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For a fixed graph H, let ex(n, H) denote the classical Turdn
function. That is

ex(n, H) = max{e(G) : |[V(G)| =nand G p H}.
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For a fixed graph H, let ex(n, H) denote the classical Turdn
function. That is

ex(n, H) = max{e(G) : |[V(G)| =nand G p H}.

Turdn's classical result (1941): For n > r > 2, we have

ex(n, Kr+1) = e(T,(n)), where T,(n) is the complete balanced
r-partite Turdn graph on n vertices. Moreover, T,(n) is the unique
extremal graph attaining ex(n, Kr41).
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function. That is

ex(n, H) = max{e(G) : |[V(G)| =nand G p H}.

Turdn's classical result (1941): For n > r > 2, we have

ex(n, Kr+1) = e(T,(n)), where T,(n) is the complete balanced
r-partite Turdn graph on n vertices. Moreover, T,(n) is the unique
extremal graph attaining ex(n, Kr41).

The function ex(n, H) has been well studied.

» Important results include the Erdés-Stone Theorem (1946)
and “stability” theorems of Erdés and Simonovits (1960s).
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Introduction and overview

For a fixed graph H, let ex(n, H) denote the classical Turdn
function. That is

ex(n, H) = max{e(G) : |[V(G)| =nand G p H}.

Turdn's classical result (1941): For n > r > 2, we have

ex(n, Kr+1) = e(T,(n)), where T,(n) is the complete balanced
r-partite Turdn graph on n vertices. Moreover, T,(n) is the unique
extremal graph attaining ex(n, Kr41).

The function ex(n, H) has been well studied.

» Important results include the Erdés-Stone Theorem (1946)
and “stability” theorems of Erdés and Simonovits (1960s).

» A well known conjecture: ex(n, Cox) = (cx + o(1))n* 17k
Only known to be true for k = 2,3, 5.
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Introduction and overview

Let P, = path on £ vertices. A classical result ...

Theorem 1 (Erdés and Gallai, 1959)

For ¢ > 2, we have ex(n, Py) < (% — 1)n. Moreover, if { — 1 divides
n, then equality holds only for the graph with vertex-disjoint copies
of Kg_l.
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Theorem 1 (Erdés and Gallai, 1959)

For ¢ > 2, we have ex(n, Py) < (% — 1)n. Moreover, if { — 1 divides
n, then equality holds only for the graph with vertex-disjoint copies
of Kg_l.

Inspired by Theorem 1, a long standing conjecture ...

Conjecture 2 (Erdés and Sés, 1963)

If T is a tree on t > 2 vertices, then ex(n, T) < (5 —1)n.
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Let P, = path on £ vertices. A classical result ...

Theorem 1 (Erdés and Gallai, 1959)

For ¢ > 2, we have ex(n, Py) < (% — 1)n. Moreover, if { — 1 divides
n, then equality holds only for the graph with vertex-disjoint copies
of Kg_l.

Inspired by Theorem 1, a long standing conjecture ...
Conjecture 2 (Erdés and Sés, 1963)

If T is a tree on t > 2 vertices, then ex(n, T) < (5 —1)n.
Theorem 1 was sharpened to ...

Theorem 3 (Faudree and Schelp, 1975)

Let ¢ >2andn=a(l —1)+ b, wherea>0and0< b<{—1.
We have ex(n, Py) = a(%l) + (12’) Moreover, an extremal graph
(among others) is aKy—1 U Kp.

Henry Liu Degree powers in graphs with a forbidden forest



Introduction and overview

Results for linear forests ...

Henry Liu Degree powers in graphs with a forbidden forest



Introduction and overview

Results for linear forests ...

Theorem 4 (Erdés and Gallai, 1959)

Letk22andn>%—1. We have
ex(n, kP,) = e(Kk—1 + Ep—k+1). Moreover, Ki_1 + E,_k+1 is the
unique extremal graph.
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Theorem 4 (Erdés and Gallai, 1959)

Letk22andn>%—1. We have
ex(n, kP,) = e(Kk—1 + Ep—k+1). Moreover, Ki_1 + E,_k+1 is the
unique extremal graph.

