Degree powers in graphs with a forbidden forest

Henry Liu¹

Joint work with Yongxin Lan², Zhongmei Qin³, and Yongtang Shi²

¹Sun Yat-sen University, China ²Nankai University, China ³Chang'an University, China

The Japanese Conference on Combinatorics and its Applications (JCCA 2018) in Sendai 24 May 2018

For a fixed graph H, let ex(n, H) denote the classical *Turán function*. That is

$$ex(n, H) = max\{e(G) : |V(G)| = n \text{ and } G \not\supset H\}.$$

For a fixed graph H, let ex(n, H) denote the classical *Turán function*. That is

$$ex(n, H) = max\{e(G) : |V(G)| = n \text{ and } G \not\supset H\}.$$

Turán's classical result (1941): For $n \ge r \ge 2$, we have $ex(n, K_{r+1}) = e(T_r(n))$, where $T_r(n)$ is the complete balanced r-partite Turán graph on n vertices. Moreover, $T_r(n)$ is the unique extremal graph attaining $ex(n, K_{r+1})$.

For a fixed graph H, let ex(n, H) denote the classical *Turán function*. That is

$$ex(n, H) = max\{e(G) : |V(G)| = n \text{ and } G \not\supset H\}.$$

Turán's classical result (1941): For $n \ge r \ge 2$, we have $ex(n, K_{r+1}) = e(T_r(n))$, where $T_r(n)$ is the complete balanced r-partite Turán graph on n vertices. Moreover, $T_r(n)$ is the unique extremal graph attaining $ex(n, K_{r+1})$.

The function ex(n, H) has been well studied.

For a fixed graph H, let ex(n, H) denote the classical *Turán function*. That is

$$ex(n, H) = max\{e(G) : |V(G)| = n \text{ and } G \not\supset H\}.$$

Turán's classical result (1941): For $n \ge r \ge 2$, we have $ex(n, K_{r+1}) = e(T_r(n))$, where $T_r(n)$ is the complete balanced r-partite Turán graph on n vertices. Moreover, $T_r(n)$ is the unique extremal graph attaining $ex(n, K_{r+1})$.

The function ex(n, H) has been well studied.

▶ Important results include the Erdős-Stone Theorem (1946) and "stability" theorems of Erdős and Simonovits (1960s).

For a fixed graph H, let ex(n, H) denote the classical *Turán function*. That is

$$ex(n, H) = max\{e(G) : |V(G)| = n \text{ and } G \not\supset H\}.$$

Turán's classical result (1941): For $n \ge r \ge 2$, we have $ex(n, K_{r+1}) = e(T_r(n))$, where $T_r(n)$ is the complete balanced r-partite Turán graph on n vertices. Moreover, $T_r(n)$ is the unique extremal graph attaining $ex(n, K_{r+1})$.

The function ex(n, H) has been well studied.

- ▶ Important results include the Erdős-Stone Theorem (1946) and "stability" theorems of Erdős and Simonovits (1960s).
- A well known conjecture: $ex(n, C_{2k}) = (c_k + o(1))n^{1+1/k}$. Only known to be true for k = 2, 3, 5.

Let $P_\ell = \mathsf{path}$ on ℓ vertices. A classical result ...

Theorem 1 (Erdős and Gallai, 1959)

For $\ell \geq 2$, we have $\exp(n, P_{\ell}) \leq (\frac{\ell}{2} - 1)n$. Moreover, if $\ell - 1$ divides n, then equality holds only for the graph with vertex-disjoint copies of $K_{\ell-1}$.

Theorem 1 (Erdős and Gallai, 1959)

For $\ell \geq 2$, we have $\operatorname{ex}(n, P_{\ell}) \leq (\frac{\ell}{2} - 1)n$. Moreover, if $\ell - 1$ divides n, then equality holds only for the graph with vertex-disjoint copies of $K_{\ell-1}$.

Inspired by Theorem 1, a long standing conjecture ...

Theorem 1 (Erdős and Gallai, 1959)

For $\ell \geq 2$, we have $\operatorname{ex}(n, P_{\ell}) \leq (\frac{\ell}{2} - 1)n$. Moreover, if $\ell - 1$ divides n, then equality holds only for the graph with vertex-disjoint copies of $K_{\ell-1}$.

Inspired by Theorem 1, a long standing conjecture ...

Conjecture 2 (Erdős and Sós, 1963)

If T is a tree on $t \ge 2$ vertices, then $ex(n, T) \le (\frac{t}{2} - 1)n$.

Theorem 1 (Erdős and Gallai, 1959)

For $\ell \geq 2$, we have $\mathrm{ex}(n,P_\ell) \leq (\frac{\ell}{2}-1)n$. Moreover, if $\ell-1$ divides n, then equality holds only for the graph with vertex-disjoint copies of $K_{\ell-1}$.

Inspired by Theorem 1, a long standing conjecture ...

Conjecture 2 (Erdős and Sós, 1963)

If T is a tree on $t \ge 2$ vertices, then $ex(n, T) \le (\frac{t}{2} - 1)n$.

