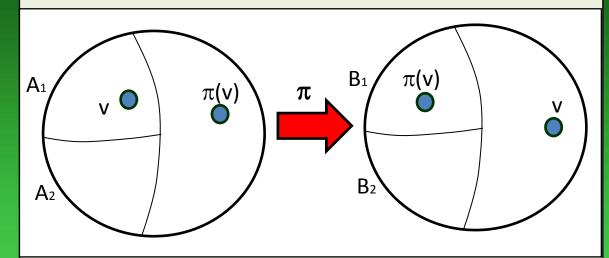
$$\sum_{v \in A_1} \deg_G v \ge |V(G)| - \gamma$$

$$\sum_{v \in A_2} \deg_G v \leq |V(G)| - \gamma$$

Proof

Let $A = A_1 \cup A_2$ be an A_1 - γ -set of G. We will prove that it is not effective under π .

 $1. \quad \text{If } A \cap N = \{v\}, \quad v \in A_1$



A₂ does not dominate v B is not a B₂-γ-set

Lemma(Mynhardt, Xu)

If $A=A_1 \cup A_2$ is an $A_1-\gamma$ -set of $G \neq \overline{K_n}$, then:

- A2 is a 2-packing
- E(A₁, A₂) = φ

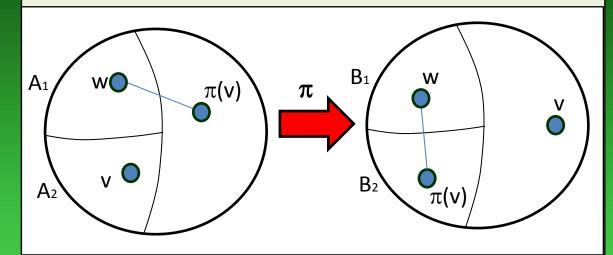
$$\sum_{v \in A_1} \deg_G v \ge |V(G)| - \gamma$$

$$\sum_{v \in A_2} \deg_G v \leq |V(G)| - \gamma$$

Proof

Let $A = A_1 \cup A_2$ be an A_1 - γ -set of G. We will prove that it is not effective under π .

 $1. \quad \text{If } A \cap N = \{v\}, \quad v \in A_2$



 $E(A_1, A_2) \neq \Phi$ B is not a B₂- γ -set

Lemma(Mynhardt, Xu)

If $A=A_1 \cup A_2$ is an $A_1-\gamma$ -set of $G \neq \overline{K_n}$, then:

- A2 is a 2-packing

- $E(A_1, A_2) = \varphi$

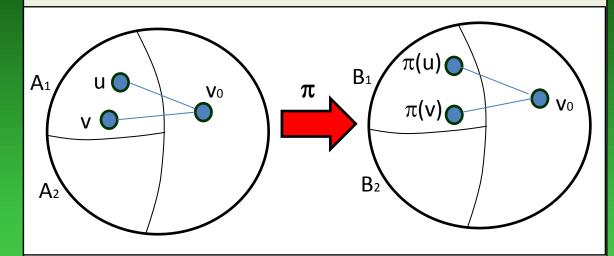
$$\sum_{v \in A_1} \deg_G v \ge |V(G)| - \gamma$$

$$\sum_{v \in A_2} \deg_G v \leq |V(G)| - \gamma$$

Proof

Let $A = A_1 \cup A_2$ be an A_1 - γ -set of G. We will prove that it is not effective under π .

2. If $A \cap N = \{u, v\}$, $u, v \in A_1$



B₁ is not a 2-packing B is not an B₂ – γ - set.

Lemma(Mynhardt, Xu)

If $A=A_1 \cup A_2$ is an $A_1-\gamma$ -set of $G \neq \overline{K_n}$, then:

- A2 is a 2-packing

- E(A₁, A₂) = φ

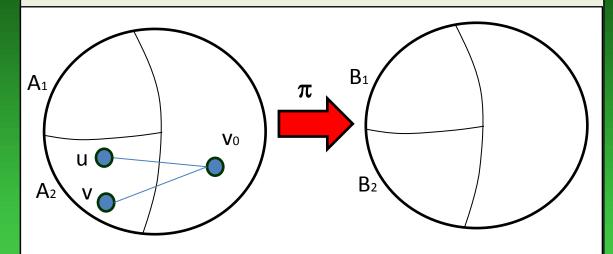
$$\sum_{v \in A_1} \deg_G v \ge |V(G)| - \gamma$$

$$\sum_{v \in A_2} \deg_G v \leq |V(G)| - \gamma$$

Proof

Let $A = A_1 \cup A_2$ be an A_1 - γ -set of G. We will prove that it is not effective under π .

