Forbidden subgraphs for constant domination number

Michitaka Furuya (Kitasato University)

DOMA

Let G be a graph.
A set $S \subseteq V(G)$ is a dominating set of G if for $\forall x \in V(G)-S, \exists y \in S$ s.t. $x y \in E(G)$.
The minimum cardinality of a dominating set of G is called the domination number of G, and is denoted by $\gamma(G)$.

DOMn

Let G be a graph.
A set $S \subseteq V(G)$ is a dominating set of G if

$$
\text { for } \forall x \in V(G)-S, \exists y \in S \text { s.t. } x y \in E(G) \text {. }
$$

The minimum cardinality of a dominating set of G is called the domination number of G, and is denoted by $\gamma(G)$.

Donninginon

Let G be a graph.
A set $S \subseteq V(G)$ is a dominating set of G if

$$
\text { for } \forall x \in V(G)-S, \exists y \in S \text { s.t. } x y \in E(G) \text {. }
$$

The minimum cardinality of a dominating set of G is called the domination number of G, and is denoted by $\gamma(G)$.

Domination

Theorem 1 (Ore, 1962)
Let G be a conn. graph of order $n \geq 2$.
Then $\gamma(G) \leq n / 2$.
Theorem 2 (Fink et al., 1985; Payan and Xuong, 1982) A conn. graph G of order n satisfies $\gamma(G)=n / 2$ if and only if $G=C_{4}$ or G is the corona of a conn. graph.

H

corona of H

Domination

Theorem 1 (Ore, 1962)
Let G be a conn. graph of order $n \geq 2$.
Then $\gamma(G) \leq n / 2$.
Theorem 2 (Fink et al., 1985; Payan and Xuong, 1982)
A conn. graph G of order n satisfies $\gamma(G)=n / 2$ if and only if $G=C_{4}$ or G is the corona of a conn. graph.

Forbidden subgraph

Let \mathcal{H} be a set of conn. graphs.
A graph G is \mathcal{H}-free if G has no graph in \mathcal{H} as an induced subgraph. (If G is $\{H\}$-free, then G is simply said to be H-free.) In this context, graphs in \mathcal{H} are called forbidden subgraphs.

$K_{1,3}-$ free graph
$\left(K_{1,3}: \circlearrowleft\right)$

Forbidden subgraph

Let \mathcal{H} be a set of conn. graphs.
A graph G is \mathcal{H}-free if G has no graph in \mathcal{H} as an induced subgraph. (If G is $\{H\}$-free, then G is simply said to be H-free.) In this context, graphs in \mathcal{H} are called forbidden subgraphs.

Let \mathcal{H}_{1} and \mathcal{H}_{2} be sets of conn. graphs.
We write $\mathcal{H}_{1} \leq \mathcal{H}_{2}$ if for $\forall H_{2} \in \mathcal{H}_{2}, \exists H_{1} \in \mathcal{H}_{1}$ s.t. H_{1} is an induced subgraph of H_{2}.

Remark

If $\mathcal{H}_{1} \leq \mathcal{H}_{2}$, then every \mathcal{H}_{1}-free graph is \mathcal{H}_{2}-free.

Domination and forbidden subgraph

Theorem 3 (Cockayne et al., 1985)
Let G be a conn. $\left\{K_{1,3}, \ldots\right.$ \}-free graph of order n. Then $\gamma(G) \leq\lceil n / 3\rceil$.

Let $\gamma_{\mathrm{pr}}(G)$ be the minimum cardinality of a dominating set S of G s.t. $G[S]$ has a perfect matching.

Theorem 4 (Dorbec et al., 2006)

Let G be a conn. $K_{1, m}$-free graph of order $n \geq 2$.
Then $\gamma_{\mathrm{pr}}(G) \leq 2(m n+1) /(2 m+1)$.
Theorem 5 (Dorbec and Gravier, 2008)
Let G be a conn. P_{5}-free graph of order $n \geq 2$.
If $G \neq C_{5}$, then $\gamma_{\mathrm{pr}}(G) \leq n / 2+1$.

Domination and forbidden subgraph

Theorem 3 (Cockayne et al., 1985)
Let G be a conn. $\left\{K_{1,3}, \ldots\right.$ \}-free graph of order n.
Then $\gamma(G) \leq\lceil n / 3\rceil$.
Let $\gamma_{\mathrm{pr}}(G)$ be the minimum cardinality of a dominating set S of G s.t. $G[S]$ has a perfect matching.

