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1. Toric varieties and fans

Definition
An n-dimensional toric variety is a normal algebraic variety X over
C containing (C∗)n as an open dense subset, s.t. the natural action
(C∗)n ↷ (C∗)n extends to an action on X .

Examples
(C∗)n,Cn,Pn are toric varieties.

Definition
Two toric varieties X and X ′ are said to be isomorphic if there exists
an isomorphism f : X → X ′ satisfying the following conditions:

f induces an isomorphism of algebraic tori f ′ : (C∗)n → (C∗)n.

f is equivariant with respect to f ′, i.e., f(tx) = f ′(t)f(x) for any
t ∈ (C∗)n and x ∈ X .



Definition
A rational strongly convex polyhedral cone is a cone σ ⊂ Rn

generated by finitely many vectors in Zn which does not contain any
non-zero linear subspace of Rn. A fan in Rn is a non-empty finite set
∆ of such cones satisfying the following conditions:

If σ ∈ ∆, then each face of σ is in ∆.

If σ, τ ∈ ∆, then σ ∩ τ is a face of each.

Definition
Two fans ∆ and ∆′ in Rn are said to be isomorphic if there exists an
automorphism of Zn that induces a bijection ∆→ ∆′.

Theorem

{fans in Rn}/(isom.)
1:1←→ {n-dimensional toric varieties}/(isom.),

∆ 7→ X(∆).



We construct a toric variety X(∆) from a fan ∆.

Step 1 (affine toric varieties)
For each σ ∈ ∆, we construct an affine toric variety Uσ.

σ∨ = {u ∈ Rn | ⟨u, v⟩ ≥ 0 ∀v ∈ σ}: the dual of σ.

σ∨ ∩ Zn is a commutative monoid.

The monoid ring C[σ∨ ∩ Zn] is a finitely generated integral
domain over C. So we put Uσ = SpecC[σ∨ ∩ Zn].

Step 2 (gluing)
Let τ be a face of σ and let τ→ σ be the inclusion.

{ a monoid homomorphism σ∨ ∩ Zn → τ∨ ∩ Zn.

{ an open immersion Uτ → Uσ.

Gluing {Uσ | σ ∈ ∆}, we obtain the toric variety X(∆).



Example
σ = R≥0(2e1 − e2) + R≥0e2 ⊂ R2

{ σ∨ = R≥0e1 + R≥0(e1 + 2e2)
{ σ∨ ∩ Z2 = Z≥0e1 + Z≥0(e1 + e2) + Z≥0(e1 + 2e2).

C[σ∨ ∩ Z2] = C[X ,XY ,XY2] = C[U,V ,W ]/(UW − V2). Therefore
Uσ = SpecC[U,V ,W ]/(UW − V2).



Examples (n = 2)



∆: a fan in Rn.

Definition
∆ is nonsingular⇔ every cone of ∆ is generated by a part of a
basis for Zn.

∆ is complete⇔ ∪σ∈∆ σ = Rn.

Fact
X(∆) is nonsingular⇔ ∆ is nonsingular.

X(∆) is complete⇔ ∆ is complete.



2. Graph cubeahedra

Let G be a finite simple graph, that is, a finite graph with no loops
and no multiple edges.

V(G) = {1, . . . , n}: the node set.

E(G): the edge set.

Definition
For I ⊂ V(G), we define the induced subgraph G|I by

V(G|I) = I, E(G|I) = {{v ,w} ∈ E(G) | v ,w ∈ I}.



Let □n be the standard n-cube whose facets are labeled by 1, . . . , n
and 1, . . . , n, where the two facets labeled by i and i are on opposite
sides.
Then every face of □n is labeled by a subset I ⊂ {1, . . . , n, 1, . . . , n}
such that I ∩ {1, . . . , n} and {i ∈ {1, . . . , n} | i ∈ I} are disjoint. The
face corresponding to I is the intersection of the facets labeled by
the elements of I.



Let IG = {I ⊂ V(G) | G|I is connected, I , ∅}. We call IG the
graphical building set of G.

Example
Let P3 be a path with three nodes.

Then IP3 = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}.

Definition (Devadoss–Heath–Vipismakul, 2011)
The graph cubeahedron □G is obtained from □n by truncating the
faces labeled by the elements of IG in increasing order of
dimension.



Example
Let Pn be a path with n nodes. Then

IP2 = {{1}, {2}, {1, 2}},
IP3 = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}

and we have the graph cubeahedra □P2 and □P3 in the following
figures:



An n-dimensional simple convex polytope in Rn is called a Delzant
polytope if for every vertex, the outward-pointing primitive normal
vectors of the facets containing the vertex form a basis for Zn.

Example
The graph cubeahedron □P2 can be realized as a Delzant polytope.

An n-dimensional Delzant polytope P defines a nonsingular
complete fan ∆P in Rn.



By the following lemma, any graph cubeahedron can be realized as
a Delzant polytope □G in a canonical way. In particular, we obtain a
nonsingular complete toric variety X(∆□G).

Lemma
Let P be a Delzant polytope and let F be a face of codimension ≥ 2
of P. Then there exists a canonical truncation of P along F such
that the result CutF(P) is also a Delzant polytope and the
associated toric variety X(∆CutF (P)) is the blow-up of X(∆P) along
the subvariety corresponding to F .

Remark
X(∆□G) is in fact a nonsingular projective toric variety.



We have a one-to-one correspondence

IG ∪ {{1}, . . . , {n}}
1:1←→ {facets of □G}, I 7→ FI.

The outward-pointing primitive normal vector eI of FI is given by

eI =

{ ∑
i∈I ei (I ∈ IG),

−ei (I = {i}, i ∈ {1, . . . , n}).