Theorem 1 was sharpened to ...

Theorem 1 (Erdős and Gallai, 1959)

For $\ell \geq 2$, we have $\operatorname{ex}(n, P_{\ell}) \leq (\frac{\ell}{2} - 1)n$. Moreover, if $\ell - 1$ divides n, then equality holds only for the graph with vertex-disjoint copies of $K_{\ell-1}$.

Inspired by Theorem 1, a long standing conjecture ...

Conjecture 2 (Erdős and Sós, 1963)

If T is a tree on $t \ge 2$ vertices, then $ex(n, T) \le (\frac{t}{2} - 1)n$.

Theorem 1 was sharpened to ...

Theorem 3 (Faudree and Schelp, 1975)

Let $\ell \geq 2$ and $n = a(\ell-1) + b$, where $a \geq 0$ and $0 \leq b < \ell-1$. We have $\operatorname{ex}(n, P_{\ell}) = a\binom{\ell-1}{2} + \binom{b}{2}$. Moreover, an extremal graph (among others) is $aK_{\ell-1} \cup K_b$.

Results for linear forests ...

Theorem 4 (Erdős and Gallai, 1959)

Let $k \ge 2$ and $n > \frac{5k}{2} - 1$. We have $ex(n, kP_2) = e(K_{k-1} + E_{n-k+1})$. Moreover, $K_{k-1} + E_{n-k+1}$ is the unique extremal graph.

Theorem 4 (Erdős and Gallai, 1959)

Let $k \ge 2$ and $n > \frac{5k}{2} - 1$. We have $ex(n, kP_2) = e(K_{k-1} + E_{n-k+1})$. Moreover, $K_{k-1} + E_{n-k+1}$ is the unique extremal graph.

Let M_t be the maximum matching on t vertices (with $\lfloor \frac{t}{2} \rfloor$ edges).

Theorem 4 (Erdős and Gallai, 1959)

Let $k \ge 2$ and $n > \frac{5k}{2} - 1$. We have $ex(n, kP_2) = e(K_{k-1} + E_{n-k+1})$. Moreover, $K_{k-1} + E_{n-k+1}$ is the unique extremal graph.

Let M_t be the maximum matching on t vertices (with $\lfloor \frac{t}{2} \rfloor$ edges).

Theorem 5 (Yuan and Zhang, 2017)

Let $k \ge 2$ and n > 5k-1. We have $ex(n, kP_3) = e(K_{k-1} + M_{n-k+1})$. Moreover, $K_{k-1} + M_{n-k+1}$ is the unique extremal graph.

Theorem 4 (Erdős and Gallai, 1959)

Let $k \ge 2$ and $n > \frac{5k}{2} - 1$. We have $ex(n, kP_2) = e(K_{k-1} + E_{n-k+1})$. Moreover, $K_{k-1} + E_{n-k+1}$ is the unique extremal graph.

Let M_t be the maximum matching on t vertices (with $\lfloor \frac{t}{2} \rfloor$ edges).

Theorem 5 (Yuan and Zhang, 2017)

Let $k \ge 2$ and n > 5k-1. We have $ex(n, kP_3) = e(K_{k-1} + M_{n-k+1})$. Moreover, $K_{k-1} + M_{n-k+1}$ is the unique extremal graph.

Bushaw and Kettle (2011) had proved Theorem 5 for $n \ge 7k$.

For $F = \bigcup_{i=1}^k P_{\ell_i}$ a linear forest, let $b = \sum \lfloor \frac{\ell_i}{2} \rfloor - 1$. Let H(n, F) be $K_b + E_{n-b}$ with a single edge added to E_{n-b} if all ℓ_i are odd, and $H(n, F) = K_b + E_{n-b}$ otherwise. Note: H(n, F) is F-free.

For $F = \bigcup_{i=1}^k P_{\ell_i}$ a linear forest, let $b = \sum \lfloor \frac{\ell_i}{2} \rfloor - 1$. Let H(n, F) be $K_b + E_{n-b}$ with a single edge added to E_{n-b} if all ℓ_i are odd, and $H(n, F) = K_b + E_{n-b}$ otherwise. Note: H(n, F) is F-free.

Theorem 6 (Lidický, Liu, Palmer, 2013)

Let $k \geq 2$, and $F = \bigcup_{i=1}^k P_{\ell_i}$ be a linear forest, where $\ell_1 \geq \ell_2 \geq \cdots \geq \ell_k \geq 2$ and $\ell_i \neq 3$ for some i. Let $n \geq n_0(F)$ be sufficiently large. We have $\operatorname{ex}(n,F) = \operatorname{e}(H(n,F))$. Moreover, H(n,F) is the unique extremal graph.

For $F = \bigcup_{i=1}^k P_{\ell_i}$ a linear forest, let $b = \sum \lfloor \frac{\ell_i}{2} \rfloor - 1$. Let H(n, F) be $K_b + E_{n-b}$ with a single edge added to E_{n-b} if all ℓ_i are odd, and $H(n, F) = K_b + E_{n-b}$ otherwise. Note: H(n, F) is F-free.

