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Introduction 

For a given graph G = (V, E) and permutation p: V  V, the prism graph pG is  defined 
as follows: 

- Take two copies G, G' of G, 

-Denote the copy of v in G' by v', 

- For each v ϵ V, add the edge vp(v)'. 
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Definition 

D is a dominating set of G if every vertex v ϵ V-D has a neighbor in D.  

Domination number, g(G): the the size of the smallest dominating set in G.  
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g(G)=2 

g(pG)=2 

Fact  1 

For any graph G and permutation p 

g(G)  ≤ g(pG) ≤ 2g(G) 

Fact  2 

For any graph G and permutation p 

g(pG) ≤ |V(G)| 

Introduction 



Definition 

The graph G is a p – fixer for a given 
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Definition 

G is a universal fixer if it is a p-fixer for every 
permutation p. 

g(G)=2 

g(pG)=3 
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- A. P. Burger, C. M. Mynhardt, Regular graphs are not universal fixers, 

Discrete Math. 310 (2010), 364-368. 

-E. J. Cockayne, R. G. Gibson, C. M. Mynhardt, Claw-free graphs are not 

universal fixers, Discrete Math. 309 1 (2009), 128-133.  

-R. G. Gibson, Bipartite graphs are not universal fixers, Discrete Math. 308 

24 (2008), 5937-5943. 
 

Known results 



Graphs with C3-free vertices are not universal fixers. 

 

Theorem (R., Lemańska, Zuazua) 
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Definition 

A g-set A is a separable g-set if it can be 

partitioned into two nonempty subsets A1 

and A2 such that  A1 dominates V-A. 
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Definition 

For a given permutation p, a separable  

g-set A is effective under p if the set B = p(A)  

is a B2-gset, where B2 = p(A2).  



Theorem   (Mynhardt, Xu) 

A graph G is a p-fixer if and only if it has a  

g-set effective under p. 

Theorem   (Mynhardt, Xu) 

A graph G is a universal fixer if and only if for 

every permutation p it has a g-set effective 

under p. 
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Lemma(Mynhardt, Xu) 

If A=A1 U A2 is an A1-g-set of 

G≠Kn, then: 

 

- A2 is a 2-packing 

 

- E(A1, A2) = φ 

 

-  

 

-  
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Let v0 be a C3-free vertex in a graph G  
 
and let  N = NG[v0] = {v0,v1,v2,...,vk}. 
 
We define  
 
p :V V 

 
p = (v0 v1 ... vk) 
 
 
 
 
 
 

For every g-set A of G we can show that A is not 
effective under p. 

 

Proof 
Lemma(Mynhardt, Xu) 
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Let A = A1 U A2 be an A1-g-set of G. We will prove that it is 
not effective under p. 
 
0.    If                    ,  A is asymmetric  
 
 
 
 
 
 
 
 
 
 
A is not an A2-g-set   
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Let A = A1 U A2 be an A1-g-set of G. We will prove that it is 
not effective under p. 
 
1.    If                    ,   
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Let A = A1 U A2 be an A1-g-set of G. We will prove that it is 
not effective under p. 
 
2.   If                        ,   
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B is not an B2 – g- set. 
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Universal fixers 

Edgeless graphs are the only universal fixers. 

 

Theorem (R.) 

The proof relies on defining a permutation p of V(G) such that  

no g-set is effective under p. 

 



Universal fixers 

Lemma   

Let M be a set containing no induced 5-cycle, no 5-cycle with exactly one 
chord and no independent subset of size 3.  
 
 
 
 
 
 
 
 
Let K be the largest clique in M.  
Let K* be the largest clique in M-K.  
Let R = M - K - K*. 
Then: 
 
-  
    if xi ≠ xj, then yi ≠ yj and zi ≠ zj  
- 
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Proof  (idea) of the theorem 

Let v0 be any vertex of G. We construct a set                           . 

X1, …, Xk – independent subsets of size ≥ 3.  

N1 = NG[v0] – X contains no independent sets of size ≥ 3. 