2. If $A \cap N = \{u, v\}$, $u, v \in A_2$



A₂ is not a 2-packing A is not an A₁ – γ - set.

Lemma(Mynhardt, Xu)

If $A=A_1 \cup A_2$ is an $A_1-\gamma$ -set of $G \neq \overline{K_n}$, then:

- A2 is a 2-packing
- E(A₁, A₂) = φ

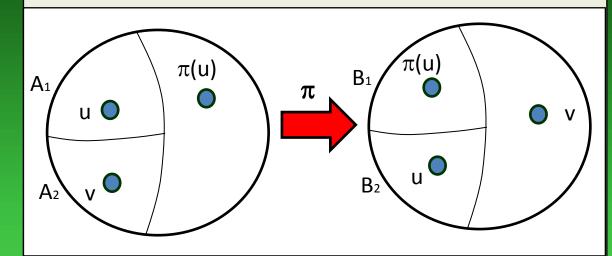
$$\sum_{v \in A_1} \deg_G v \ge |V(G)| - \gamma$$

$$\sum_{v \in A_2} \deg_G v \leq |V(G)| - \gamma$$

Proof

Let $A = A_1 \cup A_2$ be an A_1 - γ -set of G. We will prove that it is not effective under π .

2. If $A \cap N = \{u, v\}$, $u \in A_1, v \in A_2$ $\pi(v) = u$



B₂ does not dominate v. B is not an B₂ – γ - set.

Lemma(Mynhardt, Xu)

If $A=A_1 \cup A_2$ is an $A_1-\gamma$ -set of $G \neq \overline{K_n}$, then:

- A2 is a 2-packing

- E(A₁, A₂) = φ

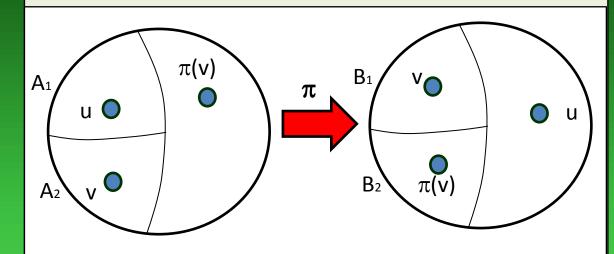
$$\sum_{v \in A_1} \deg_G v \ge |V(G)| - \gamma$$

$$\sum_{v \in A_2} \deg_G v \leq |V(G)| - \gamma$$

Proof

Let $A = A_1 \cup A_2$ be an A_1 - γ -set of G. We will prove that it is not effective under π .

2. If $A \cap N = \{u, v\}$, $u \in A_1, v \in A_2$ $\pi(u) = v$



B₂ does not dominate u. B is not an B₂ – γ - set.

Lemma(Mynhardt, Xu)

If $A=A_1 \cup A_2$ is an $A_1-\gamma$ -set of $G \neq \overline{K_n}$, then:

- A2 is a 2-packing

- E(A₁, A₂) = φ

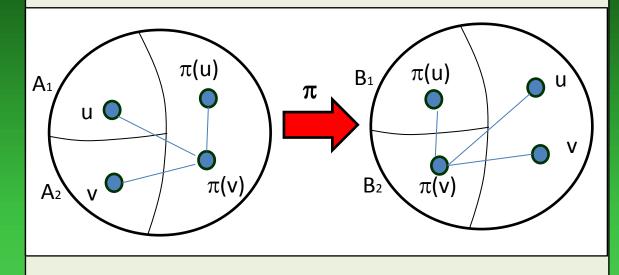
 $\sum_{v \in A_{1}} \deg_{G} v \geq |V(G)| - \gamma$

$$\sum_{v \in A_2} \deg_G v \leq |V(G)| - \gamma$$

Proof

Let $A = A_1 \cup A_2$ be an A_1 - γ -set of G. We will prove that it is not effective under π .

2. If $A \cap N = \{u, v\}$, $u \in A_1, v \in A_2$ $\pi(u), \pi(v) \notin \{u, v\}$



B is not an $B_2 - \gamma$ - set.

Lemma(Mynhardt, Xu)

If $A=A_1 \cup A_2$ is an $A_1-\gamma$ -set of $G \neq \overline{K_n}$, then:

- A2 is a 2-packing

- E(A₁, A₂) = φ

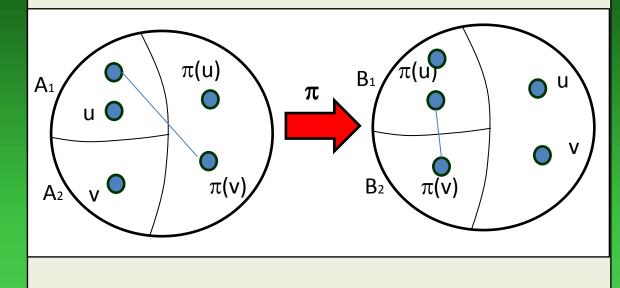
 $\sum_{v \in A_1} \deg_G v \ge |V(G)| - \gamma$

$$\sum_{v \in A_2} \deg_G v \leq |V(G)| - \gamma$$

Proof

Let $A = A_1 \cup A_2$ be an A_1 - γ -set of G. We will prove that it is not effective under π .