Theorem 6 (Lidický, Liu, Palmer, 2013)

Let $k \geq 2$, and $F = \bigcup_{i=1}^k P_{\ell_i}$ be a linear forest, where $\ell_1 \geq \ell_2 \geq \cdots \geq \ell_k \geq 2$ and $\ell_i \neq 3$ for some i. Let $n \geq n_0(F)$ be sufficiently large. We have $\operatorname{ex}(n,F) = \operatorname{e}(H(n,F))$. Moreover, H(n,F) is the unique extremal graph.

Bushaw and Kettle (2011) had proved Theorem 6 for $F=kP_\ell$ with $\ell>4$.

For $F = \bigcup_{i=1}^k P_{\ell_i}$ a linear forest, let $b = \sum \lfloor \frac{\ell_i}{2} \rfloor - 1$. Let H(n,F) be $K_b + E_{n-b}$ with a single edge added to E_{n-b} if all ℓ_i are odd, and $H(n,F) = K_b + E_{n-b}$ otherwise. Note: H(n,F) is F-free.

Theorem 6 (Lidický, Liu, Palmer, 2013)

Let $k \geq 2$, and $F = \bigcup_{i=1}^k P_{\ell_i}$ be a linear forest, where $\ell_1 \geq \ell_2 \geq \cdots \geq \ell_k \geq 2$ and $\ell_i \neq 3$ for some i. Let $n \geq n_0(F)$ be sufficiently large. We have $\operatorname{ex}(n,F) = \operatorname{e}(H(n,F))$. Moreover, H(n,F) is the unique extremal graph.

Bushaw and Kettle (2011) had proved Theorem 6 for $F = kP_{\ell}$ with $\ell \geq 4$. Note that the extremal graph H(n,F) for ex(n,F) in Theorem 6 is very different from those for $ex(n,P_{\ell})$ in Theorem 3.

Let $S_t = \text{star with } t \text{ edges.}$

Let $S_t = \text{star}$ with t edges. A graph L of order n is near r-regular if L is either r-regular, or L has n-1 vertices with degree r and one vertex with degree r-1.

Let $S_t = \text{star}$ with t edges. A graph L of order n is near r-regular if L is either r-regular, or L has n-1 vertices with degree r and one vertex with degree r-1. Easy to see that $ex(n, S_r) = e(L)$, where L is a near (r-1)-regular graph on n vertices, and the extremal graphs are all such graphs L.

Let $S_t = \text{star}$ with t edges. A graph L of order n is near r-regular if L is either r-regular, or L has n-1 vertices with degree r and one vertex with degree r-1. Easy to see that $ex(n, S_r) = e(L)$, where L is a near (r-1)-regular graph on n vertices, and the extremal graphs are all such graphs L.

Let $F = \bigcup_{i=1}^k S_{r_i}$ be a star forest where $r_1 \ge \cdots \ge r_k \ge 1$. Let $G(n,i,r_i)$ be $K_{i-1} + L$ where L is a near (r_i-1) -regular graph on n-i+1 vertices. Let G(n,F) be any graph where $e(G(n,i,r_i))$ is maximised over $1 \le i \le k$. Note: Any such G(n,F) is F-free.

Let $S_t = \text{star}$ with t edges. A graph L of order n is near r-regular if L is either r-regular, or L has n-1 vertices with degree r and one vertex with degree r-1. Easy to see that $ex(n, S_r) = e(L)$, where L is a near (r-1)-regular graph on n vertices, and the extremal graphs are all such graphs L.

Let $F = \bigcup_{i=1}^k S_{r_i}$ be a star forest where $r_1 \ge \cdots \ge r_k \ge 1$. Let $G(n,i,r_i)$ be $K_{i-1} + L$ where L is a near (r_i-1) -regular graph on n-i+1 vertices. Let G(n,F) be any graph where $e(G(n,i,r_i))$ is maximised over $1 \le i \le k$. Note: Any such G(n,F) is F-free.

Theorem 7 (Lidický, Liu, Palmer, 2013)

Let $k \geq 2$, and $F = \bigcup_{i=1}^{k} S_{r_i}$ be a star forest, where $r_1 \geq \cdots \geq r_k \geq 1$. Let $n \geq n_0(F)$ be sufficiently large. We have ex(n, F) = e(G(n, F)). Moreover, the extremal graphs are the graphs G(n, F).

For $\ell \geq 4$ and $s \geq 0$, the *broom graph* $B_{\ell,s}$ is ...

For $\ell \geq 4$ and $s \geq 0$, the broom graph $B_{\ell,s}$ is ...

For $\ell \geq 4$ and $s \geq 0$, the broom graph $B_{\ell,s}$ is ...

It is interesting to consider brooms, since a broom can be considered as a generalisation of a path and a star.

For $\ell \geq 4$ and $s \geq 0$, the *broom graph* $B_{\ell,s}$ is ...

It is interesting to consider brooms, since a broom can be considered as a generalisation of a path and a star.

Sun and Wang (2011) determined the functions $ex(n, B_{4,s})$ and $ex(n, B_{5,s})$ exactly. Their paper suggests that the exact determination of $ex(n, B_{\ell,s})$ may be complicated.