Theorem 4 (Dorbec et al., 2006)
Let G be a conn. $K_{1, m}$-free graph of order $n \geq 2$.
Then $\gamma_{\mathrm{pr}}(G) \leq 2(m n+1) /(2 m+1)$.
Theorem 5 (Dorbec and Gravier, 2008)
Let G be a conn. P_{5}-free graph of order $n \geq 2$.
If $G \neq C_{5}$, then $\gamma_{\mathrm{pr}}(G) \leq n / 2+1$.

Domination and forbidden subgraph

We focus on the most effective case, that is, sets \mathcal{H} of connected graphs satisfying the following:

$$
\exists \text { const. } c=c(\mathcal{H}) \text { s.t. for } \forall \text { conn. } \mathcal{H} \text {-free graph } G, \gamma(G) \leq c .
$$

What graphs do belong to \mathcal{H} ??

Let K_{c+1}^{*} be the corona of K_{c+1}.
Since $\gamma\left(K_{c+1}^{*}\right)=c+1, K_{c+1}^{*}$ is not \mathcal{H}-free.
$\Rightarrow \exists H \in \mathcal{H}$ s.t. H is an induced subgraph of K_{c+1}^{*}. $\Rightarrow \mathcal{H} \leq\left\{K_{c+1}^{*}\right\}$.

By similar argument, $\mathcal{H} \leq\left\{0 \ldots, P_{3 c+1}\right\}$.

Domination and forbidden subgraph

We focus on the most effective case, that is, sets \mathcal{H} of connected graphs satisfying the following:

$$
\exists \text { const. } c=c(\mathcal{H}) \text { s.t. for } \forall \text { conn. } \mathcal{H} \text {-free graph } G, \gamma(G) \leq c .
$$

What graphs do belong to \mathcal{H} ?? Let K_{c+1}^{*} be the corona of K_{c+1}.
Since $\gamma\left(K_{c+1}^{*}\right)=c+1, K_{c+1}^{*}$ is not \mathcal{H}-free.

$\Rightarrow \exists H \in \mathcal{H}$ s.t. H is an induced subgraph of K_{c+1}^{*}.
$\Rightarrow \mathcal{H} \leq\left\{K_{c+1}^{*}\right\}$.
By similar argument, $\mathcal{H} \leq\left\{\mathfrak{0} \ldots, P_{3 c+1}\right\}$.

Domination and forbidden subgraph

We focus on the most effective case, that is, sets \mathcal{H} of connected graphs satisfying the following:

$$
\exists \text { const. } c=c(\mathcal{H}) \text { s.t. for } \forall \text { conn. } \mathcal{H} \text {-free graph } G, \gamma(G) \leq c .
$$

What graphs do belong to \mathcal{H} ??
Let K_{c+1}^{*} be the corona of K_{c+1}.
Since $\gamma\left(K_{c+1}^{*}\right)=c+1, K_{c+1}^{*}$ is not \mathcal{H}-free.

$\Rightarrow \exists H \in \mathcal{H}$ s.t. H is an induced subgraph of K_{c+1}^{*}.
$\Rightarrow \mathcal{H} \leq\left\{K_{c+1}^{*}\right\}$.
By similar argument, $\mathcal{H} \leq\{\overbrace{: \ldots,}^{c+1}, P_{3 c+1}\}$.

Main result

Theorem
Let \mathcal{H} be a set of conn. graphs.
Then
\exists const. $c=c(\mathcal{H})$ s.t. for \forall conn. \mathcal{H}-free graph $G, \gamma(G) \leq c$ if and only if
$\mathcal{H} \leq\left\{K_{k}^{*}, S_{l}^{*}, P_{m}\right\}$ for some positive integers k, l and m

Outline of proof of main result

We show that

$$
\gamma(G) \leq 1+\sum_{2 \leq i \leq m-2} f_{k, l}(i) R(k, l)
$$

for \forall conn. $\left\{K_{k}^{*}, S_{l}^{*}, P_{m}\right\}$-free graph G, where

$$
f_{k, l}(i):= \begin{cases}1 & (i=1) \\ R\left(k,(l-1) f_{k, l}(i-1)+1\right)-1 & (i \geq 2)\end{cases}
$$

Let $x \in V(G)$, and let $X_{i}=\{y \in V(G): \operatorname{dist}(x, y)=i\}$.
Then $V(G)=\mathrm{U}_{0 \leq i \leq m-2} X_{i}$.

