Toric Fano varieties associated to graph cubeahedra

Yusuke Suyama (Osaka University)

Combinatorics on Convex Polytopes

May 23, 2018 Sendai International Center

Table of Contents

1. Toric varieties and fans

Definition

An *n*-dimensional toric variety is a normal algebraic variety *X* over \mathbb{C} containing $(\mathbb{C}^*)^n$ as an open dense subset, s.t. the natural action $(\mathbb{C}^*)^n \sim (\mathbb{C}^*)^n$ extends to an action on *X*.

Examples

 $(\mathbb{C}^*)^n, \mathbb{C}^n, \mathbb{P}^n$ are toric varieties.

Definition

Two toric varieties X and X' are said to be isomorphic if there exists an isomorphism $f : X \to X'$ satisfying the following conditions:

- *f* induces an isomorphism of algebraic tori $f' : (\mathbb{C}^*)^n \to (\mathbb{C}^*)^n$.
- *f* is equivariant with respect to f', i.e., f(tx) = f'(t)f(x) for any $t \in (\mathbb{C}^*)^n$ and $x \in X$.

Definition

A rational strongly convex polyhedral cone is a cone $\sigma \subset \mathbb{R}^n$ generated by finitely many vectors in \mathbb{Z}^n which does not contain any non-zero linear subspace of \mathbb{R}^n . A fan in \mathbb{R}^n is a non-empty finite set Δ of such cones satisfying the following conditions:

- If $\sigma \in \Delta$, then each face of σ is in Δ .
- If $\sigma, \tau \in \Delta$, then $\sigma \cap \tau$ is a face of each.

Definition

Two fans Δ and Δ' in \mathbb{R}^n are said to be isomorphic if there exists an automorphism of \mathbb{Z}^n that induces a bijection $\Delta \to \Delta'$.

Theorem

 $\{ \text{fans in } \mathbb{R}^n \} / (\text{isom.}) \xleftarrow{1:1} \{ n \text{-dimensional toric varieties} \} / (\text{isom.}), \\ \Delta \mapsto X(\Delta).$

We construct a toric variety $X(\Delta)$ from a fan Δ .

Step 1 (affine toric varieties)

For each $\sigma \in \Delta$, we construct an affine toric variety U_{σ} .

- $\sigma^{\vee} = \{ u \in \mathbb{R}^n \mid \langle u, v \rangle \ge 0 \ \forall v \in \sigma \}$: the dual of σ .
- $\sigma^{\vee} \cap \mathbb{Z}^n$ is a commutative monoid.
- The monoid ring C[σ[∨] ∩ Zⁿ] is a finitely generated integral domain over C. So we put U_σ = SpecC[σ[∨] ∩ Zⁿ].

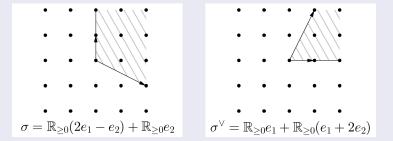
Step 2 (gluing)

Let τ be a face of σ and let $\tau \rightarrow \sigma$ be the inclusion.

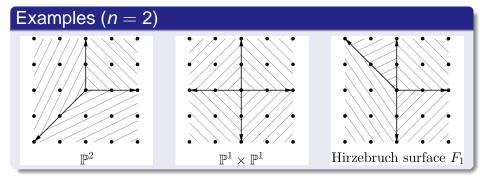
- \rightsquigarrow a monoid homomorphism $\sigma^{\vee} \cap \mathbb{Z}^n \to \tau^{\vee} \cap \mathbb{Z}^n$.
- \rightarrow an open immersion $U_{\tau} \rightarrow U_{\sigma}$.
- Gluing $\{U_{\sigma} \mid \sigma \in \Delta\}$, we obtain the toric variety $X(\Delta)$.

Example

$$\begin{split} &\sigma = \mathbb{R}_{\geq 0}(2\mathbf{e}_1 - \mathbf{e}_2) + \mathbb{R}_{\geq 0}\mathbf{e}_2 \subset \mathbb{R}^2 \\ &\sim \sigma^{\vee} = \mathbb{R}_{\geq 0}\mathbf{e}_1 + \mathbb{R}_{\geq 0}(\mathbf{e}_1 + 2\mathbf{e}_2) \\ &\sim \sigma^{\vee} \cap \mathbb{Z}^2 = \mathbb{Z}_{\geq 0}\mathbf{e}_1 + \mathbb{Z}_{\geq 0}(\mathbf{e}_1 + \mathbf{e}_2) + \mathbb{Z}_{\geq 0}(\mathbf{e}_1 + 2\mathbf{e}_2). \end{split}$$



 $\mathbb{C}[\sigma^{\vee} \cap \mathbb{Z}^2] = \mathbb{C}[X, XY, XY^2] = \mathbb{C}[U, V, W]/(UW - V^2).$ Therefore $U_{\sigma} = \operatorname{Spec}\mathbb{C}[U, V, W]/(UW - V^2).$



 Δ : a fan in \mathbb{R}^n .