2. If $A \cap N = \{u, v\}$, $u \in A_1, v \in A_2$ $\pi(u), \pi(v) \notin \{u, v\}$



B is not an $B_2 - \gamma$ - set.

Theorem (R.)

Edgeless graphs are the only universal fixers.

The proof relies on defining a permutation π of V(G) such that

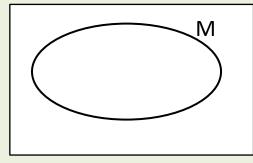
no γ -set is effective under π .

Lemma

Let M be a set containing no induced 5-cycle, no 5-cycle with exactly one chord and no independent subset of size 3.

Let K be the largest clique in M. Let K* be the largest clique in M-K. Let R = M - K - K*. Then:

$$\forall \exists_{x_i \in R} \exists_{y_i \in K} x_i y_i \notin E(G)$$



if $x_i \neq x_j$, then $y_i \neq y_j$ and $z_i \neq z_j$

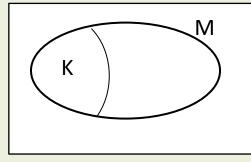
 $\neg \forall_{x_i \in R} \exists_{z_i \in K} x_i z_i \in E(G)$

Lemma

Let M be a set containing no induced 5-cycle, no 5-cycle with exactly one chord and no independent subset of size 3.

Let K be the largest clique in M. Let K* be the largest clique in M-K. Let R = M - K - K*. Then:

$$\forall \underset{x_i \in R \ y_i \in K}{\exists} x_i y_i \notin E(G)$$
$$\neg \underset{x_i \in R}{\forall} \underset{z_i \in K}{\exists} x_i z_i \in E(G)$$



if $x_i \neq x_j$, then $y_i \neq y_j$ and $z_i \neq z_j$

Lemma

Let M be a set containing no induced 5-cycle, no 5-cycle with exactly one chord and no independent subset of size 3.

Let K be the largest clique in M. Let K* be the largest clique in M-K. Let R = M - K - K*. Then:

$$\forall \exists_{x_i \in R} \exists_{y_i \in K} x_i y_i \notin E(G)$$

К К*

if $x_i \neq x_j$, then $y_i \neq y_j$ and $z_i \neq z_j$

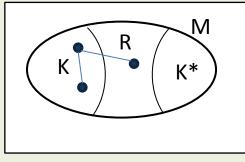
$$\neg \forall_{x_i \in R} \exists_{z_i \in K} x_i z_i \in E(G)$$

Lemma

Let M be a set containing no induced 5-cycle, no 5-cycle with exactly one chord and no independent subset of size 3.

Let K be the largest clique in M. Let K* be the largest clique in M-K. Let R = M - K - K*. Then:

$$\forall_{x_i \in R} \exists_{y_i \in K} x_i y_i \notin E(G)$$



if $x_i \neq x_j$, then $y_i \neq y_j$ and $z_i \neq z_j$

$$\neg \forall_{x_i \in R} \exists_{z_i \in K} x_i z_i \in E(G)$$

Proof (idea) of the theorem

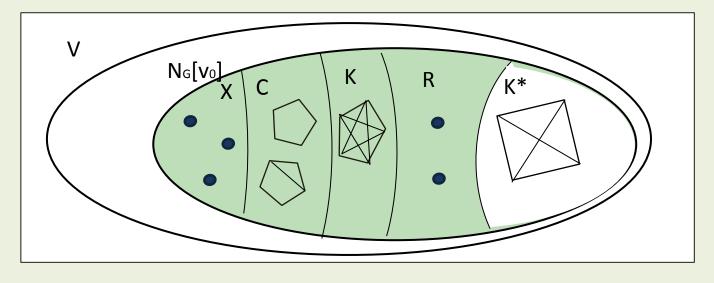
Let v₀ be any vertex of G. We construct a set $N \subset N_G[v_0]$.

 $X_1, ..., X_k$ – independent subsets of size ≥ 3 .

 $N_1 = N_G[v_0] - X$ contains no independent sets of size ≥ 3 .