For $p \in \mathbb{N}$ and a graph G with degree sequence d_1, \ldots, d_n , let $e_p(G) = \sum d_i^p$.

For $p \in \mathbb{N}$ and a graph G with degree sequence d_1, \ldots, d_n , let $e_p(G) = \sum d_i^p$. In 2000, Caro and Yuster introduced the following Turán type problem: For a fixed graph H, determine the function

$$\exp_p(n, H) = \max\{e_p(G) : |V(G)| = n \text{ and } G \not\supset H\},$$

and the extremal graphs.

For $p \in \mathbb{N}$ and a graph G with degree sequence d_1, \ldots, d_n , let $e_p(G) = \sum d_i^p$. In 2000, Caro and Yuster introduced the following Turán type problem: For a fixed graph H, determine the function

$$\exp_p(n, H) = \max\{e_p(G) : |V(G)| = n \text{ and } G \not\supset H\},$$

and the extremal graphs.

Thus,
$$ex_1(n, H) = 2 ex(n, H)$$
.

For $p \in \mathbb{N}$ and a graph G with degree sequence d_1, \ldots, d_n , let $e_p(G) = \sum d_i^p$. In 2000, Caro and Yuster introduced the following Turán type problem: For a fixed graph H, determine the function

$$\exp_p(n, H) = \max\{e_p(G) : |V(G)| = n \text{ and } G \not\supset H\},$$

and the extremal graphs.

Thus, $\exp(n, H) = 2 \exp(n, H)$. Roughly, if $p \ge 2$, then extremal graphs for $\exp(n, H)$ are more likely to have large degree vertices (preferably universal) rather than the maximum number of edges.

For $p \in \mathbb{N}$ and a graph G with degree sequence d_1, \ldots, d_n , let $e_p(G) = \sum d_i^p$. In 2000, Caro and Yuster introduced the following Turán type problem: For a fixed graph H, determine the function

$$\exp_p(n, H) = \max\{e_p(G) : |V(G)| = n \text{ and } G \not\supset H\},$$

and the extremal graphs.

Thus, $\exp(n, H) = 2 \exp(n, H)$. Roughly, if $p \ge 2$, then extremal graphs for $\exp(n, H)$ are more likely to have large degree vertices (preferably universal) rather than the maximum number of edges.

► Caro and Yuster (2000): $\exp(n, K_{r+1}) = e_p(T_r(n))$ for p = 1, 2, 3. False for $p \ge 4$.

For $p \in \mathbb{N}$ and a graph G with degree sequence d_1, \ldots, d_n , let $e_p(G) = \sum d_i^p$. In 2000, Caro and Yuster introduced the following Turán type problem: For a fixed graph H, determine the function

$$\exp_p(n, H) = \max\{e_p(G) : |V(G)| = n \text{ and } G \not\supset H\},$$

and the extremal graphs.

Thus, $\exp(n, H) = 2 \exp(n, H)$. Roughly, if $p \ge 2$, then extremal graphs for $\exp(n, H)$ are more likely to have large degree vertices (preferably universal) rather than the maximum number of edges.

- ► Caro and Yuster (2000): $\exp(n, K_{r+1}) = e_p(T_r(n))$ for p = 1, 2, 3. False for $p \ge 4$.
- ► Nikiforov (2009): $\exp(n, C_{2k+2}) = (1 + o(1))kn^p$.

The function $ex_p(n, H)$

For $p \in \mathbb{N}$ and a graph G with degree sequence d_1, \ldots, d_n , let $e_p(G) = \sum d_i^p$. In 2000, Caro and Yuster introduced the following Turán type problem: For a fixed graph H, determine the function

$$\exp(n, H) = \max\{e_p(G) : |V(G)| = n \text{ and } G \not\supset H\},$$

and the extremal graphs.

Thus, $\exp_1(n, H) = 2 \exp(n, H)$. Roughly, if $p \ge 2$, then extremal graphs for $\exp_p(n, H)$ are more likely to have large degree vertices (preferably universal) rather than the maximum number of edges.

- ► Caro and Yuster (2000): $\exp_p(n, K_{r+1}) = e_p(T_r(n))$ for p = 1, 2, 3. False for $p \ge 4$.
- Nikiforov (2009): $\exp(n, C_{2k+2}) = (1 + o(1))kn^p$.
- ▶ Bollobás and Nikiforov (2012): An Erdős-Stone Theorem for $ex_p(n, H)$.

Let $p \geq 2$.

- (a) $\exp(n, P_2) = 0$. Unique extremal graph is E_n .
- (b) $\exp(n, P_3) = 2\lfloor \frac{n}{2} \rfloor$. Unique extremal graph is M_n .
- (c) For $\ell \geq 4$, and $n \geq n_0(\ell)$ sufficiently large, we have $\exp(n, P_\ell) = \exp(H(n, P_\ell))$. Unique extremal graph is $H(n, P_\ell)$.

Let $p \geq 2$.