Let M, be the maximum matching on t vertices (with | £] edges).
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Results for linear forests ...

Theorem 4 (Erdés and Gallai, 1959)

Letk22andn>%—1. We have
ex(n, kP,) = e(Kk—1 + Ep—k+1). Moreover, Ki_1 + E,_k+1 is the
unique extremal graph.

Let M, be the maximum matching on t vertices (with | £] edges).

Theorem 5 (Yuan and Zhang, 2017)

Let k > 2 and n > 5k — 1. We have
ex(n, kP3) = e(Kk,1 + M,,,k+1). Moreover, Kx_1 + Mp_y41 is the
unique extremal graph.
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Results for linear forests ...

Theorem 4 (Erdés and Gallai, 1959)

Letk22andn>%—1. We have
ex(n, kP,) = e(Kk—1 + Ep—k+1). Moreover, Ki_1 + E,_k+1 is the
unique extremal graph.

Let M, be the maximum matching on t vertices (with | £] edges).

Theorem 5 (Yuan and Zhang, 2017)

Let k > 2 and n > 5k — 1. We have
ex(n, kP3) = e(Kk,1 + M,,,k+1). Moreover, Kx_1 + Mp_y41 is the
unique extremal graph.

Bushaw and Kettle (2011) had proved Theorem 5 for n > 7k.
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Introduction and overview

For F = Ule Py, a linear forest, let b = ZL%j — 1. Let H(n, F)
be K, + E,_p with a single edge added to E,_} if all ¢; are odd,
and H(n, F) = K, + E,—_p otherwise. Note: H(n, F) is F-free.
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be K, + E,_p with a single edge added to E,_} if all ¢; are odd,
and H(n, F) = K, + E,—_p otherwise. Note: H(n, F) is F-free.

Theorem 6 (Lidicky, Liu, Palmer, 2013)

Let k > 2, and F = Uf-;l Py, be a linear forest, where

0y >0 > >4 >2andl;#3 for somei. Let n > ny(F) be
sufficiently large. We have ex(n, F) = e(H(n, F)). Moreover,
H(n, F) is the unique extremal graph.
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be K, + E,_p with a single edge added to E,_} if all ¢; are odd,
and H(n, F) = K, + E,—_p otherwise. Note: H(n, F) is F-free.

Theorem 6 (Lidicky, Liu, Palmer, 2013)

Let k > 2, and F = Uf-;l Py, be a linear forest, where

0y >0 > >4 >2andl;#3 for somei. Let n > ny(F) be
sufficiently large. We have ex(n, F) = e(H(n, F)). Moreover,
H(n, F) is the unique extremal graph.

Bushaw and Kettle (2011) had proved Theorem 6 for F = kP,
with £ > 4.
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For F = Ule Py, a linear forest, let b = ZL%j — 1. Let H(n, F)
be K, + E,_p with a single edge added to E,_} if all ¢; are odd,
and H(n, F) = K, + E,—_p otherwise. Note: H(n, F) is F-free.

Theorem 6 (Lidicky, Liu, Palmer, 2013)

Let k > 2, and F = Uf-;l Py, be a linear forest, where

0y >0 > >4 >2andl;#3 for somei. Let n > ny(F) be
sufficiently large. We have ex(n, F) = e(H(n, F)). Moreover,
H(n, F) is the unique extremal graph.

Bushaw and Kettle (2011) had proved Theorem 6 for F = kP,
with £ > 4. Note that the extremal graph H(n, F) for ex(n, F) in
Theorem 6 is very different from those for ex(n, Py) in Theorem 3.
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Let S; = star with t edges.
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Let S; = star with t edges. A graph L of order n is near r-regular
if L is either r-regular, or L has n — 1 vertices with degree r and
one vertex with degree r — 1.
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Let S; = star with t edges. A graph L of order n is near r-regular
if L is either r-regular, or L has n — 1 vertices with degree r and
one vertex with degree r — 1. Easy to see that ex(n, S;) = e(L),
where L is a near (r — 1)-regular graph on n vertices, and the
extremal graphs are all such graphs L.
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Let S; = star with t edges. A graph L of order n is near r-regular
if L is either r-regular, or L has n — 1 vertices with degree r and
one vertex with degree r — 1. Easy to see that ex(n, S;) = e(L),
where L is a near (r — 1)-regular graph on n vertices, and the
extremal graphs are all such graphs L.