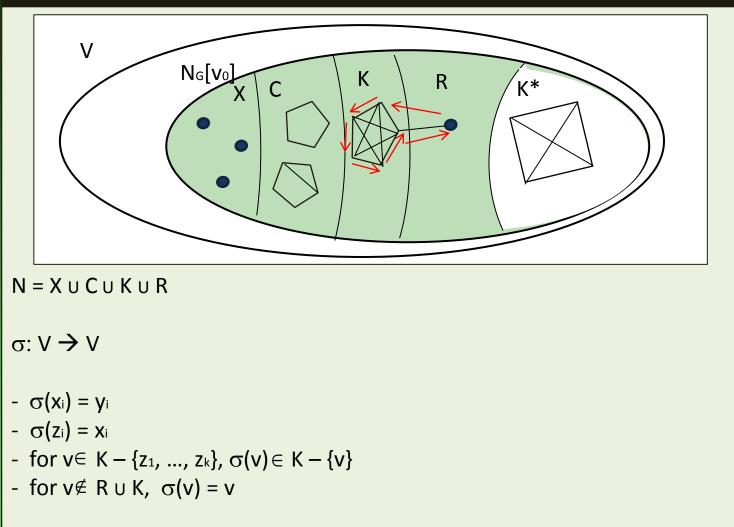
 C_1 , ..., C_t – 5-cycles (chordless and with one chord) in N-X

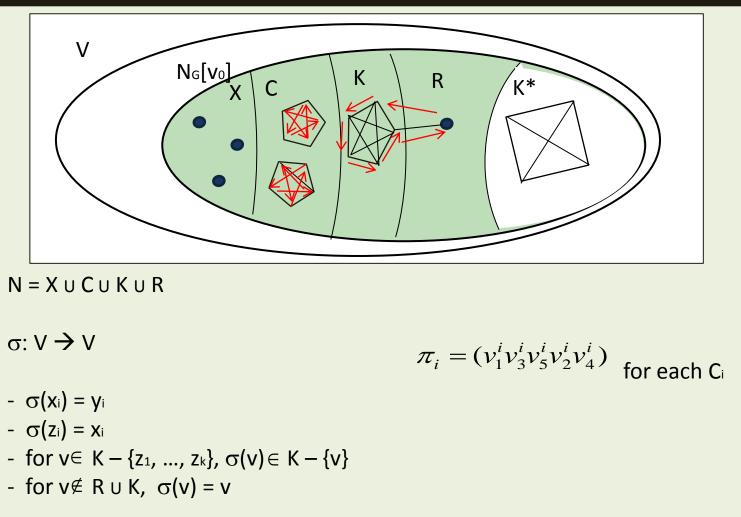
 $M = N_1 - C$ contains none of the forbidden subgraphs.