- (a) $\exp(n, P_2) = 0$. Unique extremal graph is E_n .
- (b) $\exp(n, P_3) = 2\lfloor \frac{n}{2} \rfloor$. Unique extremal graph is M_n .
- (c) For $\ell \geq 4$, and $n \geq n_0(\ell)$ sufficiently large, we have $\exp(n, P_\ell) = \exp(H(n, P_\ell))$. Unique extremal graph is $H(n, P_\ell)$.

Note: Extremal graphs in Theorems 3 and 8 are different.

Let $p \geq 2$.

- (a) $\exp(n, P_2) = 0$. Unique extremal graph is E_n .
- (b) $\exp(n, P_3) = 2\lfloor \frac{n}{2} \rfloor$. Unique extremal graph is M_n .
- (c) For $\ell \geq 4$, and $n \geq n_0(\ell)$ sufficiently large, we have $\exp(n, P_\ell) = e_p(H(n, P_\ell))$. Unique extremal graph is $H(n, P_\ell)$.

Note: Extremal graphs in Theorems 3 and 8 are different.

Proposition 9 (Caro and Yuster, 2000)

For $p, r \ge 1$ and $n \ge r$, we have $\exp(n, S_r) = e_p(L)$, where L is a near (r-1)-regular graph on n vertices. Moreover, the extremal graphs are all such graphs L.

Let $p \geq 2$.

- (a) $\exp(n, P_2) = 0$. Unique extremal graph is E_n .
- (b) $\exp(n, P_3) = 2\lfloor \frac{n}{2} \rfloor$. Unique extremal graph is M_n .
- (c) For $\ell \geq 4$, and $n \geq n_0(\ell)$ sufficiently large, we have $\exp(n, P_\ell) = e_p(H(n, P_\ell))$. Unique extremal graph is $H(n, P_\ell)$.

Note: Extremal graphs in Theorems 3 and 8 are different.

Proposition 9 (Caro and Yuster, 2000)

For $p, r \ge 1$ and $n \ge r$, we have $\exp(n, S_r) = e_p(L)$, where L is a near (r-1)-regular graph on n vertices. Moreover, the extremal graphs are all such graphs L.

Proposition 10 (Caro and Yuster, 2000)

Let $p \ge 2$, $s \ge 1$, and n > 2(s+4). Then $\exp(n, B_{4,s}) = e_p(S_{n-1})$. Moreover, S_{n-1} is the unique extremal graph.

Theorem 11 (Lan, L., Qin, Shi, 2018+)

Let $k, p \ge 2$, and $F = \bigcup_{i=1}^k S_{r_i}$ be a star forest, where $r_1 \ge \cdots \ge r_k \ge 1$. Let $n \ge n_0(F)$ be sufficiently large. We have $\exp(n, F) = e_p(G(n, k, r_k))$. Extremal graphs are the $G(n, k, r_k)$.

Theorem 11 (Lan, L., Qin, Shi, 2018+)

Let $k, p \ge 2$, and $F = \bigcup_{i=1}^k S_{r_i}$ be a star forest, where $r_1 \ge \cdots \ge r_k \ge 1$. Let $n \ge n_0(F)$ be sufficiently large. We have $\exp(n, F) = e_p(G(n, k, r_k))$. Extremal graphs are the $G(n, k, r_k)$.

Sketch proof.

Enough to show: If G = G(n) is F-free and $G \neq G(n, k, r_k)$, then $e_p(G) < e_p(G(n, k, r_k))$.

Theorem 11 (Lan, L., Qin, Shi, 2018+)

Let $k, p \ge 2$, and $F = \bigcup_{i=1}^k S_{r_i}$ be a star forest, where $r_1 \ge \cdots \ge r_k \ge 1$. Let $n \ge n_0(F)$ be sufficiently large. We have $\exp(n, F) = e_p(G(n, k, r_k))$. Extremal graphs are the $G(n, k, r_k)$.

Sketch proof.

Enough to show: If G = G(n) is F-free and $G \neq G(n, k, r_k)$, then $e_p(G) < e_p(G(n, k, r_k))$.

▶ If $\leq k - 2$ vertices of G have degree $\geq \sum r_i + k$, then $e_p(G) < (k-1)n^p + o(n^p) = e_p(G(n,k,r_k))$.

Theorem 11 (Lan, L., Qin, Shi, 2018+)

Let $k, p \ge 2$, and $F = \bigcup_{i=1}^k S_{r_i}$ be a star forest, where $r_1 \ge \cdots \ge r_k \ge 1$. Let $n \ge n_0(F)$ be sufficiently large. We have $\exp(n, F) = e_p(G(n, k, r_k))$. Extremal graphs are the $G(n, k, r_k)$.

Sketch proof.

Enough to show: If G = G(n) is F-free and $G \neq G(n, k, r_k)$, then $e_p(G) < e_p(G(n, k, r_k))$.

- ▶ If $\leq k 2$ vertices of G have degree $\geq \sum r_i + k$, then $e_p(G) < (k-1)n^p + o(n^p) = e_p(G(n,k,r_k))$.
- ▶ Otherwise, $\exists U \subset V(G)$, |U| = k 1, and each vertex of U has degree $\geq \sum r_i + k$. Identifying U with K_{k-1} in $G(n, k, r_k)$, easy to show that $G \subset G(n, k, r_k)$.

