Forbidden subgraphs for constant domination number

Michitaka Furuya (Kitasato University)

Let G be a graph.

A set $S \subseteq V(G)$ is a dominating set of G if

for $\forall x \in V(G) - S$, $\exists y \in S$ s.t. $xy \in E(G)$.

The minimum cardinality of a dominating set of G is called the domination number of G, and is denoted by $\gamma(G)$.

Let G be a graph.

A set $S \subseteq V(G)$ is a dominating set of G if

```
for \forall x \in V(G) - S, \exists y \in S s.t. xy \in E(G).
```

The minimum cardinality of a dominating set of G is called the domination number of G, and is denoted by $\gamma(G)$.

Let G be a graph.

A set $S \subseteq V(G)$ is a dominating set of G if

```
for \forall x \in V(G) - S, \exists y \in S s.t. xy \in E(G).
```

The minimum cardinality of a dominating set of G is called the domination number of G, and is denoted by $\gamma(G)$.

<u>Theorem 1</u> (Ore, 1962) Let G be a conn. graph of order $n \ge 2$. Then $\gamma(G) \le n/2$.

<u>Theorem 2</u> (Fink et al., 1985; Payan and Xuong, 1982) A conn. graph G of order n satisfies $\gamma(G) = n/2$ if and only if $G = C_4$ or G is the corona of a conn. graph.

<u>Theorem 1</u> (Ore, 1962) Let G be a conn. graph of order $n \ge 2$. Then $\gamma(G) \le n/2$.

<u>Theorem 2</u> (Fink et al., 1985; Payan and Xuong, 1982) A conn. graph G of order n satisfies $\gamma(G) = n/2$ if and only if $G = C_4$ or G is the corona of a conn. graph.

Forbidden subgraph

Let ${\mathcal H}$ be a set of conn. graphs.

A graph G is \mathcal{H} -free if G has no graph in \mathcal{H} as an induced subgraph. (If G is $\{H\}$ -free, then G is simply said to be H-free.) In this context, graphs in \mathcal{H} are called forbidden subgraphs.

Forbidden subgraph

Let ${\mathcal H}$ be a set of conn. graphs.

A graph G is \mathcal{H} -free if G has no graph in \mathcal{H} as an induced subgraph. (If G is $\{H\}$ -free, then G is simply said to be H-free.) In this context, graphs in \mathcal{H} are called forbidden subgraphs.

Let \mathcal{H}_1 and \mathcal{H}_2 be sets of conn. graphs.

We write $\mathcal{H}_1 \leq \mathcal{H}_2$ if

for $\forall H_2 \in \mathcal{H}_2$, $\exists H_1 \in \mathcal{H}_1$ s.t. H_1 is an induced subgraph of H_2 .

 $\frac{\text{Remark}}{\text{If }\mathcal{H}_1 \leq \mathcal{H}_2 \text{, then every }\mathcal{H}_1 \text{-free graph is }\mathcal{H}_2 \text{-free.}}$

<u>Theorem 3</u> (Cockayne et al., 1985) Let G be a conn. { $K_{1,3}$, \bullet }-free graph of order n. Then $\gamma(G) \leq [n/3]$.

Let $\gamma_{pr}(G)$ be the minimum cardinality of a dominating set S of G s.t. G[S] has a perfect matching.

Theorem 4 (Dorbec et al., 2006) Let G be a conn. $K_{1,m}$ -free graph of order $n \ge 2$. Then $\gamma_{pr}(G) \le 2(mn + 1)/(2m + 1)$.

<u>Theorem 5</u> (Dorbec and Gravier, 2008) Let *G* be a conn. P_5 -free graph of order $n \ge 2$. If $G \neq C_5$, then $\gamma_{pr}(G) \le n/2 + 1$.

<u>Theorem 3</u> (Cockayne et al., 1985) Let G be a conn. { $K_{1,3}$, \bullet }-free graph of order n. Then $\gamma(G) \leq [n/3]$.