Let F = Ufle S, be a star forest where r; > -+ > > 1. Let
G(n,i,r;) be Ki_1 + L where L is a near (r; — 1)-regular graph on
n— i+ 1 vertices. Let G(n, F) be any graph where e(G(n,i,r;)) is
maximised over 1 </ < k. Note: Any such G(n, F) is F-free.
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Let S; = star with t edges. A graph L of order n is near r-regular
if L is either r-regular, or L has n — 1 vertices with degree r and
one vertex with degree r — 1. Easy to see that ex(n, S;) = e(L),
where L is a near (r — 1)-regular graph on n vertices, and the
extremal graphs are all such graphs L.

Let F = Ufle S, be a star forest where r; > -+ > > 1. Let
G(n,i,r;) be Ki_1 + L where L is a near (r; — 1)-regular graph on
n— i+ 1 vertices. Let G(n, F) be any graph where e(G(n,i,r;)) is
maximised over 1 </ < k. Note: Any such G(n, F) is F-free.

Theorem 7 (Lidicky, Liu, Palmer, 2013)

let k >2, and F = Uf-‘zl S, be a star forest, where
rp>--->r.>1. Let n> no(F) be sufficiently large. We have
ex(n, F) = e(G(n, F)). Moreover, the extremal graphs are the
graphs G(n, F).
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For £ > 4 and s > 0, the broom graph By s is ...

s vertices
f—)%

.
£ vertices

It is interesting to consider brooms, since a broom can be
considered as a generalisation of a path and a star.
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Introduction and overview

For £ > 4 and s > 0, the broom graph By s is ...

s vertices
f—)%

It is interesting to consider brooms, since a broom can be
considered as a generalisation of a path and a star.

Sun and Wang (2011) determined the functions ex(n, Bs s) and
ex(n, Bs s) exactly. Their paper suggests that the exact
determination of ex(n, By s) may be complicated.

.
£ vertices
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The function exp(n‘ H)

The function ex,(n, H)

For p € N and a graph G with degree sequence di,...,d,, let

ep(G) =3 df.
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The function ex,(n, H)

For p € N and a graph G with degree sequence di,...,d,, let
ep(G) = > dP. In 2000, Caro and Yuster introduced the following
Turan type problem: For a fixed graph H, determine the function

exp(n, H) = max{ey(G) : |V(G)| =nand G 2 H},

and the extremal graphs.
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The function ex,(n, H)

For p € N and a graph G with degree sequence di,...,d,, let
ep(G) = > dP. In 2000, Caro and Yuster introduced the following
Turan type problem: For a fixed graph H, determine the function

exp(n, H) = max{ey(G) : |V(G)| =nand G 2 H},
and the extremal graphs.
Thus, exi(n, H) = 2ex(n, H).
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The function ex,(n, H)

For p € N and a graph G with degree sequence di,...,d,, let
ep(G) = > dP. In 2000, Caro and Yuster introduced the following
Turan type problem: For a fixed graph H, determine the function

exp(n, H) = max{ey(G) : |V(G)| =nand G 2 H},
and the extremal graphs.

Thus, exj(n, H) = 2ex(n, H). Roughly, if p > 2, then extremal
graphs for ex,(n, H) are more likely to have large degree vertices
(preferably universal) rather than the maximum number of edges.
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The function ex,(n, H)

For p € N and a graph G with degree sequence di,...,d,, let
ep(G) = > dP. In 2000, Caro and Yuster introduced the following
Turan type problem: For a fixed graph H, determine the function

exp(n, H) = max{ey(G) : |V(G)| =nand G 2 H},
and the extremal graphs.