Corollary 12

Let $k, p \ge 2$ and $n \ge n_0(k)$ be sufficiently large. We have $\exp_p(n, kP_3) = e_p(K_{k-1} + M_{n-k+1})$. Moreover, $K_{k-1} + M_{n-k+1}$ is the unique extremal graph.

Corollary 12

Let $k, p \ge 2$ and $n \ge n_0(k)$ be sufficiently large. We have $\exp_p(n, kP_3) = e_p(K_{k-1} + M_{n-k+1})$. Moreover, $K_{k-1} + M_{n-k+1}$ is the unique extremal graph.

Theorem 13 (Lan, L., Qin, Shi, 2018+)

Let $k, p \ge 2$, and $F = \bigcup_{i=1}^k P_{\ell_i}$ be a linear forest, where $\ell_1 \ge \ell_2 \ge \cdots \ge \ell_k \ge 2$ and $\ell_i \ne 3$ for some i. Let $n \ge n_0(F)$ be sufficiently large. We have $\exp(n, F) = e_p(H(n, F))$. Moreover, H(n, F) is the unique extremal graph.

Corollary 12

Let $k, p \ge 2$ and $n \ge n_0(k)$ be sufficiently large. We have $\exp_p(n, kP_3) = e_p(K_{k-1} + M_{n-k+1})$. Moreover, $K_{k-1} + M_{n-k+1}$ is the unique extremal graph.

Theorem 13 (Lan, L., Qin, Shi, 2018+)

Let $k, p \ge 2$, and $F = \bigcup_{i=1}^k P_{\ell_i}$ be a linear forest, where $\ell_1 \ge \ell_2 \ge \cdots \ge \ell_k \ge 2$ and $\ell_i \ne 3$ for some i. Let $n \ge n_0(F)$ be sufficiently large. We have $\exp(n, F) = e_p(H(n, F))$. Moreover, H(n, F) is the unique extremal graph.

Theorem 13 extends all previous results involving paths and linear forests.

▶ Let G = G(n) be F-free with $G \neq H(n, F)$ and $e_p(G)$ maximum. Enough to show $e_p(G) < e_p(H(n, F))$.

- ▶ Let G = G(n) be F-free with $G \neq H(n, F)$ and $e_p(G)$ maximum. Enough to show $e_p(G) < e_p(H(n, F))$.
- ▶ Lemma of Caro and Yuster (using Theorem 1 of Erdős and Gallai) $\Rightarrow \exists X \subset V(G), |X| = b$, whose vertices have degrees > 0.65n. Note that any two vertices of X have at least 0.29n common neighbours in $Y = V(G) \setminus X$.

- ▶ Let G = G(n) be F-free with $G \neq H(n, F)$ and $e_p(G)$ maximum. Enough to show $e_p(G) < e_p(H(n, F))$.
- ▶ Lemma of Caro and Yuster (using Theorem 1 of Erdős and Gallai) $\Rightarrow \exists X \subset V(G), |X| = b$, whose vertices have degrees > 0.65n. Note that any two vertices of X have at least 0.29n common neighbours in $Y = V(G) \setminus X$.
- ▶ Can show that every vertex of Y has a neighbour in X.

- ▶ Let G = G(n) be F-free with $G \neq H(n, F)$ and $e_p(G)$ maximum. Enough to show $e_p(G) < e_p(H(n, F))$.
- ▶ Lemma of Caro and Yuster (using Theorem 1 of Erdős and Gallai) $\Rightarrow \exists X \subset V(G), |X| = b$, whose vertices have degrees > 0.65n. Note that any two vertices of X have at least 0.29n common neighbours in $Y = V(G) \setminus X$.
- ▶ Can show that every vertex of Y has a neighbour in X.
- ▶ If some ℓ_i is even, then G[Y] cannot contain an edge $\Rightarrow G \subset H(n, F)$.

- ▶ Let G = G(n) be F-free with $G \neq H(n, F)$ and $e_p(G)$ maximum. Enough to show $e_p(G) < e_p(H(n, F))$.
- ▶ Lemma of Caro and Yuster (using Theorem 1 of Erdős and Gallai) $\Rightarrow \exists X \subset V(G), |X| = b$, whose vertices have degrees > 0.65n. Note that any two vertices of X have at least 0.29n common neighbours in $Y = V(G) \setminus X$.
- ▶ Can show that every vertex of Y has a neighbour in X.
- ▶ If some ℓ_i is even, then G[Y] cannot contain an edge $\Rightarrow G \subset H(n, F)$.
- ▶ If all ℓ_i are odd, then G[Y] consists of independent edges and isolated vertices. If there are at least two such edges in G[Y], then either $e_p(G) < e_p(H(n,F))$, or $\exists F$ -free G' = G'(n) with $e_p(G) < e_p(G')$, a contradiction.