Let $\gamma_{pr}(G)$ be the minimum cardinality of a dominating set S of G s.t. G[S] has a perfect matching.

 $\begin{array}{l} \underline{\text{Theorem 4}} \ (\text{Dorbec et al., 2006})\\ \text{Let } G \ \text{be a conn.} \ K_{1,m} \text{-free graph of order } n \geq 2.\\ \text{Then } \gamma_{\mathrm{pr}}(G) \leq 2(mn+1)/(2m+1). \end{array}$

<u>Theorem 5</u> (Dorbec and Gravier, 2008) Let *G* be a conn. P_5 -free graph of order $n \ge 2$. If $G \neq C_5$, then $\gamma_{\rm pr}(G) \le n/2 + 1$.

We focus on the most effective case, that is, sets $\mathcal H$ of connected graphs satisfying the following:

 \exists const. $c = c(\mathcal{H})$ s.t. for \forall conn. \mathcal{H} -free graph $G, \gamma(G) \leq c$.

What graphs do belong to \mathcal{H} ??

Let K_{c+1}^* be the corona of K_{c+1} .

Since $\gamma(K_{c+1}^*) = c + 1$, K_{c+1}^* is *not* \mathcal{H} -free.

⇒ $\exists H \in \mathcal{H}$ s.t. *H* is an induced subgraph of K_{c+1}^* . ⇒ $\mathcal{H} \leq \{K_{c+1}^*\}$.

By similar argument, $\mathcal{H} \leq \{ \underbrace{\bullet, \bullet, \bullet}_{3c+1} \}$.

We focus on the most effective case, that is, sets $\mathcal H$ of connected graphs satisfying the following:

 \exists const. $c = c(\mathcal{H})$ s.t. for \forall conn. \mathcal{H} -free graph $G, \gamma(G) \leq c$.

What graphs do belong to \mathcal{H} ??

Let K_{c+1}^* be the corona of K_{c+1} .

Since $\gamma(K_{c+1}^*) = c + 1$, K_{c+1}^* is *not* \mathcal{H} -free.

By similar argument, $\mathcal{H} \leq \{ \underbrace{\bullet, \bullet, \bullet}_{3c+1} \}$.

⇒ $\exists H \in \mathcal{H}$ s.t. *H* is an induced subgraph of K_{c+1}^* . ⇒ $\mathcal{H} \leq \{K_{c+1}^*\}$.

We focus on the most effective case, that is, sets $\mathcal H$ of connected graphs satisfying the following:

 \exists const. $c = c(\mathcal{H})$ s.t. for \forall conn. \mathcal{H} -free graph $G, \gamma(G) \leq c$.

What graphs do belong to \mathcal{H} ??

Let K_{c+1}^* be the corona of K_{c+1} .

Since $\gamma(K_{c+1}^*) = c + 1$, K_{c+1}^* is *not* \mathcal{H} -free.

 K_{c+1}^* : K_{c+1}

⇒ $\exists H \in \mathcal{H}$ s.t. *H* is an induced subgraph of K_{c+1}^* . ⇒ $\mathcal{H} \leq \{K_{c+1}^*\}$.

By similar argument, $\mathcal{H} \leq \{ \underbrace{\bullet}_{a,c+1}, P_{3c+1} \}.$

Main result

<u>Theorem</u>

Let ${\mathcal H}$ be a set of conn. graphs.

Then

∃ const. $c = c(\mathcal{H})$ s.t. for ∀ conn. \mathcal{H} -free graph $G, \gamma(G) \leq c$ if and only if

 $\mathcal{H} \leq \{K_k^*, S_l^*, P_m\} \text{ for some positive integers } k, l \text{ and } m$ where $K_k^* = \underbrace{\bigoplus_{K_k}}_{K_k}$ and $S_l^* = \underbrace{\bigoplus_{l=1}^l}_{K_k}$.

