Spherical embeddings of symmetric association schemes

Da Zhao 趙 達

Shanghai Jiao Tong University Joint with Eiichi Bannai 坂内英一

jasonzd@sjtu.edu.cn

May 24th, 2018

Outline

- What is association scheme?
 From groups, polytopes, and graphs.
- Concept related to association scheme Idempotent, spherical embedding, primitive, metic (≈distance-regular graphs), and cometric (?)
- Some conjectures and results revisited
- New results

Classification of A.S. with faithful spherical embedding in \mathbb{R}^3 , and partial result on cometric A.S. with $m_1 = 4$.

> Sketch of proof

Outline

- What is association scheme?
 From groups, polytopes, and graphs.
- Concept related to association scheme Idempotent, spherical embedding, primitive, metic (≈distance-regular graphs), and cometric (?)
- Some conjectures and results revisited
- New results

Classification of A.S. with faithful spherical embedding in \mathbb{R}^3 , and partial result on cometric A.S. with $m_1 = 4$.

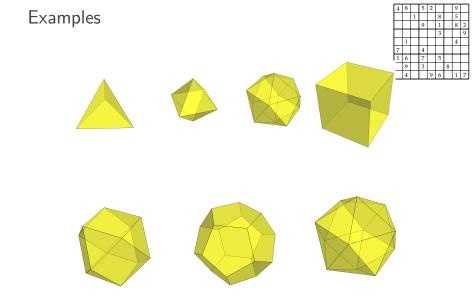
> Sketch of proof

In case you get bored ...

Time killer

4	8		5	2			9	
		1			8		5	
			9		1		8	2
					3			9
	1						4	
7			4					
1	6		7		5			
	9		3			8		
	4			9	6		1	7

4	8		5	2			9	
		1			8		5	
			9		1		8	2
					3			9
	1						4	
7			4					
1	6		7		5			
	9		3			8		
	4			9	6		1	7



Association scheme

Definition

- \triangleright Let X be a finite set of size n.
- ▷ Let {R_i}^d_{i=0} be a collection of binary relations R_i ⊆ X × X. Let A_i be the corresponding adjacency matrix of R_i. They satisfy the following properties.

1.
$$A_0 = I.$$

2. $A_0 + A_1 + \dots + A_d = J.$
3. $A_i^T \in \{A_0, A_1, \dots, A_d\}.$
4. $A_i A_j = \sum_{k=0}^d p_{ij}^k A_k.$

Then we call $\mathfrak{X} = (X, \{R_i\}_{i=0}^d)$ an association scheme (A.S.).

5. $A_i A_j = A_j A_i$. (commutative A.S.) 6. $A_i^T = A_i$. (symmetric A.S. \implies commutative A.S.)

In this talk, we focus on symmetric A.S. .

🛛 SJTU

More examples

4	8		5	2			9	
		1			8		5	
			9		1		8	2
					3			9
	1						4	
7			4					
1	6		7		5			
	9		3			8		
	4			9	6		1	7

- \triangleright Let (G, X) be a transitive permutation group. The orbits of G acting on $X \times X$ form an A.S..
- $\triangleright \ \ {\rm Let} \ \ G \ \ {\rm be a \ finite \ group.} \ \ {\rm The \ orbits \ of} \ \ G\times G \ \ {\rm acting \ on} \ \ G\times G \ \ {\rm by} \ (x,y)^{g,h}=(g^{-1}xh,g^{-1}yh) \ \ {\rm form \ an \ } {\rm A.S.}.$
- $\triangleright~$ Let Γ be a distance-regular graph, then the distance relations form an A.S..

Idempotents

Definition (primitive idempotent)

4	8		5	2			9	
		1			8		5	
			9		1		8	2
					3			9
	1						4	
7			4					
1	6		7		5			
	9		3			8		
	4			0	6		1	7

Given a commutative A.S., the adjacency matrices $\{A_i\}_{i=0}^d$ can be diagonalized simultaneously. The space $V = \mathbb{C}^{|X|}$ have the composition

$$V = V_0 \oplus V_1 \oplus \cdots \oplus V_d$$

Let E_i be the projection $V \rightarrow V_i$, and we call it the i-th primitive idempotent.

1.
$$E_0 = \frac{1}{|X|} J.$$

2. $E_0 + E_1 + \dots + E_d = I.$
3. $E_i E_j = \delta_{ij} E_i.$
4. $E_i \circ E_j = \sum_{k=0}^d q_{ij}^k E_k$
1. $A_0 = I.$
2. $A_0 + A_1 + \dots + A_d = J.$
3. $A_i \circ A_j = \delta_{ij} A_i.$
4. $A_i A_j = \sum_{k=0}^d p_{ij}^k A_k$

They forms two basis of the Bose-Mesner algebra. We can take $V = \mathbb{R}^{|X|}$ if the A.S. is symmetric.