Theorem (Devadoss–Heath–Vipismakul, 2011)
Let G be a finite simple graph. Then the two facets FI and FJ of the
graph cubeahedron □G intersect iff one of the following holds:

I, J ∈ IG and we have either I ⊂ J or J ⊂ I or I ∪ J < IG.

One of I and J, say I, is in IG and J = {j} ∃j ∈ {1, . . . , n} \ I.

I = {i} and J = {j} for some i, j ∈ {1, . . . , n}.
Furthermore, □G is a flag polytope.



We describe the fan ∆□G of □G explicitly. Let

N□(G) = {N ⊂ IG ∪ {{1}, . . . , {n}} | FI ∩ FJ , ∅ for any I, J ∈ N}.

For N ∈ N□(G), we denote by σN the |N|-dimensional cone∑
I∈N R≥0eI in Rn. Then ∆□G = {σN | N ∈ N□(G)}.

Example
The fan ∆□P2

of □P2 is illustrated in the right figure and thus the
associated toric variety is P1 × P1 blown-up at one point.



3. Toric Fano varieties
X : a nonsingular projective algebraic variety.

Definition
X is Fano⇔ the anticanonical divisor −KX is ample.

X is weak Fano⇔ −KX is nef and big.
A divisor D is nef⇔ (D.C) ≥ 0 for any curve C ⊂ X .
D is big⇔ the Iitaka dimension κ(X ,D) is equal to dimX .

Theorem
There are a finite number of isomorphism classes of toric (weak)
Fano varieties in any given dimension.

dimension 1 2 3 4 5 6
# of toric Fano varieties 1 5 18 124 866 7622
# of toric weak Fano varieties 1 16 ? ? ? ?



Let ∆(r) be the set of r-dimensional cones of ∆ for 0 ≤ r ≤ n.

Proposition

∆(n − 1)
1:1←→ {torus-invariant curves on X(∆)},

τ 7→ V(τ).

Proposition
Let X(∆) be an n-dimensional nonsingular projective toric variety.

X(∆) is Fano⇔ (−KX(∆).V(τ)) > 0 ∀τ ∈ ∆(n − 1).

X(∆) is weak Fano⇔ (−KX(∆).V(τ)) ≥ 0 ∀τ ∈ ∆(n − 1).



Let ∆ be a nonsingular complete fan in Rn.

Proposition
Let τ = R≥0v1 + · · ·+ R≥0vn−1 ∈ ∆(n − 1), where v1, . . . , vn−1 are
primitive vectors in Zn, and let v and v ′ be the distinct primitive
vectors in Zn s.t. τ+ R≥0v , τ+ R≥0v ′ ∈ ∆(n). Then:

∃a1, . . . , an−1 ∈ Z s.t. v + v ′ + a1v1 + · · ·+ an−1vn−1 = 0.

(−KX(∆).V(τ)) = 2 + a1 + · · ·+ an−1.



4. Main results
Let G be a finite simple graph.

Theorem 1 (S)
X(∆□G) is Fano⇔ each connected component of G has ≤ 2 nodes.
In particular, if X(∆□G) is Fano, then it is a product of copies of P1

and P1 × P1 blown-up at one point.

Sketch of the Proof Let n = |V(G)| = dim X(∆□G).
(⇒) If G has a connected component with ≥ 3 nodes, then we can
find σN ∈ ∆(n − 1) such that (−KX(∆□G ).V(σN)) = 0. Therefore
X(∆□G) is not Fano.
(⇐) Since the union of graphs corresponds to the product of
associated toric varieties, it suffices to show that X(∆□G) is Fano if
G is connected and |V(G)| ≤ 2.
(i) If G = P1, then X(∆□G) is P1.
(ii) If G = P2, then X(∆□G) is P1 × P1 blown-up at one point.
Thus X(∆□G) is Fano in every case. □



Let G be a finite simple graph.

Theorem 2 (S)
The following are equivalent:

X(∆□G) is weak Fano.

∀I ⊂ V(G), G|I is not isomorphic to any of the following:
(i) A cycle with ≥ 4 nodes.
(ii) A diamond graph (the graph obtained by removing an edge
from a complete graph with four nodes).
(iii) A claw (a star with three edges).

Figure: a diamond graph.



Examples
If G is a path or a complete graph, then X(∆□G) is weak Fano.

If G is a graph obtained by connecting more than two graphs
with one node, then X(∆□G) is not weak Fano.

The toric variety associated to the graph cubeahedron of the
graph below is weak Fano.

Figure: an example.

dimension 1 2 3 4 5 6
# of connected graphs 1 1 2 6 21 112
weak Fano 1 1 2 3 6 11



Sketch of the Proof Let n = |V(G)| = dim X(∆□G).
(⇒) Suppose that ∃I ⊂ V(G) such that G|I is a cycle of length ≥ 4, a
diamond graph, or a claw. Then we can find σN ∈ ∆(n − 1) such
that (−KX(∆□G ).V(σN)) = −1. Therefore X(∆□G) is not weak Fano.
(⇐) Suppose that X(∆□G) is not weak Fano. Then ∃N ∈ N□(G)
such that |N| = n − 1 and (−KX(∆□G ).V(σN)) ≤ −1, and

∃{J, J′} ⊂ (IG ∪ {{1}, . . . , {n}}) \ N such that N ∪ {J} and N ∪ {J′} are
distinct maximal elements of N□(G). Since □G is flag, {J, J′} is not
in N□(G). Thus we must have J ∈ IG or J′ ∈ IG. We may assume
J ∈ IG.

If J′ ∈ IG, then we can find I ⊂ V(G) such that G|I is a cycle of
length ≥ 4 or a diamond graph.

If J′ = {j} for j ∈ {1, . . . , n}, then we can find I ⊂ V(G) such that
G|I is a claw.

□



Thank you for your attention!
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