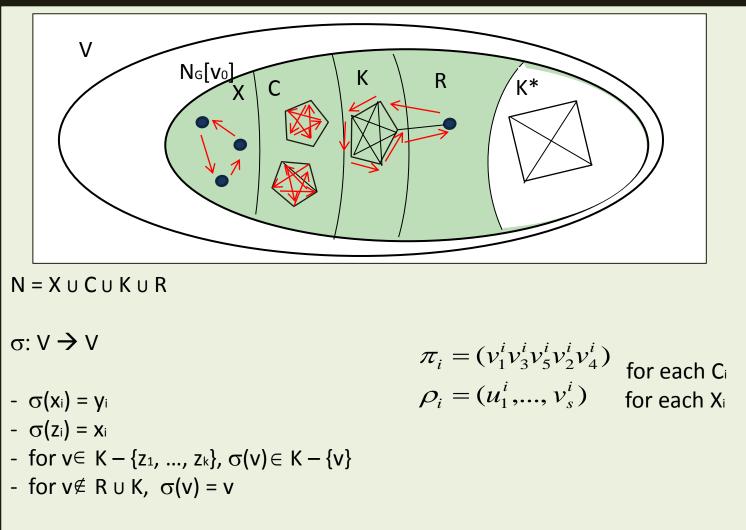


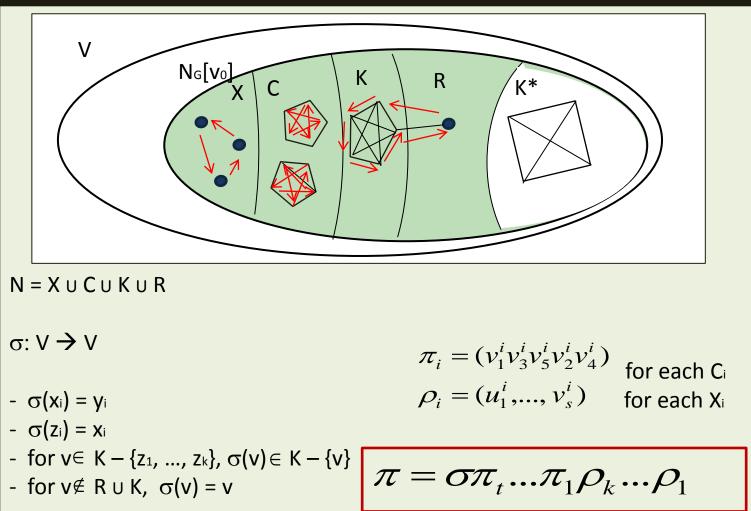
 $X = \bigcup_{i=1}^{n} X_{i}$

 $C = \bigcup_{i=1}^{t} C_i$

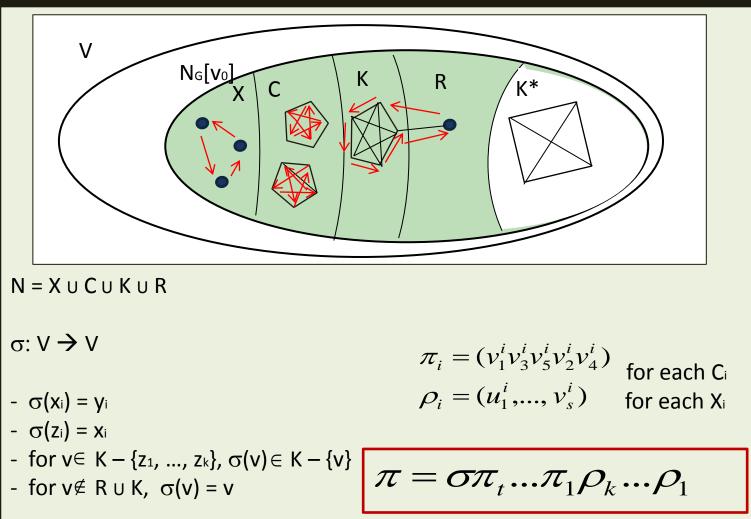








Universal fixers

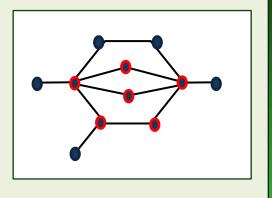


No γ -set is effective under π .

Definition

A set S of vertices is **convex** if for every pair of vertices

 $u, v \in S$, the set S contains all shortest u-v paths.



Definition

A convex dominating set in G is a dominating set which is convex.

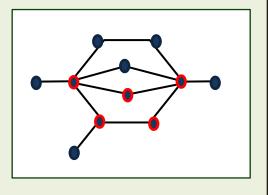
 $\gamma_{con}(G)$ denotes the size of the smallest convex dominating set.

Definition

A set S of vertices is weakly convex if for every pair

of vertices $u, v \in S$, the set S contains a shortest

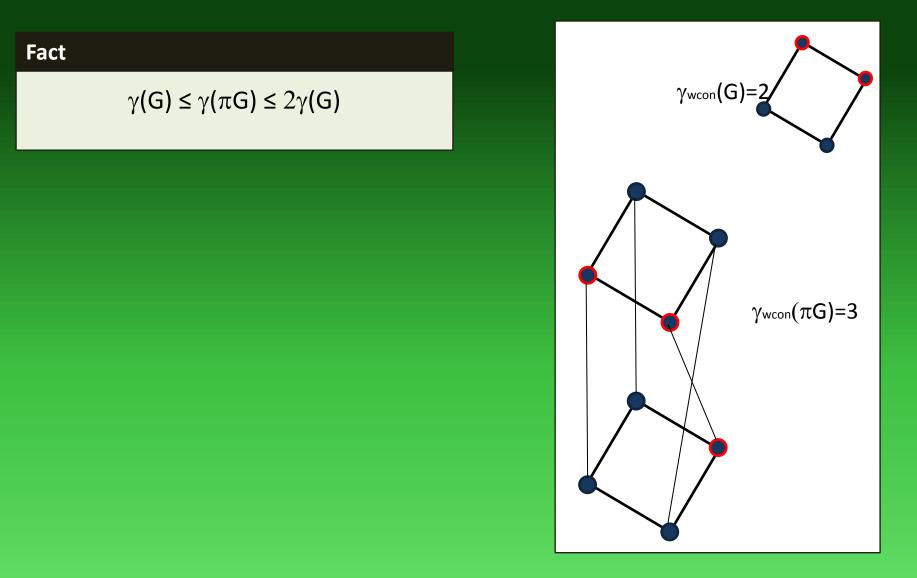
u-v path.