O SJTU

Spherical embedding

4	8		5	2			9	
		1			8		5	
			9		1		8	2
					3			9
	1						4	
7			4					
1	6		7		5			
	9		3			8		
	4			9	6		1	7

Let k_i = the valency of A_i . Let m_i = the rank of E_i .

Definition (spherical embedding)

The spherical embedding of a symmetric A.S. $\mathfrak{X} = (X, \{R_i\}_{i=0}^d)$ with respect to E_i is the mapping $X \to \mathbb{R}^{m_i}$ defined by

$$x \to \overline{x} = \sqrt{\frac{|X|}{m_i}} E_i \phi_x$$

where ϕ_x is the characteristic vector of x.

The image is on the unit sphere $S^{m_i-1} \subset \mathbb{R}^{m_i}$. We identify X and \overline{X} when the embedding is faithful.

Primitive

4	8		5	2			9	
		1			8		5	
			9		1		8	2
					3			9
	1						4	
7			4					
1	6		7		5			
	9		3			8		
	4			9	6		1	7

Definition (primitive)

A symmetric A.S. $\mathfrak{X} = (X, \{R_i\}_{i=0}^d)$ is called **primitive** if each graph (X, R_i) is connected for $1 \leq i \leq d$.

metric and cometric

4	8		5	2			9	
		1			8		5	
			9		1		8	2
					3			9
	1						4	
7			4					
1	6		7		5			
	9		3			8		
	4			9	6		1	7

Definition (metric)

A symmetric association scheme is called metric (or P-polynomial) if there exists an ordering of relations such that $A_i = v_i(A_1)$, where v_i is a polynomial of degree *i*.

P-polynomial association scheme pprox distance-regular graphs

Definition (cometric)

A symmetric association scheme is called cometric (or Q-polynomial) if there exists an ordering of primitive idempotents such that $E_i = v_i^*(E_1)$, where v_i^* is a polynomial of degree *i*, and the product is Schur product.

Conjectures and results revisited (I)

4	8		5	2			9	
		1			8		5	
			9		1		8	2
					3			9
	1						4	
7			4					
1	6		7		5			
	9		3			8		
	4			9	6		1	7

Conjecture (Bannai-Ito)

 ${\text{primitive metric A.S.}} = {\text{primitive cometric A.S.}}$ for large class number d.

Conjecture (Babai)

The maximum valency of a primitive association scheme is bounded by a function of the minimum (non-trivial) valency, i.e., $k_{\text{max}} \leq f(k_{\min})$.

	4	8	5	2	Π	9	
Conjectures and results revisited (II)			L		8	5	5
			9		1	8	3 2
					3		9
		1				4	Ł
	7		4				
Theorem (Godsil 1988)	1	6	7		5		
		9	3			8	
		4		9	6	1	7
There are only finitely many connected co-connected distance-regular g	ŗra	apr	าร				
with an eigenvalue multiplicity m for all $m \ge 3$.		-					

Conjectures and results revisited (II)

Theorem (Godsil 1988)

4	8		5	2			9	
		1			8		5	
			9		1		8	2
					3			9
	1						4	
7			4					
1	6		7		5			
	9		3			8		
	4			9	6		1	7

There are only finitely many connected co-connected distance-regular graphs with an eigenvalue multiplicity m for all $m \ge 3$.

Theorem (Bang-Dubickas-Koolen-Moulton 2015)

There are only finitely many connected distance-regular graphs of valency k_1 for all $k_1 \geq 3$.

Conjectures and results revisited (II)

Theorem (Godsil 1988)

4	8		5	2			9	
		1			8		5	
			9		1		8	2
					3			9
	1						4	
7			4					
1	6		7		5			
	9		3			8		
	4			9	6		1	7

There are only finitely many connected co-connected distance-regular graphs with an eigenvalue multiplicity m for all $m \ge 3$.

Theorem (Bang-Dubickas-Koolen-Moulton 2015)

There are only finitely many connected distance-regular graphs of valency k_1 for all $k_1 \geq 3$.

Theorem (Martin-Williford 2009)

There are finitely many cometric association schemes with multiplicity m_1 for all $m_1 \geq 3$.

Conjectures and results revisited (II)

Theorem (Godsil 1988)

4	8		5	2			9	
		1			8		5	
			9		1		8	2
					3			9
	1						4	
7			4					
1	6		7		5			
	9		3			8		
	4			9	6		1	7

There are only finitely many connected co-connected distance-regular graphs with an eigenvalue multiplicity m for all $m \ge 3$.

Theorem (Bang-Dubickas-Koolen-Moulton 2015)

There are only finitely many connected distance-regular graphs of valency k_1 for all $k_1 \geq 3$.

