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Sn−1 = {(x1, x2, . . . , xn) ∈ Rn | x2
1 + x2

2 + · · · + x2
n = 1}

X ⊂ Sn−1, 0 < |X| < ∞. and let t ∈ N = {1, 2, 3, . . .}.

Def. (Spherical t-designs) (Delsarte-Goethals-Seidel, 1977)

X is called a spherical design on Sn−1, if

1

|Sn−1|

∫
Sn−1

f(x)dσ(x) =
1

|X|
∑
x∈X

f(x),

for ∀f(x) = f(x1, x2, . . . , xn), polynomials of degree ≤ t,

⇐⇒
∑
x∈X

f(x) = 0 for ∀f(x) ∈ Harmi(Rn), 1 ≤ i ≤ t,

⇐⇒
∑

(x,y)∈X×X

Qi(x · y) = 0, 1 ≤ i ≤ t,

(Qi(x) = Gegenbauer polynumial of degree i)

(⇐⇒ many other equivalent conditions.)
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Let T ⊂ N = {1, 2, 3, . . .}.

Def. (Spherical T -designs)

X is called a spherical T -design on Sn−1, if

⇐⇒
∑
x∈X

f(x) = 0 for ∀f(x) ∈ Harmi(Rn), for all i ∈ T,

⇐⇒
∑

(x,y)∈X×X

Qi(x · y) = 0, for all i ∈ T.

Remark. X is a spherical t-design on Sn−1, if and only if

X is a spherical T -design with T = {1, 2, . . . , t}.
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Tight spherical t-designs.

If X is a spherical t-design on Sn−1, then

|X| ≥
(
n − 1 + e

e

)
+

(
n − 1 + e − 1

e − 1

)
, if t = 2e,

|X| ≥ 2

(
n − 1 + e

e

)
, if t = 2e + 1,

“ = ” holds ⇐⇒ X is called a tight spherical t-design.

Let X be a t-design and s-distance set, i.e.,

s = |A(X)|, where A(X) = {x · y | x, y ∈ X,x ̸= y}. Then

(i) t ≤ 2s.

(ii) t = 2s ⇐⇒ X is a tight 2s-design.

(iii) t = 2s − 1 andX is antipodal ⇐⇒ X is a tight (2s − 1)-

design.

(iv) t ≥ 2s − 2 =⇒ X has the structure of a Q-poly. A.S.
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Classification of tight t-designs on Sn−1

Tight t-designs on Sn are classified for all t ̸= 4, 5, 7. See

Delsarte-Goethals-Seidel(1977), Bannai-Damerell(1979,1980), Bannai-

Sloane (1981)

For further non-existence results for t = 4, 5, 7, see

Makhnev (2002), Bannai-Munemasa-Venkov (2004), Nebe-Venkov

(2013).

Remark. Lower bounds for T -designs are known. If

2e ∈ T, then |X| ≥ cen
e. (Bannai-Okuda-Tagami, 2015)

Remark. There is a concept that X is a tight frame. It is

known that X ⊂ Sn−1 is a tight frame, if and only if X is

a spherical {2}-design, i.e. T -design with T = {2}.
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Main Theorem (Eiichi Bannai, Etsuko Bannai, Ziqing Xi-

ang, Wei-Hsuan Yu, and Yan Zhu, in preparation)

Let Y ⊂ Sn−1 be a 2-distance {4, 2, 1}-design. (Then Y is

a SRG, since t ≥ 2s − 2.) Then we can determine the pos-

sible parameters of the SRG. Moreover, Y must be either

a tight spherical 4-design on Sn−1 with |Y | = n(n+3)
2

or a

half of a tight spherical 5-design on Sn−1 with |Y | = n(n+1)
2

.

(Here, a half of an antipodal design means take one point from each

pair of antipodal two points. It is not known which of such half of an

antipodal tight 5-design becomes a {4, 2, 1}-design.)
(For a related work, see ”Half of an antipodal spherical design”

(Arkiv der Math., 2018) by Bannai, Da Zhao, Lin Zhu, Yan Zhu,

and Yinfeng Zhu.)
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Rough sketch of the idea and some speculations.

Let Y has the structure of a SRG of type (v, k, λ, µ). Let k, x, y be
the eigenvalues of the SRG. Then we have:
k = µ − xy,
v = 1

µ
(k − x)(k − y),

λ = x + y + µ,
n = mx = (µ−xy)(µ−xy−y)(y+1)

µ(y−x)
.

Then we can show that using the condition that Y is a {4, 2, 1}-design,
we get

F3(x, y, µ) = 0

must be satisfied, where

F3(x, y, µ) = (y + 1)(x − y(y2 + 3y + 3))µ3

+(x2(3y2 + 8y + 3) + yx(3y4 + 10y3 + 6y2 − 7y − 2)

+y3(y + 3)(y + 2))µ2

−x(y + 1)(x2(3y2 − 2y − 2) + yx(3y4 + 5y3 − 4y2 + y + 1)

+y4(2y + 5))µ − x2y2(y + 1)2(x + 1)(x − y3).
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As an experiment, we determined small solutions of the equation
F3(x, y, µ) = 0 with the property xy < 0.

x y n v k λ µ

−81 3 47 1128 567 246 324

−81 3 46 1127 486 165 243

−28 2 23 276 140 58 84

−28 2 22 275 112 30 56

−5 1 7 28 15 6 10

−5 1 6 27 10 1 5

−1 1 2 3 2 1 1

4 −2 6 27 16 10 8

4 −2 7 28 12 6 4

27 −3 22 275 162 105 81

27 −3 23 276 135 78 54

80 −4 46 1127 640 396 320

80 −4 47 1128 560 316 240
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From this data, we were able to conjecture that all the integer solu-
tions of F3(x, y, µ) must be in the form stated below. Then, we could
solve this diophantine equation also using some additional conditions
such as |Y | ≤ n(n + 3)/2.
(It seems that the problem “whether all the integer solutions of this
diophantine equation could be determined” remains as an interesting
purely number theoretical open problem.)

If v ≤ n(n+3)
2

and y ̸= −1, then all integer solutions of F3(x, y, µ) = 0
so that xy < 0 and n, v are integers are

1. −x = y = µ = 1,

2. x = −y2(2y + 3) and µ = −xy,

3. x = −y2(2y + 3) and µ = −x(y + 1).

This completes the proof of our Theorem. (This proof uses computer
extensively.)
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Why I think this work is interesting ?

(i) If we try to describe all possibilities of Y ⊂ Sn−1 with Y a 2-
distance {3, 2, 1}-design, then there are too many possibilities
(some infinite families and some sporadic feasible parameters),
and determining the existence or the non-existence would be very
interesting problems (for any of these remaining parameters.)

(ii) In the case of 2-distance {4, 2, 1}-design, our Theorem almost
determines the possibilities.

(iii) If we consider Y ⊂ Sn−1 with Y a 3-distance {5, 4, 3, 2, 1}-design,
then the possible feasible parameter sets (by numerical experi-
ment) are only those coming from tight spherical 5-designs and
those coming from a section of tight 7-design.
(Although this case is far more complicated than the case of 2-
distance {4, 2, 1}-design, I optimistically think that our method
may work in this case.)

(iv) I believe that the situation is similar for s-distance (2s − 1)-
designs (for larger s).
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Thank You
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