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Introduction

Definition
For a given graph G = (V, E) and permutation 7t: V = V, the prism graph G is defined

as follows:

- Take two copies G, G' of G,
-Denote the copy of vin G' by v/,

- For each v € V, add the edge vr(v)'.
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Definition

D is a dominating set of G if every vertex v € V-D has a neighbor in D.

Domination number, Y(G): the the size of the smallest dominating set in G.
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For any graph G and permutation

7(G) <v(nG) £ 2y(G)

For any graph G and permutation &t

Y(nG) < |V(G)|

Definition

The graph G is a 7 — fixer for a given
permutation 1 if y(G) = y(nG).

Definition

G is a universal fixer if it is a w-fixer for every
permutation .
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Known results

- A. P. Burger, C. M. Mynhardt, Regular graphs are not universal fixers,

Discrete Math. 310 (2010), 364-368.

-E. J. Cockayne, R. G. Gibson, C. M. Mynhardt, Claw-free graphs are not
universal fixers, Discrete Math. 309 1 (2009), 128-133.
-R. G. Gibson, Bipartite graphs are not universal fixers, Discrete Math. 308

24 (2008), 5937-5943.




Graphs with Cs-free vertices

Theorem (R., Lemanska, Zuazua)

Graphs with Cs-free vertices are not universal fixers.
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Theorem (R., Lemanska, Zuazua)

Graphs with Cs-free vertices are not universal fixers.




Graphs with Cs-free vertices

Definition
A y—set A is a separable y-set if it can be

partitioned into two nonempty subsets A:

and A: such that A: dominates V-A. pe

Definition

For a given permutation 7, a separable

v-set A is effective under 7 if the set B = (A)

is a B2-yset, where B2 = m(Az). v




Graphs with Cs-free vertices

Theorem (Mynhardt, Xu)

A graph G is a nt-fixer if and only if it has a

v-set effective under m.

Theorem (Mynhardt, Xu)

A graph G is a universal fixer if and only if for

every permutation 7 it has a y-set effective

under . v




Graphs with Cs-free vertices

Lemma(Mynhardt, Xu)

If A=A1U Az is an A:-y-set of

G¢E, then:

- Az is a 2-packing

-E(A, A2) =0

- 2.degg vV(G) |-y
veh

D dege vV(G) |-

veA,
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Lemma(Mynhardt, Xu)

If A=A1U Az is an A:-y-set of

G¢E, then:
- Az is a 2-packing

-E(A1, A2) =

- 2.degg vV(G) |-y
veh

D dege vV(G) |-

veA,

Let vo be a Cs-free vertex in a graph G

and let N = Ng[vo] = {vo,v1,Vv2,...,Vk}.

We define

V2>V

V2
T =(Vovi... W)

For every y-set A of G we can show that A is not
effective under .
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Graphs with Cs-free vertices

EmE N TETE, o0 Let A = A1U Az be an A:-y-set of G. We will prove that it is
If A=A1U A: is an Ai-y-set of not effective under 7.
G#Kn, then: 2. IfANN={u,v}, ueA,ve A, 7(u), z(v) {u, v}
- Az is a 2-packing
A - B:1
- E(A1, A2) = & »
Ay B2
. D dege vV (G)|-y
veA

D dege vV(G) |-

veA, B is not an B2 — y- set.




Universal fixers

Theorem (R.)

Edgeless graphs are the only universal fixers.

The proof relies on defining a permutation © of V(G) such that

no y-set is effective under m.




Universal fixers

Let M be a set containing no induced 5-cycle, no 5-cycle with exactly one
chord and no independent subset of size 3.

Let K be the largest clique in M.
Let K* be the largest clique in M-K.
LetR=M - K - K*.

Then:
¥ 3%y ¢E©G)

if xi# x;, then yi# yjand zi # z;

- V. 3 xz, € E(G)

Xi ER Zi EK
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Universal fixers

Proof (idea) of the theorem

Let vo be any vertex of G. We construct asetN < N[V, ] .
X1, ..., Xk — independent subsets of size > 3.
N: = Ne[vo] — X contains no independent sets of size > 3.
Cy, ..., Ct— 5-cycles (chordless and with one chord) in N-X

M = N1 — C contains none of the forbidden subgraphs.




Universal fixers

N=XUCuKUuUR

o:V=2>V

- o(xi) =i

- G(Zi) = Xi

- forve K—{zy, ..., z}, o(v) e K—{v}
- forvég RuK, o(v)=v
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Universal fixers

N=XUCuKUuUR

c:V2>V TT, _(VIVIVIVIVLIl
- o(xi) =y Pi = (Ul,..., Vs)
- G(Zi)=Xi

- forve K—{zy, ..., z}, o(v) e K—{v}
- forvé RuK, o(v) =

)

for each G
for each Xi




Universal fixers

N=XUCuKUuUR

GIV%V [ T T

7 = (Vs for each G
- o(x) =i P =(Uy,..., Vi) for each X
- G(Zi)=Xi

- forve K—{zy, ..., z}, o(v) e K—{v} .
- forvé RuK, o(v)=v T = OTC¢ .- 701 Py -+




Universal fixers

N=XUCuKUuUR

o:V=2>V

= (Vll_vévévév‘ll) foreachCG [
- o(xi) =i O = (Uy,-., V) for each Xi
- G(Zi) = Xi
- forve K—{zy, ..., z}, o(v) e K—{v}
- forvég RuK, o(v)=v = O .. 701 Oy -+
No y-set is effective under .