Thus, exj(n, H) = 2ex(n, H). Roughly, if p > 2, then extremal
graphs for ex,(n, H) are more likely to have large degree vertices
(preferably universal) rather than the maximum number of edges.
» Caro and Yuster (2000): exp(n, Kr+1) = ep(T,(n)) for
p=1,2, 3. False for p > 4.
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The function ex,(n, H)

For p € N and a graph G with degree sequence di,...,d,, let
ep(G) = > dP. In 2000, Caro and Yuster introduced the following
Turan type problem: For a fixed graph H, determine the function

exp(n, H) = max{ey(G) : |V(G)| =nand G 2 H},
and the extremal graphs.

Thus, exj(n, H) = 2ex(n, H). Roughly, if p > 2, then extremal
graphs for ex,(n, H) are more likely to have large degree vertices
(preferably universal) rather than the maximum number of edges.
» Caro and Yuster (2000): exp(n, Kr+1) = ep(T,(n)) for
p=1,2, 3. False for p > 4.
» Nikiforov (2009): ex,(n, Coxs2) = (1 + o(1))knP.
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The function exp(n‘ H)

The function ex,(n, H)

For p € N and a graph G with degree sequence di,...,d,, let
ep(G) = > dP. In 2000, Caro and Yuster introduced the following
Turan type problem: For a fixed graph H, determine the function

exp(n, H) = max{ey(G) : |V(G)| =nand G 2 H},
and the extremal graphs.
Thus, exj(n, H) = 2ex(n, H). Roughly, if p > 2, then extremal
graphs for ex,(n, H) are more likely to have large degree vertices
(preferably universal) rather than the maximum number of edges.
» Caro and Yuster (2000): exp(n, Kr+1) = ep(T,(n)) for
p=1,2, 3. False for p > 4.
» Nikiforov (2009): ex,(n, Coxs2) = (1 + o(1))knP.
» Bollobds and Nikiforov (2012): An Erd6s-Stone Theorem for
exp(n, H).



The function exp(n‘ H)

Theorem 8 (Caro and Yuster, 2000)
Let p > 2.
(a) exp(n, P2) = 0. Unique extremal graph is E,.
(b) exp(n, P3) =2[5]. Unique extremal graph is M,,.
(c) Fort >4, and n > no(¢) sufficiently large, we have
exp(n, Py) = ep(H(n, Py)). Unique extremal graph is H(n, P;).
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The function exp(n‘ H)

Theorem 8 (Caro and Yuster, 2000)
Let p > 2.

(a) exp(n, P2) = 0. Unique extremal graph is E,.
(b) exp(n, P3) =2[5]. Unique extremal graph is M,,.
(c) Fort >4, and n > no(¢) sufficiently large, we have
exp(n, Py) = ep(H(n, Py)). Unique extremal graph is H(n, P;).

Note: Extremal graphs in Theorems 3 and 8 are different.
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The function exp(n‘ H)

Theorem 8 (Caro and Yuster, 2000)
Let p > 2.
(a) exp(n, P2) = 0. Unique extremal graph is E,.
(b) exp(n, P3) =2[5]. Unique extremal graph is M,,.
(c) Fort >4, and n > no(¢) sufficiently large, we have
exp(n, Py) = ep(H(n, Py)). Unique extremal graph is H(n, P;).
Note: Extremal graphs in Theorems 3 and 8 are different.

Proposition 9 (Caro and Yuster, 2000)

For p,r > 1 and n > r, we have ex,(n,S,) = ep(L), where L is a
near (r — 1)-regular graph on n vertices. Moreover, the extremal
graphs are all such graphs L.
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The function exp(n‘ H)

Theorem 8 (Caro and Yuster, 2000)
Let p > 2.
(a) exp(n, P2) = 0. Unique extremal graph is E,.
(b) exp(n, P3) =2[5]. Unique extremal graph is M,,.
(c) Fort >4, and n > no(¢) sufficiently large, we have
exp(n, Py) = ep(H(n, Py)). Unique extremal graph is H(n, P;).
Note: Extremal graphs in Theorems 3 and 8 are different.