Definition

- Δ is nonsingular ⇔ every cone of Δ is generated by a part of a basis for Zⁿ.
- Δ is complete $\Leftrightarrow \bigcup_{\sigma \in \Delta} \sigma = \mathbb{R}^n$.

Fact

- $X(\Delta)$ is nonsingular $\Leftrightarrow \Delta$ is nonsingular.
- $X(\Delta)$ is complete $\Leftrightarrow \Delta$ is complete.

2. Graph cubeahedra

Let *G* be a finite simple graph, that is, a finite graph with no loops and no multiple edges.

- $V(G) = \{1, ..., n\}$: the node set.
- E(G): the edge set.

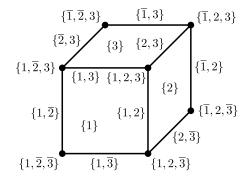
Definition

For $I \subset V(G)$, we define the induced subgraph $G|_I$ by

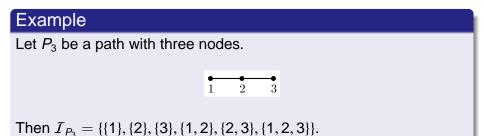
 $V(G|_{I}) = I, \quad E(G|_{I}) = \{\{v, w\} \in E(G) \mid v, w \in I\}.$

Let \Box^n be the standard *n*-cube whose facets are labeled by $1, \ldots, n$ and $\overline{1}, \ldots, \overline{n}$, where the two facets labeled by *i* and \overline{i} are on opposite sides.

Then every face of \Box^n is labeled by a subset $I \subset \{1, \ldots, n, \overline{1}, \ldots, \overline{n}\}$ such that $I \cap \{1, \ldots, n\}$ and $\{i \in \{1, \ldots, n\} \mid \overline{i} \in I\}$ are disjoint. The face corresponding to *I* is the intersection of the facets labeled by the elements of *I*.



Let $I_G = \{I \subset V(G) \mid G|_I$ is connected, $I \neq \emptyset\}$. We call I_G the graphical building set of *G*.



Definition (Devadoss–Heath–Vipismakul, 2011)

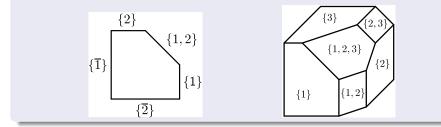
The graph cubeahedron \Box_G is obtained from \Box^n by truncating the faces labeled by the elements of \mathcal{I}_G in increasing order of dimension.

Example

Let P_n be a path with n nodes. Then

$${I}_{P_2} = \{\{1\}, \{2\}, \{1, 2\}\},\ {I}_{P_3} = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}\}$$

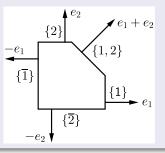
and we have the graph cubeahedra \Box_{P_2} and \Box_{P_3} in the following figures:



An *n*-dimensional simple convex polytope in \mathbb{R}^n is called a Delzant polytope if for every vertex, the outward-pointing primitive normal vectors of the facets containing the vertex form a basis for \mathbb{Z}^n .

Example

The graph cubeahedron \Box_{P_2} can be realized as a Delzant polytope.



An *n*-dimensional Delzant polytope *P* defines a nonsingular complete fan Δ_P in \mathbb{R}^n .

By the following lemma, any graph cubeahedron can be realized as a Delzant polytope \Box_G in a canonical way. In particular, we obtain a nonsingular complete toric variety $X(\Delta_{\Box_G})$.

Lemma

Let *P* be a Delzant polytope and let *F* be a face of codimension ≥ 2 of *P*. Then there exists a canonical truncation of *P* along *F* such that the result $\operatorname{Cut}_F(P)$ is also a Delzant polytope and the associated toric variety $X(\Delta_{\operatorname{Cut}_F(P)})$ is the blow-up of $X(\Delta_P)$ along the subvariety corresponding to *F*.