Theorem 14 (Lan, L., Qin, Shi, 2018+) Let $p \ge 2$ and $s \ge 0$.

Theorem 14 (Lan, L., Qin, Shi, 2018+)

Let $p \ge 2$ and $s \ge 0$.

(a) For $n > (2s + 10)^2$, we have

$$\mathrm{ex}_p(n,B_{5,s}) = \left\{ egin{array}{ll} e_p(H(n,P_5)) & \mbox{if } s = 0, \\ e_p(K_1 + M_{n-1}) & \mbox{if } s \geq 1. \end{array}
ight.$$

Unique extremal graph is $H(n, P_5)$ if s = 0, and $K_1 + M_{n-1}$ if $s \ge 1$.

Theorem 14 (Lan, L., Qin, Shi, 2018+)

Let $p \ge 2$ and $s \ge 0$.

(a) For $n > (2s + 10)^2$, we have

$$\mathrm{ex}_p(n,B_{5,s}) = \left\{ egin{array}{ll} e_p(H(n,P_5)) & \mbox{if } s = 0, \\ e_p(K_1 + M_{n-1}) & \mbox{if } s \geq 1. \end{array}
ight.$$

Unique extremal graph is $H(n, P_5)$ if s = 0, and $K_1 + M_{n-1}$ if s > 1.

(b) For $n > (2s + 12)^2$, we have $\exp(n, B_{6,s}) = e_p(H(n, P_6))$. Unique extremal graph is $H(n, P_6)$.

Theorem 14 (Lan, L., Qin, Shi, 2018+)

Let $p \ge 2$ and $s \ge 0$.

(a) For $n > (2s + 10)^2$, we have

$$\mathrm{ex}_p(n,B_{5,s}) = \left\{ egin{array}{ll} e_p(H(n,P_5)) & \mbox{if } s = 0, \\ e_p(K_1 + M_{n-1}) & \mbox{if } s \geq 1. \end{array}
ight.$$

Unique extremal graph is $H(n, P_5)$ if s = 0, and $K_1 + M_{n-1}$ if s > 1.

- (b) For $n > (2s + 12)^2$, we have $\exp(n, B_{6,s}) = e_p(H(n, P_6))$. Unique extremal graph is $H(n, P_6)$.
- (c) For $n > (3s + 31)^2$, we have $\exp(n, B_{7,s}) = e_p(H(n, P_7))$. Unique extremal graph is $H(n, P_7)$.

▶ Let G = G(n) be $B_{7,s}$ -free with $G \neq H(n, P_7)$ and $e_p(G)$ maximum. Enough to show $e_p(G) < e_p(H(n, P_7))$.

- ▶ Let G = G(n) be $B_{7,s}$ -free with $G \neq H(n, P_7)$ and $e_p(G)$ maximum. Enough to show $e_p(G) < e_p(H(n, P_7))$.
- ▶ Suffices to consider G is connected. Otherwise, if G has many components of the form $H(t, P_7)$ and a remaining graph with small maximum degree d = d(s), then the sum of e_p for these subgraphs is $< e_p(H(n, P_7))$.

- ▶ Let G = G(n) be $B_{7,s}$ -free with $G \neq H(n, P_7)$ and $e_p(G)$ maximum. Enough to show $e_p(G) < e_p(H(n, P_7))$.
- ▶ Suffices to consider G is connected. Otherwise, if G has many components of the form $H(t, P_7)$ and a remaining graph with small maximum degree d = d(s), then the sum of e_p for these subgraphs is $< e_p(H(n, P_7))$.
- ▶ G is a level graph rooted at a maximum degree vertex v. Say V_1, \ldots, V_4 are the levels.

- ▶ Let G = G(n) be $B_{7,s}$ -free with $G \neq H(n, P_7)$ and $e_p(G)$ maximum. Enough to show $e_p(G) < e_p(H(n, P_7))$.
- ▶ Suffices to consider G is connected. Otherwise, if G has many components of the form $H(t, P_7)$ and a remaining graph with small maximum degree d = d(s), then the sum of e_p for these subgraphs is $< e_p(H(n, P_7))$.
- ▶ G is a level graph rooted at a maximum degree vertex v. Say V_1, \ldots, V_4 are the levels.
- ▶ If G has a pendent edge, triangle, "diamond", or "spindle" at a vertex of G v, then $\exists B_{7,s}$ -free G' = G'(n) with $e_p(G) < e_p(G')$.

- ▶ Let G = G(n) be $B_{7,s}$ -free with $G \neq H(n, P_7)$ and $e_p(G)$ maximum. Enough to show $e_p(G) < e_p(H(n, P_7))$.
- ▶ Suffices to consider G is connected. Otherwise, if G has many components of the form $H(t, P_7)$ and a remaining graph with small maximum degree d = d(s), then the sum of e_p for these subgraphs is $< e_p(H(n, P_7))$.
- ▶ G is a level graph rooted at a maximum degree vertex v. Say V_1, \ldots, V_4 are the levels.
- ▶ If G has a pendent edge, triangle, "diamond", or "spindle" at a vertex of G v, then $\exists B_{7,s}$ -free G' = G'(n) with $e_p(G) < e_p(G')$.
- ▶ We may then assume that $V_4 = V_3 = \emptyset$.