Proposition 9 (Caro and Yuster, 2000)

For p,r > 1 and n > r, we have ex,(n,S,) = ep(L), where L is a
near (r — 1)-regular graph on n vertices. Moreover, the extremal
graphs are all such graphs L.

Proposition 10 (Caro and Yuster, 2000)

Let p>2,s>1,and n>2(s+4). Then exp(n, Bss) = ep(Sn—1).
Moreover, S,_1 is the unique extremal graph.
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New results and open problems

New results and open problems

Theorem 11 (Lan, L., Qin, Shi, 2018+)

Let k,p>2, and F = Uf'(:1 Sy, be a star forest, where
rn>--->r.>1 Let n> ng(F) be sufficiently large. We have
exp(n, F) = ep(G(n, k, rc)). Extremal graphs are the G(n, k, ry).
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New results and open problems

New results and open problems

Theorem 11 (Lan, L., Qin, Shi, 2018+)

Let k,p>2, and F = Uf'(:1 Sy, be a star forest, where
rn>--->r.>1 Let n> ng(F) be sufficiently large. We have
exp(n, F) = ep(G(n, k, rc)). Extremal graphs are the G(n, k, ry).

Sketch proof.

Enough to show: If G = G(n) is F-free and G # G(n, k, ry), then
ep(G) < ep(G(n, k,ry)).
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New results and open problems

New results and open problems

Theorem 11 (Lan, L., Qin, Shi, 2018+)

Let k,p>2, and F = Uf'(:1 Sy, be a star forest, where
rn>--->r.>1 Let n> ng(F) be sufficiently large. We have
exp(n, F) = ep(G(n, k, rc)). Extremal graphs are the G(n, k, ry).

Sketch proof.

Enough to show: If G = G(n) is F-free and G # G(n, k, ry), then
ep(G) < ep(G(n, k,ry)).

» If < k — 2 vertices of G have degree > > r; + k, then
ep(G) < (k— 1)nP + o(n?) = ep(G(m, K, 7).
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New results and open problems

New results and open problems

Theorem 11 (Lan, L., Qin, Shi, 2018+)

Let k,p>2, and F = Uf'(:1 Sy, be a star forest, where
rn>--->r.>1 Let n> ng(F) be sufficiently large. We have
exp(n, F) = ep(G(n, k, rc)). Extremal graphs are the G(n, k, ry).

Sketch proof.
Enough to show: If G = G(n) is F-free and G # G(n, k, ry), then
ep(G) < ep(G(n, k,ry)).
» If < k — 2 vertices of G have degree > > r; + k, then
ep(G) < (k —1)nP + o(nP) = e,(G(n, k, ry)).
» Otherwise, 3U C V(G), |U| = k — 1, and each vertex of U
has degree > > r; + k. ldentifying U with Kx_1 in
G(n, k, r), easy to show that G C G(n, k, rk). O
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New results and open problems

Corollary 12

Let k,p > 2 and n > no(k) be sufficiently large. We have
exp(n, kP3) = ep(Kk—1 + My_k4+1). Moreover, K_1 + Mp_y41 is
the unique extremal graph.
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New results and open problems

Corollary 12

Let k,p > 2 and n > no(k) be sufficiently large. We have

exp(n, kP3) = ep(Kk—1 + My_k4+1). Moreover, K_1 + Mp_y41 is
the unique extremal graph.

Theorem 13 (Lan, L., Qin, Shi, 2018+)

Let k,p>2, and F = Ufle Py, be a linear forest, where

0y >0 >+ >L>2andl;#+3 for somei. Let n > ny(F) be
sufficiently large. We have exy(n, F) = e,(H(n, F)). Moreover,
H(n, F) is the unique extremal graph.
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New results and open problems

Corollary 12

Let k,p > 2 and n > no(k) be sufficiently large. We have

exp(n, kP3) = ep(Kk—1 + My_k4+1). Moreover, K_1 + Mp_y41 is
the unique extremal graph.