Remark

 $X(\Delta_{\square_G})$ is in fact a nonsingular projective toric variety.

We have a one-to-one correspondence

$$I_G \cup \{\{\overline{1}\}, \dots, \{\overline{n}\}\} \xleftarrow{1:1} \{\text{facets of } \Box_G\}, I \mapsto F_I.$$

The outward-pointing primitive normal vector e_i of F_i is given by

$$\mathbf{e}_{I} = \begin{cases} \sum_{i \in I} \mathbf{e}_{i} & (I \in I_{G}), \\ -\mathbf{e}_{i} & (I = \{\overline{i}\}, i \in \{1, \dots, n\}). \end{cases}$$

Theorem (Devadoss–Heath–Vipismakul, 2011)

Let *G* be a finite simple graph. Then the two facets F_I and F_J of the graph cubeahedron \Box_G intersect iff one of the following holds:

- $I, J \in I_G$ and we have either $I \subset J$ or $J \subset I$ or $I \cup J \notin I_G$.
- One of *I* and *J*, say *I*, is in \mathcal{I}_G and $J = \{\overline{j}\} \quad \exists j \in \{1, \ldots, n\} \setminus I$.
- $I = \{\overline{i}\}$ and $J = \{\overline{j}\}$ for some $i, j \in \{1, \dots, n\}$.

Furthermore, \square_G is a flag polytope.

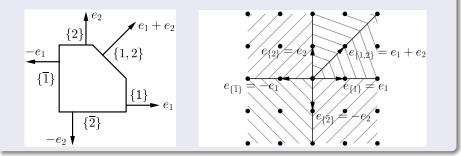
We describe the fan Δ_{\Box_G} of \Box_G explicitly. Let

 $\mathcal{N}^{\square}(G) = \{ N \subset \mathcal{I}_G \cup \{\{\overline{1}\}, \dots, \{\overline{n}\}\} \mid F_I \cap F_J \neq \emptyset \text{ for any } I, J \in N \}.$

For $N \in \mathcal{N}^{\square}(G)$, we denote by σ_N the |N|-dimensional cone $\sum_{l \in N} \mathbb{R}_{\geq 0} e_l$ in \mathbb{R}^n . Then $\Delta_{\square_G} = \{\sigma_N \mid N \in \mathcal{N}^{\square}(G)\}.$

Example

The fan $\Delta_{\square_{P_2}}$ of \square_{P_2} is illustrated in the right figure and thus the associated toric variety is $\mathbb{P}^1 \times \mathbb{P}^1$ blown-up at one point.



3. Toric Fano varieties

X: a nonsingular projective algebraic variety.

Definition

- X is Fano \Leftrightarrow the anticanonical divisor $-K_X$ is ample.
- X is weak Fano $\Leftrightarrow -K_X$ is nef and big.
 - A divisor *D* is nef \Leftrightarrow $(D.C) \ge 0$ for any curve $C \subset X$.
 - *D* is big \Leftrightarrow the litaka dimension $\kappa(X, D)$ is equal to dim*X*.

Theorem

There are a finite number of isomorphism classes of toric (weak) Fano varieties in any given dimension.

dimension	1	2	3	4	5	6
# of toric Fano varieties	1	5	18	124	866	7622
# of toric weak Fano varieties	1	16	?	?	?	?

Let $\Delta(r)$ be the set of *r*-dimensional cones of Δ for $0 \le r \le n$.

Proposition

$$\Delta(n-1) \stackrel{\text{1:1}}{\longleftrightarrow} \{\text{torus-invariant curves on } X(\Delta)\},\ \tau \mapsto V(\tau).$$

Proposition

Let $X(\Delta)$ be an *n*-dimensional nonsingular projective toric variety.

- $X(\Delta)$ is Fano $\Leftrightarrow (-K_{X(\Delta)}, V(\tau)) > 0 \quad \forall \tau \in \Delta(n-1).$
- $X(\Delta)$ is weak Fano $\Leftrightarrow (-K_{X(\Delta)}, V(\tau)) \ge 0 \quad \forall \tau \in \Delta(n-1).$

Let Δ be a nonsingular complete fan in \mathbb{R}^n .