▶ Structure between V_1 and V_2 looks like:

▶ Structure between V_1 and V_2 looks like:

▶ $B_{7,s}$ -free \Rightarrow only types 1 and 5 can intersect in V_1 as shown in (b). If this happens, can obtain G' as before.

▶ Structure between V_1 and V_2 looks like:

- ▶ $B_{7,s}$ -free \Rightarrow only types 1 and 5 can intersect in V_1 as shown in (b). If this happens, can obtain G' as before.
- ▶ Connect v to all vertices of V_2 to obtain G^* , so that $e_p(G) \le e_p(G^*)$, and $G^* v$ consists of components of types 1 to 5 as shown in (a). Then G^* is $B_{7,s}$ -free.

▶ Structure between V_1 and V_2 looks like:

- ▶ $B_{7,s}$ -free \Rightarrow only types 1 and 5 can intersect in V_1 as shown in (b). If this happens, can obtain G' as before.
- ▶ Connect v to all vertices of V_2 to obtain G^* , so that $e_p(G) \le e_p(G^*)$, and $G^* v$ consists of components of types 1 to 5 as shown in (a). Then G^* is $B_{7,s}$ -free.
- ▶ Replace $G^* v$ with $H(n-1, P_5)$. Then can show that $e_p(G) \le e_p(G^*) < e_p(H(n, P_7))$.

Let $p \ge 2$, $\ell \ge 6$, $s \ge 0$, and $n \ge n_0(\ell,s)$ be sufficiently large. We have

$$ex_p(n, B_{\ell,s}) = e_p(H(n, P_\ell)).$$

Moreover, $H(n, P_{\ell})$ is the unique extremal graph.

Let $p \ge 2$, $\ell \ge 6$, $s \ge 0$, and $n \ge n_0(\ell, s)$ be sufficiently large. We have

$$ex_p(n,B_{\ell,s})=e_p(H(n,P_\ell)).$$

Moreover, $H(n, P_{\ell})$ is the unique extremal graph.

Thus Conjecture 15 claims that $\exp(n, B_{\ell,s})$ is the same as $\exp(n, P_{\ell})$, with the same unique extremal graph $H(n, P_{\ell})$.

Let $p \ge 2$, $\ell \ge 6$, $s \ge 0$, and $n \ge n_0(\ell, s)$ be sufficiently large. We have

$$ex_p(n, B_{\ell,s}) = e_p(H(n, P_\ell)).$$

Moreover, $H(n, P_{\ell})$ is the unique extremal graph.

Thus Conjecture 15 claims that $\exp(n, B_{\ell,s})$ is the same as $\exp_p(n, P_\ell)$, with the same unique extremal graph $H(n, P_\ell)$. If true, then it is interesting to note that finding $\exp_p(n, B_{\ell,s})$ for $p \geq 2$ is a manageable problem, but finding $\exp(n, B_{\ell,s})$ seems to remain unpleasant.

Let $p \ge 2$, $\ell \ge 6$, $s \ge 0$, and $n \ge n_0(\ell, s)$ be sufficiently large. We have

$$ex_p(n,B_{\ell,s})=e_p(H(n,P_\ell)).$$

Moreover, $H(n, P_{\ell})$ is the unique extremal graph.

Thus Conjecture 15 claims that $\exp(n, B_{\ell,s})$ is the same as $\exp_p(n, P_\ell)$, with the same unique extremal graph $H(n, P_\ell)$. If true, then it is interesting to note that finding $\exp_p(n, B_{\ell,s})$ for $p \geq 2$ is a manageable problem, but finding $\exp(n, B_{\ell,s})$ seems to remain unpleasant. The proof method of Theorem 8 (for finding $\exp_p(n, P_\ell)$) by Caro and Yuster does not seem to extend trivially.

Let $p \ge 2$, $\ell \ge 6$, $s \ge 0$, and $n \ge n_0(\ell, s)$ be sufficiently large. We have

$$ex_p(n, B_{\ell,s}) = e_p(H(n, P_\ell)).$$

Moreover, $H(n, P_{\ell})$ is the unique extremal graph.

Thus Conjecture 15 claims that $\exp(n, B_{\ell,s})$ is the same as $\exp(n, P_\ell)$, with the same unique extremal graph $H(n, P_\ell)$. If true, then it is interesting to note that finding $\exp(n, B_{\ell,s})$ for $p \geq 2$ is a manageable problem, but finding $\exp(n, B_{\ell,s})$ seems to remain unpleasant. The proof method of Theorem 8 (for finding $\exp(n, P_\ell)$) by Caro and Yuster does not seem to extend trivially.

Problem 16 (Lan, L., Qin, Shi, 2018+)

For $p \ge 2$, a fixed broom forest F, and $n \ge n_0(F)$ sufficiently large, determine $\exp_p(n, F)$ and the extremal graphs.

Introduction and overview The function $\exp(n, H)$ New results and open problems

Thank you!