Theorem 13 (Lan, L., Qin, Shi, 2018+ )

Let k,p>2, and F = Ufle Py, be a linear forest, where

0y >0 >+ >L>2andl;#+3 for somei. Let n > ny(F) be
sufficiently large. We have exy(n, F) = e,(H(n, F)). Moreover,
H(n, F) is the unique extremal graph.

Theorem 13 extends all previous results involving paths and linear
forests.
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New results and open problems

Sketch proof of Theorem 13.

» Let G = G(n) be F-free with G # H(n, F) and e,(G)
maximum. Enough to show e,(G) < e,(H(n, F)).
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New results and open problems

Sketch proof of Theorem 13.

» Let G = G(n) be F-free with G # H(n, F) and e,(G)
maximum. Enough to show e,(G) < e,(H(n, F)).

» Lemma of Caro and Yuster (using Theorem 1 of Erdés and
Gallai) = 3X C V(G), |X| = b, whose vertices have degrees
> 0.65n. Note that any two vertices of X have at least 0.29n
common neighbours in Y = V(G) \ X.
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New results and open problems

Sketch proof of Theorem 13.
» Let G = G(n) be F-free with G # H(n, F) and e,(G)
maximum. Enough to show e,(G) < e,(H(n, F)).

» Lemma of Caro and Yuster (using Theorem 1 of Erdés and
Gallai) = 3X C V(G), |X| = b, whose vertices have degrees
> 0.65n. Note that any two vertices of X have at least 0.29n
common neighbours in Y = V(G) \ X.

» Can show that every vertex of Y has a neighbour in X.
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New results and open problems

Sketch proof of Theorem 13.
» Let G = G(n) be F-free with G # H(n, F) and e,(G)
maximum. Enough to show e,(G) < e,(H(n, F)).

» Lemma of Caro and Yuster (using Theorem 1 of Erdés and
Gallai) = 3X C V(G), |X| = b, whose vertices have degrees
> 0.65n. Note that any two vertices of X have at least 0.29n
common neighbours in Y = V(G) \ X.

» Can show that every vertex of Y has a neighbour in X.

» If some /; is even, then G[Y] cannot contain an edge
= G C H(n, F).
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New results and open problems

Sketch proof of Theorem 13.

>

Let G = G(n) be F-free with G # H(n, F) and e,(G)
maximum. Enough to show e,(G) < e,(H(n, F)).

Lemma of Caro and Yuster (using Theorem 1 of Erdés and
Gallai) = 3X C V(G), |X| = b, whose vertices have degrees
> 0.65n. Note that any two vertices of X have at least 0.29n
common neighbours in Y = V(G) \ X.

Can show that every vertex of Y has a neighbour in X.

If some ¢; is even, then G[Y] cannot contain an edge

= G C H(n, F).

If all ¢; are odd, then G[Y] consists of independent edges and
isolated vertices. If there are at least two such edges in G[Y],
then either e,(G) < e,(H(n, F)), or 3F-free G' = G'(n) with
ep(G) < ep(G'), a contradiction. U
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New results and open problems

Theorem 14 (Lan, L., Qin, Shi, 2018+)
Let p>2ands >0.
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New results and open problems

Theorem 14 (Lan, L., Qin, Shi, 2018+)
Let p>2ands >0.
(a) For n > (2s+10)?, we have

[ ep(H(n,Ps))  ifs=0,
exp(n, Bss) = { ep(Ki+ Mp_1) ifs>1.

Unique extremal graph is H(n, Ps) if s =0, and K1 + Mp_1 if
s> 1.
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New results and open problems

Theorem 14 (Lan, L., Qin, Shi, 2018+)
Let p>2ands >0.
(a) For n > (2s+10)?, we have

[ ep(H(n,Ps))  ifs=0,
exp(n, Bss) = { ep(Ki+ Mp_1) ifs>1.

Unique extremal graph is H(n, Ps) if s =0, and K1 + Mp_1 if
s> 1.

(b) For n> (25 + 12)2, we have ex,(n, Bs.s) = e,(H(n, Pg)).
Unique extremal graph is H(n, Ps).
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New results and open problems

Theorem 14 (Lan, L., Qin, Shi, 2018+)
Let p>2ands >0.
(a) For n > (2s+10)?, we have

[ ep(H(n,Ps))  ifs=0,
exp(n, Bss) = { ep(Ki+ Mp_1) ifs>1.