Theorem (Martin-Williford 2009)

There are finitely many cometric association schemes with multiplicity m_1 for all $m_1 \ge 3$.

Corollary

There are finitely many cometric association schemes with a relation of valency k for all $k \ge 3$.

O SJTU

Da Zhao 12 of 25

Conjectures and results revisited (III)

4	8		5	2			9	
		1			8		5	
			9		1		8	2
					3			9
	1						4	
7			4					
1	6		7		5			
	9		3			8		
	4			9	6		1	7

Theorem (Biggs-Boshier-ShaweTaylor 1986)

There are 13 distance-regular graphs of valency k = 3.

Theorem (Brouwer-Koolen 1999)

There are 17 possible parameters of distance-regular graphs of valency k = 4, each of which is determined and unique except possibly one parameter.

We aim to finish the classification dual to these two theorems.

New results (I)

Theorem (Bannai-Zhao)

4	8		5	2			9	
		1			8		5	
			9		1		8	2
					3			9
	1						4	
7			4					
1	6		7		5			
	9		3			8		
	4			9	6		1	7

Let \mathfrak{X} be a symmetric association scheme. If \mathfrak{X} has a faithful spherical \square embeddings X with $m_1 = 3$ in \mathbb{R}^3 , then it must be one of the followings:

- 1. the regular tetrahedron (|X| = 4);
- 2. the regular octahedron (|X| = 6);
- 3. the cube (|X| = 8);
- 4. the regular icosahedron (|X| = 12);
- 5. the quasi-regular polyhedron of type [3, 4, 3, 4] (|X| = 12);
- 6. the regular dodecahedron (|X| = 20);

* The quasi-regular polyhedron of type [3, 5, 3, 5] (|X| = 30) is a non-commutative A.S. with a faithful spherical embeddings in \mathbb{R}^3 .

Corollary

The Q-polynomial association schemes with $m_1 = 3$ are (1-4) in the above list.

New results (II)

4	8		5	2			9	
		1			8		5	
			9		1		8	2
					3			9
	1						4	
7			4					
1	6		7		5			
	9		3			8		
	4			9	6		1	7

Lemma

Let $\mathfrak{X} = (X, \{R_i\}_{i=0}^d)$ be a Q-polynomial association scheme. Suppose there exist $1 \leq i, j \leq d$ such that $p_{ij}^i = 1$, then the adjacency graph (X, R_i) has a cycle of length 3, 4, 5, 6, 8, 10, or 12. So the girth of $\Gamma_i = (X, R_i)$ is at most 12. Moreover if g = 3, then i = j.

Corollary

Let \mathfrak{X} be a primitive Q-polynomial association scheme with $m_1 = 4$. Then in the spherical embedding of \mathfrak{X} on S^3 , the nearest neighborhood $R_1(x)$ of a point $x \in X$ cannot be antipodal on the translated sphere S^2 .

Remarks on previous result

The argument in Bannai-Bannai (2006) essentially proves:

Proposition

Let X be a faithful spherical embedding of a symmetric association scheme with $m_1 = 3$ in \mathbb{R}^3 . Let $A(X) = \{ \langle x, y \rangle \mid x, y \in X, x \neq y \}$ and $\alpha = \max A(X)$. Moreover, if we assume that $R_1 \subseteq \Gamma_{\alpha} = \{(x, y) \mid \langle x, y \rangle = \alpha\}$, then

- 1. The valency of the graph (X, Γ_{α}) is at most 5.
- 2. If we further assume $R_1 = \Gamma_{\alpha}$, we can show that $X \subset S^2$ is as follows.
 - 2.1 If $k_1 = 5$, then each connected component of (X, R_1) is the regular icosahedron (|X| = 12).
 - 2.2 If $k_1 = 4$, then each connected component of (X, R_1) is the regular octahedron (|X| = 6), the quasi-regular polyhedron of type [3, 4, 3, 4] (|X| = 12), or the quasi-regular polyhedron of type [3, 5, 3, 5] (|X| = 30).
 - 2.3 If $k_1 = 3$, then each connected component of (X, R_1) is the regular tetrahedron (|X| = 4), the cube (|X| = 8), or the regular dodecahedron (|X| = 20).

_	_	_	_	_	_	_	_	_
4	8		5	2			9	
		1			8		5	
			9		1		8	2
					3			9
	1						4	
7			4					
1	6		7		5			
	9		3			8		
	4			9	6		1	7

What shall we do to prove the first result?

4	8		5	2			9	
		1			8		5	
			9		1		8	2
					3			9
	1						4	
7			4					
1	6		7		5			
	9		3			8		
	4			9	6		1	7

The clean-up work

What shall we do to prove the first result?