C1, …, Ct – 5-cycles (chordless and with one chord) in N-X 

M = N1 – C  contains none of the forbidden subgraphs. 
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Proof 

 
 
 
 
 
 
 
 
 
N = X U C U K U R 
 
s: V  V 
 
-  s(xi) = yi     
-  s(zi) = xi     
-  for v    K – {z1, …, zk}, s(v)    K – {v} 
-  for v    R U K,  s(v) = v 
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Convex and weakly convex domination 

A set S of vertices is convex if for every pair of vertices  

u,v ϵ S, the set S contains all shortest u-v paths.   

 

 

 

Definition 

A convex dominating set in G is a dominating set which is convex. 

gcon(G) denotes the size of the smallest convex dominating set. 

Definition 



Convex and weakly convex domination 

A set S of vertices is weakly convex if for every pair  

of vertices u,v ϵ S, the set S contains a shortest  

u-v path. 

 
 

 

Definition 

A weakly convex dominating set in G is a dominating set which is weakly convex. 

gwcon(G) denotes the size of the smallest weakly convex dominating set. 

Definition 



Convex and weakly convex domination 

g(G) ≤ g(pG) ≤ 2g(G) 
 

Fact  

gwcon(G)=2 

gwcon(pG)=3 



Convex and weakly convex domination 
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Convex and weakly convex domination 

gwcon(G) ≤ gwcon(pG) ≤ 2gwcon(G) 
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Convex and weakly convex domination 

gcon(G) = 3k + 2 gcon(pG) = 10 

gcon(G) ≤ gcon(pG) ≤ 2gwcon(G) 
 

Conjecture 
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Convex and weakly convex domination 

gcon(pG) cannot be bounded in terms of  gcon(G) 
 

Remark (R. 2017+)  
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Let G be a connected graph such that diamG ≤ 2 and let p be a permutation of V(G). 
Let D be a convex dominating set of pG and let  

D1 = D ᴖ V and D2' = D ᴖ V'. 

Then: 

1) If p(D1) c D2, then D2 is a convex dominating set of G;  
2) If p  (D2) c D1, then D1 is a convex dominating set of G. 

Lemma   (Lemańska,Zuazua 2012) 

-1 

Let G be a connected graph such that diamG ≤ 2 and let p be a permutation of V(G). 
Let D be a weakly convex dominating set of pG and let  

D1 = D ᴖ V and D2' = D ᴖ V'. 

Then: 

1) If p(D1) c D2, then D2 is a weakly convex dominating set of G;  
2) If p  (D2) c D1, then D1 is a weakly convex dominating set of G. 

Lemma  (R. 2017+) 

-1 

Convex and weakly convex domination 



For any connected graph G: 

1) If diamG ≤ 2, then V and V' are convex dominating sets of pG for any 
permutation p. 

2) If diamG > 2, then there exist permutations p1, p2 such that V is not a convex 
dominating set of p1G and V' is not a convex dominating set of p2G. 

Theorem  (Lemańska,Zuazua 2012) 

For any connected graph G: 

1) If diamG ≤ 3, then V and V' are weakly convex dominating sets of pG for any 
permutation p. 

2) If diamG > 3, then there exist permutations p1, p2 such that V is not a weakly 
convex dominating set of p1G and V' is not a weakly convex dominating set   

 of p2G. 

Theorem  (R. 2017+) 

Convex and weakly convex domination 



Convex, weakly convex and connected domination 

For any connected graph G and any permutation p 

gc(pG) ≥ g(G)+1 

Lemma (R. 2017+)  

gc(pG) ≥ g(G)+1 iff G has a g-set A=A1ᴗA2 and v ϵ A1 such that: 

(1) A1 dominates V-A2 

(2) p(A2ᴗ{v}) dominates V- p(A1) 

(3) A1 and p(A2ᴗ{v}) are connected. 

Proposition (R. 2017+)  

For any connected graph G and any permutation p 

gcon(pG) ≥ g(G)+1,        gwcon(pG) ≥ g(G)+1 

Corollary(R. 2017+)  



Convex and weakly convex domination in IdG 

For any connected graph G 

gcon(pG) = min{|V(G)|, 2gcon(G)} 

Theorem (R. 2017+)  

For any connected graph G 

gwcon(pG) ≤ min{|V(G)|, 2gwcon(G)} 

Theorem (R. 2017+)  



Thank you! 
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