Unique extremal graph is H(n, Ps) if s =0, and K1 + Mp_1 if
s> 1.

(b) For n> (25 + 12)2, we have ex,(n, Bs.s) = e,(H(n, Pg)).
Unique extremal graph is H(n, Ps).

(c) For n> (3s+ 31)?, we have exy(n, B7s) = e,(H(n, P7)).
Unique extremal graph is H(n, P7).
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New results and open problems

Sketch proof of Theorem 14(c).

> Let G = G(n) be By s-free with G # H(n, P7) and e,(G)
maximum. Enough to show e,(G) < e,(H(n, P7)).

Henry Liu Degree powers in graphs with a forbidden forest



New results and open problems

Sketch proof of Theorem 14(c).

> Let G = G(n) be By s-free with G # H(n, P7) and e,(G)
maximum. Enough to show e,(G) < e,(H(n, P7)).

» Suffices to consider G is connected. Otherwise, if G has many
components of the form H(t, P7) and a remaining graph with
small maximum degree d = d(s), then the sum of e, for these

subgraphs is < e,(H(n, P7)).
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New results and open problems

Sketch proof of Theorem 14(c).

> Let G = G(n) be By s-free with G # H(n, P7) and e,(G)
maximum. Enough to show e,(G) < e,(H(n, P7)).

» Suffices to consider G is connected. Otherwise, if G has many
components of the form H(t, P7) and a remaining graph with
small maximum degree d = d(s), then the sum of e, for these

subgraphs is < e,(H(n, P7)).
» G is a level graph rooted at a maximum degree vertex v. Say
Vi, ..., V4 are the levels.
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New results and open problems

Sketch proof of Theorem 14(c).

> Let G = G(n) be By s-free with G # H(n, P7) and e,(G)
maximum. Enough to show e,(G) < e,(H(n, P7)).

» Suffices to consider G is connected. Otherwise, if G has many
components of the form H(t, P7) and a remaining graph with
small maximum degree d = d(s), then the sum of e, for these
subgraphs is < e,(H(n, P7)).

» G is a level graph rooted at a maximum degree vertex v. Say
Vi, ..., V4 are the levels.

» If G has a pendent edge, triangle, “diamond”, or “spindle” at
a vertex of G — v, then 3B; s-free G’ = G’(n) with
ep(G) < ep(G').
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New results and open problems

Sketch proof of Theorem 14(c).

> Let G = G(n) be By s-free with G # H(n, P7) and e,(G)
maximum. Enough to show e,(G) < e,(H(n, P7)).

» Suffices to consider G is connected. Otherwise, if G has many
components of the form H(t, P7) and a remaining graph with
small maximum degree d = d(s), then the sum of e, for these
subgraphs is < e,(H(n, P7)).

» G is a level graph rooted at a maximum degree vertex v. Say
Vi, ..., V4 are the levels.

» If G has a pendent edge, triangle, “diamond”, or “spindle” at
a vertex of G — v, then 3B; s-free G’ = G’(n) with
ep(G) < ep(G').

» We may then assume that V4 = V3 = ().
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New results and open problems

Sketch proof of Theorem 14(c) (ctd.)

» Structure between V; and V5 looks like:

(a)vlC

71\
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New results and open problems

Sketch proof of Theorem 14(c) (ctd.)

» Structure between V; and V5 looks like:

(a) >1 >1 >1 >
"o e Ca
W T 1 VZCA..\A/..\)
Type: 1 2 3 4 5

» B7s-free = only types 1 and 5 can intersect in V7 as shown in
(b). If this happens, can obtain G’ as before.
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New results and open problems

Sketch proof of Theorem 14(c) (ctd.)

» Structure between V; and V5 looks like:

(a) >1 >1 >1 >
A= =ls &) A
M N YNV, V] /
W T 1 VZCA..\A/..\)
Type: 1 2 3 4 5

» B7s-free = only types 1 and 5 can intersect in V7 as shown in
(b). If this happens, can obtain G’ as before.