Convex and weakly convex domination

Definition

A set S of vertices is convex if for every pair of vertices

u,v € S, the set S contains all shortest u-v paths.

Definition
A convex dominating set in G is a dominating set which is convex.

Ycon(G) denotes the size of the smallest convex dominating set.




Convex and weakly convex domination

Definition

A set S of vertices is weakly convex if for every pair
of vertices u,v € S, the set S contains a shortest

u-v path.

Definition
A weakly convex dominating set in G is a dominating set which is weakly convex.

Yweon(G) denotes the size of the smallest weakly convex dominating set.




Convex and weakly convex domination

Fact

Y(G) < y(nG) < 2y(G)

'chon(TCG )=3



Convex and weakly convex domination

Y(G) < y(nG) < 2y(G)

Conjecture (Zuazua 2015)

ycon(G) < ycon(TCG) < 2ycon(G)
'chon(TCG)=3

Conjecture (Zuazua 2015)

,YWCOH(G) S YWCOH(TEG) S 2YWCOH(G)




Convex and weakly convex domination

Conjecture

YWCOH(G) S 'YWCOI'I(TEG) S Z'chon(G)

k,6 k,6
( yzvcon(Gk) =6k +1 ( )

avorEravity wrgt

YWcon(TCka) =4k + 2
diFfevence




Convex and weakly convex domination

Conjecture

yWCOﬂ(G) S 'YWCOH(TEG) S ZYWCOH(G)

YWcon(TCka) =10k + 2




Convex and weakly convex domination

Conjecture

Yeon(G) £ Yeon(TG) < 2Yweon(G)

:.-l.'_':l

'Ycon(G) =3k +2 YCon(TCG) =10




Convex and weakly convex domination

Conjecture

Yweon(G) £ Yeon(TTG) £ 2Ycon(G)

! 3 | (1,1) (1,2)(1,3) {5,1}.;3,,2]&3,3]
2 I | 2122)(23) |
| l.:,z,i 2223 |
(1,11 (12)'(@a,8) T (3,1)'(3,2)'(3,3)"
(1,1)(1,2X1,3) (3,1)3, z)(3,3) .
o )
(2,1)2,2{2,3) 1

'Ycon(G) =k+1 'Ycon(TCG) =2kl + 2k + 2




Convex and weakly convex domination

Remark (R. 2017+)

Yeon(G) cannot be bounded in terms of Yn(G)
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o )
(2,1)2,2{2,3) 1

'Ycon(G) =k+1 'Ycon(TCG) =2kl + 2k + 2




Convex and weakly convex domination

Lemma (Lemanska,Zuazua 2012)

Let G be a connected graph such that diamG < 2 and let © be a permutation of V(G).
Let D be a convex dominating set of G and let

Di=D~V and D,'=D~ V.

Then:

1) If w(D1) ¢ D2, then D2 is a convex dominating set of G;
2) If t1(D2) ¢ D1, then D1 is a convex dominating set of G.

Lemma (R. 2017+)

Let G be a connected graph such that diamG < 2 and let © be a permutation of V(G).
Let D be a weakly convex dominating set of G and let

Di=D~V and D:)=D~V".

Then:

1) If ©(D1) ¢ D2, then D2 is a weakly convex dominating set of G;
2) If £1(D2) ¢ D3, then D1 is a weakly convex dominating set of G.




Convex and weakly convex domination

Theorem (Lemanska,Zuazua 2012)

For any connected graph G:

1) If diamG < 2, then V and V' are convex dominating sets of G for any
permutation .

2) If diamG > 2, then there exist permutations 71, 2 such that V is not a convex
dominating set of miG and V' is not a convex dominating set of m:G.

Theorem (R. 2017+)

For any connected graph G:

1) If diamG < 3, then V and V' are weakly convex dominating sets of G for any
permutation .

2) If diamG > 3, then there exist permutations 71, 2 such that V is not a weakly
convex dominating set of miG and V' is not a weakly convex dominating set
of mG.




convex and connected domination

Lemma (R. 2017+)

For any connected graph G and any permutation ©t

1<(nG) 2 y(G)+1

Corollary(R. 2017+)

For any connected graph G and any permutation

'Ycon(TCG) 2 'Y(G)"‘l, 'chon(TCG) 2 'Y(G)+1

Proposition (R. 2017+)

Y(nG) = y(G)+1 iff G has a y-set A=Ai1uA: and v € A1 such that:
(1) A: dominates V-A2
(2) m(A2u{v}) dominates V- w(A1)

(3) A1 and m(A2u{v}) are connected.




Convex and weakly convex domination in 1dG

Theorem (R. 2017+)

For any connected graph G

Yeon(TG) = Min{|V(G) |, 2Yon(G)}

Theorem (R. 2017+)

For any connected graph G

Yueon(TG) € MIN{|V(G) |, 2yweon(G)}
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