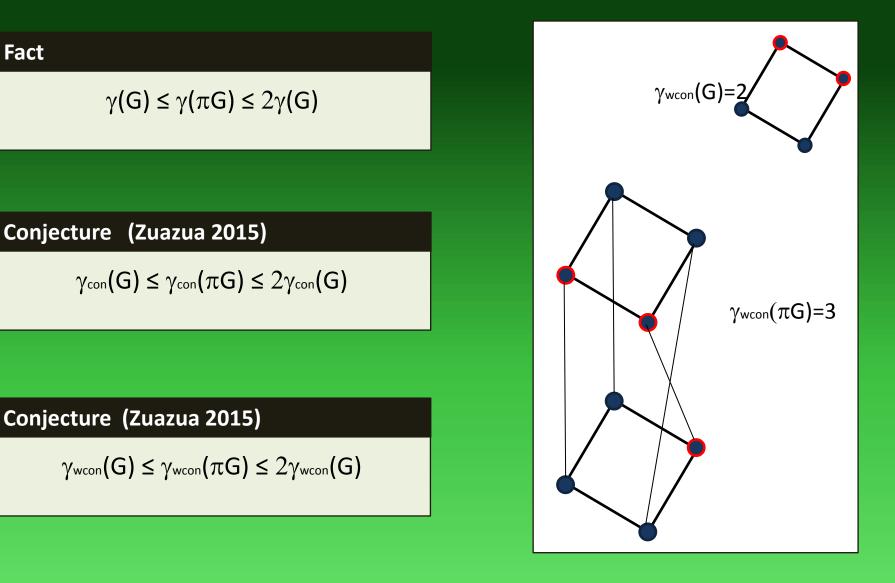


Definition

A weakly convex dominating set in G is a dominating set which is weakly convex.

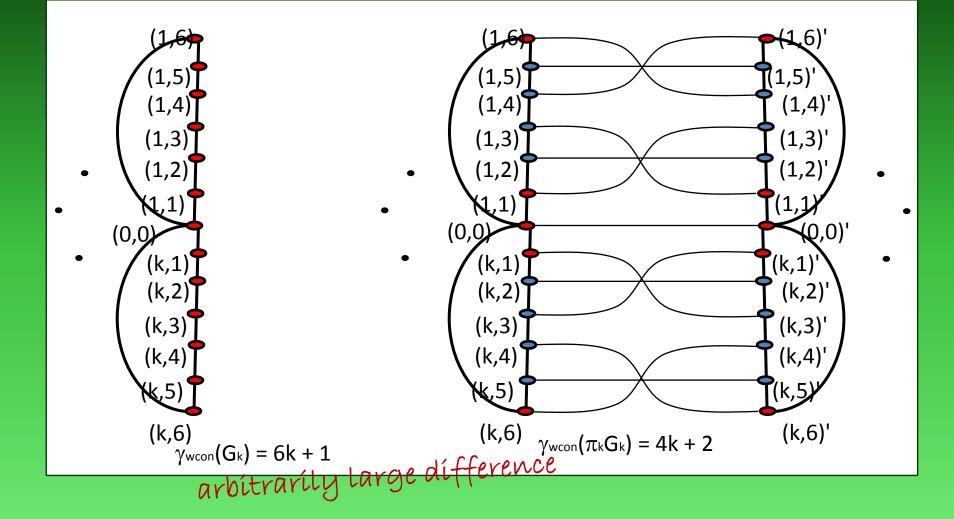
 $\gamma_{wcon}(G)$ denotes the size of the smallest weakly convex dominating set.