» Connect v to all vertices of V, to obtain G*, so that
ep(G) < e,(G*), and G* — v consists of components of types
1 to 5 as shown in (a). Then G* is By s-free.
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New results and open problems

Sketch proof of Theorem 14(c) (ctd.)

» Structure between V; and V5 looks like:

Mg ag &) A

CERELY
Type: 1 2 3 4 5

» B7s-free = only types 1 and 5 can intersect in V7 as shown in
(b). If this happens, can obtain G’ as before.

» Connect v to all vertices of V, to obtain G*, so that
ep(G) < e,(G*), and G* — v consists of components of types
1 to 5 as shown in (a). Then G* is By s-free.

» Replace G* — v with H(n — 1, Ps). Then can show that
ep(G) < ep(G”) < e(H(n, P7)). L

Henry Liu Degree powers in graphs with a forbidden forest



New results and open problems

Conjecture 15 (Lan, L., Qin, Shi, 2018+)

Let p>2,0>6,5s>0,and n> ng(¢,s) be sufficiently large. We
have

exp(n, Bes) = ep(H(n, Pr)).

Moreover, H(n, Py) is the unique extremal graph.
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New results and open problems

Conjecture 15 (Lan, L., Qin, Shi, 2018+)
Let p>2,0>6,5s>0,and n> ng(¢,s) be sufficiently large. We
have
exp(n, Bes) = ep(H(n, Pr)).
Moreover, H(n, Py) is the unique extremal graph.

Thus Conjecture 15 claims that ex,(n, By s) is the same as
exp(n, Pg), with the same unique extremal graph H(n, Py).
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New results and open problems

Conjecture 15 (Lan, L., Qin, Shi, 2018+)
Let p>2,0>6,5s>0,and n> ng(¢,s) be sufficiently large. We
have

exp(n, Bes) = ep(H(n, Pr)).

Moreover, H(n, Py) is the unique extremal graph.

Thus Conjecture 15 claims that ex,(n, By s) is the same as

exp(n, Pg), with the same unique extremal graph H(n, P;). If true,
then it is interesting to note that finding ex,(n, Bys) for p > 2 is a
manageable problem, but finding ex(n, By s) seems to remain
unpleasant.
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New results and open problems

Conjecture 15 (Lan, L., Qin, Shi, 2018+)

Let p>2,0>6,5s>0,and n> ng(¢,s) be sufficiently large. We
have
exp(n, Bes) = ep(H(n, Pr)).

Moreover, H(n, Py) is the unique extremal graph.

Thus Conjecture 15 claims that ex,(n, By s) is the same as

exp(n, Pg), with the same unique extremal graph H(n, P;). If true,
then it is interesting to note that finding ex,(n, Bys) for p > 2 is a
manageable problem, but finding ex(n, By s) seems to remain
unpleasant. The proof method of Theorem 8 (for finding

exp(n, Py)) by Caro and Yuster does not seem to extend trivially.
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New results and open problems

Conjecture 15 (Lan, L., Qin, Shi, 2018+)
Let p>2,0>6,5s>0,and n> ng(¢,s) be sufficiently large. We
have

exp(n, Bes) = ep(H(n, Pr)).
Moreover, H(n, Py) is the unique extremal graph.
Thus Conjecture 15 claims that ex,(n, By s) is the same as
exp(n, Pg), with the same unique extremal graph H(n, P;). If true,
then it is interesting to note that finding ex,(n, Bys) for p > 2 is a
manageable problem, but finding ex(n, By s) seems to remain
unpleasant. The proof method of Theorem 8 (for finding
exp(n, Py)) by Caro and Yuster does not seem to extend trivially.

Problem 16 (Lan, L., Qin, Shi, 2018+)

For p > 2, a fixed broom forest F, and n > no(F) sufficiently large,
determine exy(n, F) and the extremal graphs.
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New results and open problems

Thank you!

Henry Degree powers in graphs with a forbi
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