We show that

$$\gamma(G) \leq 1 + \sum_{2 \leq i \leq m-2} f_{k,l}(i) R(k,l)$$

for \forall conn. { K_k^* , S_l^* , P_m }-free graph G, where

$$f_{k,l}(i) := \begin{cases} 1 & (i=1) \\ R(k, (l-1)f_{k,l}(i-1)+1) - 1 & (i \ge 2) \end{cases}$$

Let $x \in V(G)$, and let $X_i = \{y \in V(G) : \operatorname{dist}(x, y) = i\}$. Then $V(G) = \bigcup_{0 \le i \le m-2} X_i$.

Key Lemma

For $i \ge 2$, the set X_i is dominated by at most $f_{k,l}(i)R(k,l)$ vertices.

We show that

$$\gamma(G) \leq 1 + \sum_{2 \leq i \leq m-2} f_{k,l}(i) R(k,l)$$

for \forall conn. { K_k^* , S_l^* , P_m }-free graph G, where

$$f_{k,l}(i) := \begin{cases} 1 & (i=1) \\ R(k, (l-1)f_{k,l}(i-1)+1) - 1 & (i \ge 2) \end{cases}$$

Let $x \in V(G)$, and let $X_i = \{y \in V(G) : \operatorname{dist}(x, y) = i\}$. Then $V(G) = \bigcup_{0 \le i \le m-2} X_i$.

<u>Key Lemma</u>

For $i \ge 2$, the set X_i is dominated by at most $f_{k,l}(i)R(k,l)$ vertices.

We show that

$$\gamma(G) \leq 1 + \sum_{2 \leq i \leq m-2} f_{k,l}(i) R(k,l)$$

for \forall conn. { K_k^* , S_l^* , P_m }-free graph G, where

$$f_{k,l}(i) := \begin{cases} 1 & (i=1) \\ R(k, (l-1)f_{k,l}(i-1)+1) - 1 & (i \ge 2) \end{cases}$$

Let $x \in V(G)$, and let $X_i = \{y \in V(G) : \operatorname{dist}(x, y) = i\}$. Then $V(G) = \bigcup_{0 \le i \le m-2} X_i$.

<u>Key Lemma</u>

For $i \ge 2$, the set X_i is dominated by at most $f_{k,l}(i)R(k,l)$ vertices.

Suppose that X_i is independent. Let $U \subseteq X_{i-1}$ be a smallest set dominating X_i .

If U is "large"...

Suppose that X_i is independent. Let $U \subseteq X_{i-1}$ be a smallest set dominating X_i . If U is "large"...

• If \exists large clique $U_1 \subseteq U$...

• If \exists large indep. set $U_2 \subseteq U$...

Extension of main result

<u>Corollary</u>

Let μ be an invariant of graphs s.t.

 $c_1\gamma(G) \le \mu(G) \le c_2\gamma(G)$ for \forall conn. graph G of suff. large order. ----- (*)

Let ${\mathcal H}$ be a set of conn. graphs. Then

∃ const. $c = c(\mathcal{H})$ s.t. for ∀ conn. \mathcal{H} -free graph $G, \mu(G) \leq c$

if and only if

 $\mathcal{H} \leq \{K_k^*, S_l^*, P_m\}$ for some positive integers k, l and m.

Many domination-like invariants satisfy (*****). (total domination γ_t , paired domination γ_{pr} , etc...)

Extension of main result

<u>Corollary</u>

Let μ be an invariant of graphs s.t.

 $c_1\gamma(G) \le \mu(G) \le c_2\gamma(G)$ for \forall conn. graph G of suff. large order.

Let ${\mathcal H}$ be a set of conn. graphs. Then

∃ const. $c = c(\mathcal{H})$ s.t. for ∀ conn. \mathcal{H} -free graph $G, \mu(G) \leq c$

if and only if

 $\mathcal{H} \leq \{K_k^*, S_l^*, P_m\}$ for some positive integers k, l and m.

Many domination-like invariants satisfy (*****). (total domination γ_t , paired domination γ_{pr} , etc...)

Thank you for your attention!