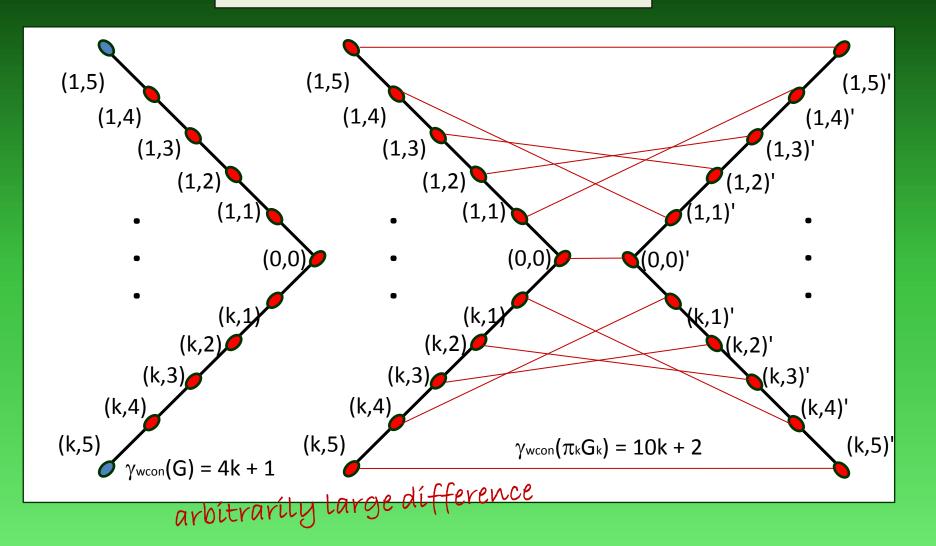
Conjecture

$$\gamma_{wcon}(G) \leq \gamma_{wcon}(\pi G) \leq 2\gamma_{wcon}(G)$$



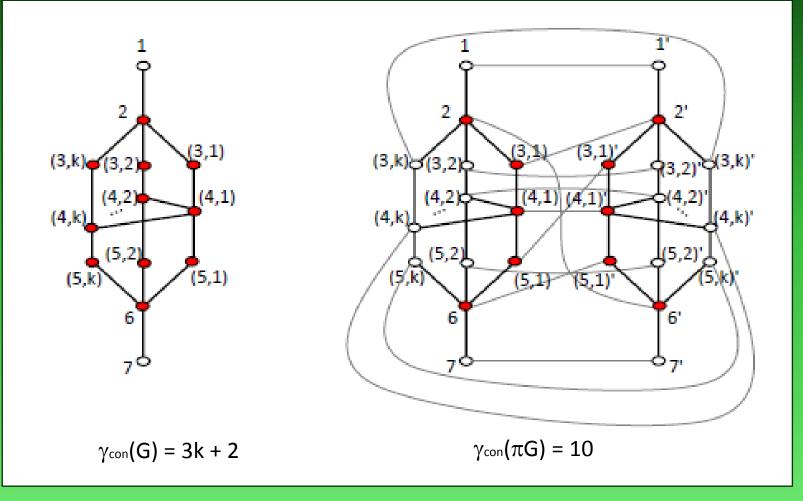
Conjecture

$$\gamma_{wcon}(G) \leq \gamma_{wcon}(\pi G) \leq 2\gamma_{wcon}(G)$$



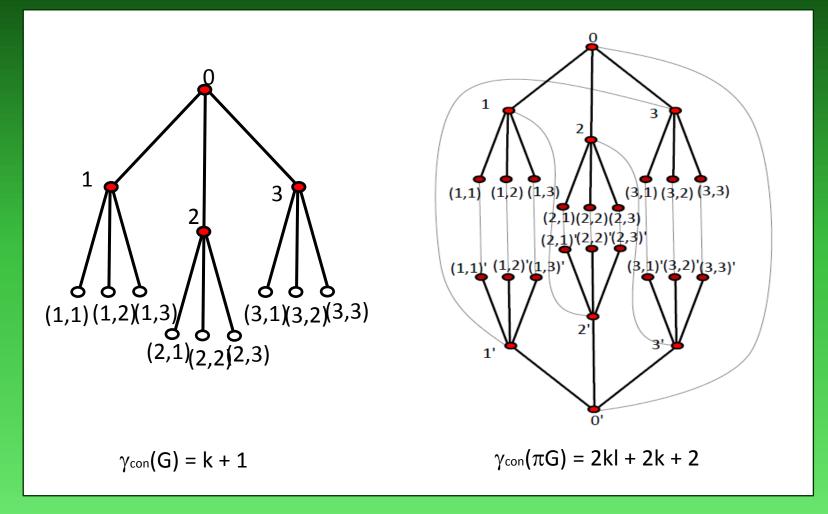
Conjecture

$\gamma_{con}(G) \leq \gamma_{con}(\pi G) \leq 2\gamma_{wcon}(G)$



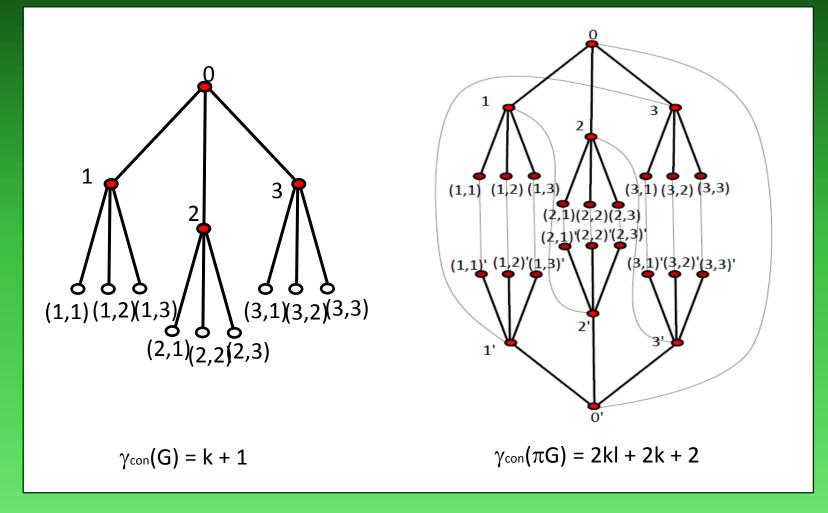
Conjecture

$$\gamma_{wcon}(G) \leq \gamma_{con}(\pi G) \leq 2\gamma_{con}(G)$$



Remark (R. 2017+)

 $\gamma_{con}(\pi G)$ cannot be bounded in terms of $\gamma_{con}(G)$



Lemma (Lemańska, Zuazua 2012)

Let G be a connected graph such that $diamG \le 2$ and let π be a permutation of V(G). Let D be a convex dominating set of πG and let

 $D_1 = D \cap V$ and $D_2' = D \cap V'$.

Then:

1) If $\pi(D_1)$ **c** D_2 , then D_2 is a convex dominating set of G;

2) If $\pi^1(D_2) c D_1$, then D_1 is a convex dominating set of G.

Lemma (R. 2017+)

Let G be a connected graph such that $diamG \le 2$ and let π be a permutation of V(G). Let D be a weakly convex dominating set of πG and let

 $D_1 = D \cap V$ and $D_2' = D \cap V'$.

Then:

1) If $\pi(D_1) c D_2$, then D_2 is a weakly convex dominating set of G;

2) If $\pi^1(D_2) c D_1$, then D_1 is a weakly convex dominating set of G.

Theorem (Lemańska, Zuazua 2012)

For any connected graph G:

- 1) If $diamG \le 2$, then V and V' are convex dominating sets of πG for any permutation π .
- 2) If *diam*G > 2, then there exist permutations π_1 , π_2 such that V is not a convex dominating set of π_1 G and V' is not a convex dominating set of π_2 G.

Theorem (R. 2017+)

For any connected graph G:

- 1) If $diamG \le 3$, then V and V' are weakly convex dominating sets of πG for any permutation π .