4	8		5	2			9	
		1			8		5	
			9		1		8	2
					3			9
	1						4	
7			4					
1	6		7		5			
	9		3			8		
	4			9	6		1	7

The clean-up work If we can show that

- 1. $k_1 \neq 1$ and $k_1 \neq 2$.
- 2. $R_1 = \Gamma_{\alpha}$.
- 3. the graph (X, R_1) is connected.

Then we get a complete classification of symmetric A.S. with faithful spherical embedding in \mathbb{R}^3 .

Proof of $k_1 \neq 1$

4	8		5	2			9	
		1			8		5	
			9		1		8	2
					3			9
	1						4	
7			4					
1	6		7		5			
	9		3			8		
	4			9	6		1	7

Proof

 \triangleright The eigenvalue of A_1 has to be -1.

 $\triangleright~$ It is an antipodal relation in the spherical embedding.

Proof of $k_1 \neq 2$

4	8		5	2			9	
		1			8		5	
			9		1		8	2
					3			9
	1						4	
7			4					
1	6		7		5			
	9		3			8		
	4			9	6		1	7

Proof

- \triangleright (X, R₁) is a union of ℓ_j -cycles.
- ▷ All the ℓ_j 's are equal.
- \triangleright Geometrically they are regular $\ell\text{-gons}$ on great circles.
- \triangleright Great circles intersect on S^2 .

4	8		5	2			9	
		1			8		5	
			9		1		8	2
					3			9
	1						4	
7			4					
1	6		7		5			
	9		3			8		
	4			9	6		1	7

Proof

3+3>5

Da Zhao 20 of 25

Proof of connectedness

4	8		5	2			9	
		1			8		5	
			9		1		8	2
					3			9
	1						4	
7			4					
1	6		7		5			
	9		3			8		
	4			9	6		1	7

Proof

- ▷ If there are two or more connected components.
- ▷ Then each connect component is in the list of Proposition.
- \triangleright It is too crowded on the sphere S^2 !

Remarks on previous result

4	8		5	2			9	
		1			8		5	
			9		1		8	2
					3			9
	1						4	
7			4					
1	6		7		5			
	9		3			8		
	4			9	6		1	7

In an informal paper in RIMS proceedings 1997, Attila Sali gives the following theorem.

Theorem

Let \mathfrak{X} be a primitive Q-polynomial association scheme with $m_1 = 4$. Then in the spherical embedding of \mathfrak{X} on S^3 , the nearest neighborhood $R_1(x)$ of a point $x \in X$ is one of the following:

- \triangleright icosahedron
- \triangleright cube
- \triangleright octahedron
- \triangleright tetrahedron

Remarks on previous result

4	8		5	2			9	
		1			8		5	
			9		1		8	2
					3			9
	1						4	
7			4					
1	6		7		5			
	9		3			8		
	4			9	6		1	7

We can exclude some cases, but we also find some missing cases.

Theorem

Let \mathfrak{X} be a primitive Q-polynomial association scheme with $m_1 = 4$. Then in the spherical embedding of \mathfrak{X} on S^3 , the nearest neighborhood $R_1(x)$ of a point $x \in X$ is one of the following:

- ▷ icosahedron
- ⊳ cube
- ▷ octahedron
- \triangleright tetrahedron
- ▷ triangle, pentagon, 3-prism, 5-prism, twisted 2-prism, twisted 4-prism, etc.

Proof of the second result

Lemma

	4	8		5	2			9	
			1			8		5	
				9		1		8	2
						3			9
		1						4	
	7			4					
	1	6		7		5			
		9		3			8		
_		4			0	6		1	7

Let $\mathfrak{X} = (X, \{R_i\}_{i=0}^d)$ be a Q-polynomial association scheme. Suppose there exist $1 \leq i, j \leq d$ such that $p_{ij}^i = 1$, then the adjacency graph (X, R_i) has a cycle of length 3, 4, 5, 6, 8, 10, or 12. So the girth of $\Gamma_i = (X, R_i)$ is at most 12. Moreover if g = 3, then i = j.

Proof

- ▷ By Terwilliger's balanced set condition, pⁱ_{ii} = 1 implies that four points are co-plane.
- ▷ Inductively we get a regular *N*-gon.
- ▷ The splitting field is at most quadratic.
- \triangleright N = 3, 4, 5, 6, 8, 10 or 12.

Further Discussion

F	1	8		5	2			9	
Γ			1			8		5	
				9		1		8	2
Г						3			9
Γ		1						4	
5	7			4					
	1	6		7		5			
Γ		9		3			8		
Г		4			9	6		1	7

- Partially metric association schemes with a multiplicity three. (van Dam-Koolen-Park 2017)
- \triangleright Partially cometric association scheme (with $k_1 = 4$)?

Thank you for your attention!