Key Lemma

For $i \geq 2$, the set X_{i} is dominated by at most $f_{k, l}(i) R(k, l)$ vertices.

Outline of proof of main result

We show that

$$
\gamma(G) \leq 1+\sum_{2 \leq i \leq m-2} f_{k, l}(i) R(k, l)
$$

for \forall conn. $\left\{K_{k}^{*}, S_{l}^{*}, P_{m}\right\}$-free graph G, where

$$
f_{k, l}(i):= \begin{cases}1 & (i=1) \\ R\left(k,(l-1) f_{k, l}(i-1)+1\right)-1 & (i \geq 2)\end{cases}
$$

Let $x \in V(G)$, and let $X_{i}=\{y \in V(G): \operatorname{dist}(x, y)=i\}$.
Then $V(G)=\mathrm{U}_{0 \leq i \leq m-2} X_{i}$.

Key Lemma

For $i \geq 2$, the set X_{i} is dominated by at most $f_{k, l}(i) R(k, l)$ vertices.

Outline of proof of main result

We show that

$$
\gamma(G) \leq 1+\sum_{2 \leq i \leq m-2} f_{k, l}(i) R(k, l)
$$

for \forall conn. $\left\{K_{k}^{*}, S_{l}^{*}, P_{m}\right\}$-free graph G, where

$$
f_{k, l}(i):= \begin{cases}1 & (i=1) \\ R\left(k,(l-1) f_{k, l}(i-1)+1\right)-1 & (i \geq 2)\end{cases}
$$

Let $x \in V(G)$, and let $X_{i}=\{y \in V(G): \operatorname{dist}(x, y)=i\}$.
Then $V(G)=\mathrm{U}_{0 \leq i \leq m-2} X_{i}$.

Key Lemma

For $i \geq 2$, the set X_{i} is dominated by at most $f_{k, l}(i) R(k, l)$ vertices.

Outline of proof of main result

Suppose that X_{i} is independent. Let $U \subseteq X_{i-1}$ be a smallest set dominating X_{i}. If U is "large"...

- If \exists large clique $U_{1} \subseteq U$...

- If ヨlarge indep. set $U_{2} \subseteq U$...

Outline of proof of main result

Suppose that X_{i} is independent.
Let $U \subseteq X_{i-1}$ be a smallest set dominating X_{i}.
If U is "large"...

- If \exists large clique $U_{1} \subseteq U$...

- If ヨlarge indep. set $U_{2} \subseteq U$...

Extension of main result

Corollary

Let μ be an invariant of graphs s.t.
$c_{1} \gamma(G) \leq \mu(G) \leq c_{2} \gamma(G)$ for \forall conn. graph G of suff. large order.

Let \mathcal{H} be a set of conn. graphs.
Then
\exists const. $c=c(\mathcal{H})$ s.t. for \forall conn. \mathcal{H}-free graph $G, \mu(G) \leq c$ if and only if
$\mathcal{H} \leq\left\{K_{k}^{*}, S_{l}^{*}, P_{m}\right\}$ for some positive integers k, l and m.
Many domination-like invariants satisfy ($*$).
(total domination γ_{t}, paired domination γ_{pr}, etc...)

Extension of main result

Corollary

Let μ be an invariant of graphs s.t.
$c_{1} \gamma(G) \leq \mu(G) \leq c_{2} \gamma(G)$ for \forall conn. graph G of suff. large order.

Let \mathcal{H} be a set of conn. graphs.
Then
\exists const. $c=c(\mathcal{H})$ s.t. for \forall conn. \mathcal{H}-free graph $G, \mu(G) \leq c$
if and only if
$\mathcal{H} \leq\left\{K_{k}^{*}, S_{l}^{*}, P_{m}\right\}$ for some positive integers k, l and m.
Many domination-like invariants satisfy ($*$).
(total domination γ_{t}, paired domination γ_{pr}, etc...)