- 2) If diamG > 3, then there exist permutations π_1 , π_2 such that V is not a weakly convex dominating set of π_1 G and V' is not a weakly convex dominating set of π_2 G.

Convex, weakly convex and connected domination

Lemma (R. 2017+)

For any connected graph G and any permutation π

 $\gamma_{c}(\pi G) \geq \gamma(G)+1$

Corollary(R. 2017+)

For any connected graph G and any permutation π

 $\gamma_{con}(\pi G) \geq \gamma(G)+1, \qquad \gamma_{wcon}(\pi G) \geq \gamma(G)+1$

Proposition (R. 2017+)

 $\gamma_{c}(\pi G) \geq \gamma(G)+1$ iff G has a γ -set A=A₁, A₂ and v \in A₁ such that:

- (1) A₁ dominates V-A₂
- (2) $\pi(A_2 \cup \{v\})$ dominates V- $\pi(A_1)$
- (3) A_1 and $\pi(A_2 \{v\})$ are connected.

Theorem (R. 2017+)

For any connected graph G

$$\gamma_{con}(\pi G) = \min\{|V(G)|, 2\gamma_{con}(G)\}$$

Theorem (R. 2017+)

For any connected graph G

 $\gamma_{wcon}(\pi G) \leq \min\{|V(G)|, 2\gamma_{wcon}(G)\}$

Thank you!

- 1. A. P. Burger, C. M. Mynhardt, W. D. Weakley, *On the domination number of prisms of graphs*, Discuss. Math. Graph Theory 24 (2004), 303-318.
- 2. C. M. Mynhardt, Z. Xu, *Domination in prisms of graphs: universal fixers*, Utilitas Math. 78 (2009), 185-201.
- 3. M. Lemańska, R. Zuazua, *Convex universal fixers*, Discuss. Math. Graph Theory 32 (2012), 807-812.
- 4. M. Rosicka, M. Lemanska, R. Zuazua, *Graphs with C*₃-free vertices are not universal fixers, Utilitas Math. 105 (2017), 337-341.
- 5. M. Rosicka, A proof of the universal fixer conjecture, Utilitas Math. (to appear)
- 6. M. Rosicka, *Convex and weakly convex domination in prism graphs,* Discuss. Mat. Graph Theory (to appear).
- 7. K. Wash, *Edgeless graphs are the only universal fixers*, Czech. Math. J. 64 (2014), 833-843.