Proposition

Let $\tau = \mathbb{R}_{\geq 0}v_1 + \cdots + \mathbb{R}_{\geq 0}v_{n-1} \in \Delta(n-1)$, where v_1, \ldots, v_{n-1} are primitive vectors in \mathbb{Z}^n , and let v and v' be the distinct primitive vectors in \mathbb{Z}^n s.t. $\tau + \mathbb{R}_{\geq 0}v, \tau + \mathbb{R}_{\geq 0}v' \in \Delta(n)$. Then:

- $\exists a_1, \ldots, a_{n-1} \in \mathbb{Z}$ s.t. $v + v' + a_1v_1 + \cdots + a_{n-1}v_{n-1} = 0$.
- $(-K_{X(\Delta)}, V(\tau)) = 2 + a_1 + \cdots + a_{n-1}.$

4. Main results

Let G be a finite simple graph.

Theorem 1 (S)

 $X(\Delta_{\square_G})$ is Fano \Leftrightarrow each connected component of *G* has ≤ 2 nodes. In particular, if $X(\Delta_{\square_G})$ is Fano, then it is a product of copies of \mathbb{P}^1 and $\mathbb{P}^1 \times \mathbb{P}^1$ blown-up at one point.

Sketch of the Proof Let $n = |V(G)| = \dim X(\Delta_{\square_G})$.

(⇒) If *G* has a connected component with ≥ 3 nodes, then we can find $\sigma_N \in \Delta(n-1)$ such that $(-K_{X(\Delta_{\square_G})}, V(\sigma_N)) = 0$. Therefore $X(\Delta_{\square_G})$ is not Fano.

(⇐) Since the union of graphs corresponds to the product of associated toric varieties, it suffices to show that $X(\Delta_{\square_G})$ is Fano if *G* is connected and $|V(G)| \le 2$.

(i) If $G = P_1$, then $X(\Delta_{\square_G})$ is \mathbb{P}^1 .

(ii) If $G = P_2$, then $X(\Delta_{\square_G})$ is $\mathbb{P}^1 \times \mathbb{P}^1$ blown-up at one point. Thus $X(\Delta_{\square_G})$ is Fano in every case. Let *G* be a finite simple graph.

Theorem 2 (S)

The following are equivalent:

- $X(\Delta_{\square_G})$ is weak Fano.
- ∀I ⊂ V(G), G|, is not isomorphic to any of the following:
 (i) A cycle with ≥ 4 nodes.

(ii) A diamond graph (the graph obtained by removing an edge from a complete graph with four nodes).

(iii) A claw (a star with three edges).

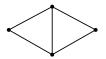


Figure: a diamond graph.

Examples

- If G is a path or a complete graph, then $X(\Delta_{\square_G})$ is weak Fano.
- If G is a graph obtained by connecting more than two graphs with one node, then X(Δ_{□G}) is not weak Fano.
- The toric variety associated to the graph cubeahedron of the graph below is weak Fano.

Figure: an example.

dimension	1	2	3	4	5	6
# of connected graphs	1	1	2	6	21	112
weak Fano	1	1	2	3	6	11

Sketch of the Proof Let $n = |V(G)| = \dim X(\Delta_{\square_G})$.

(⇒) Suppose that $\exists I \subset V(G)$ such that $G|_I$ is a cycle of length ≥ 4, a diamond graph, or a claw. Then we can find $\sigma_N \in \Delta(n-1)$ such that $(-K_{X(\Delta_{\square_G})}, V(\sigma_N)) = -1$. Therefore $X(\Delta_{\square_G})$ is not weak Fano. (⇐) Suppose that $X(\Delta_{\square_G})$ is not weak Fano. Then $\exists N \in \mathcal{N}^{\square}(G)$ such that |N| = n - 1 and $(-K_{X(\Delta_{\square_G})}, V(\sigma_N)) \leq -1$, and $\exists \{J, J'\} \subset (I_G \cup \{\{\overline{1}\}, \dots, \{\overline{n}\}\}) \setminus N$ such that $N \cup \{J\}$ and $N \cup \{J'\}$ are distinct maximal elements of $\mathcal{N}^{\square}(G)$. Since \square_G is flag, $\{J, J'\}$ is not in $\mathcal{N}^{\square}(G)$. Thus we must have $J \in I_G$ or $J' \in I_G$. We may assume $J \in I_G$.

- If J' ∈ I_G, then we can find I ⊂ V(G) such that G|_I is a cycle of length ≥ 4 or a diamond graph.
- If $J' = \{\overline{j}\}$ for $j \in \{1, ..., n\}$, then we can find $I \subset V(G)$ such that $G|_I$ is a claw.

Thank you for your attention!

References

- M. Carr and S. L. Devadoss, Coxeter complexes and graph-associahedra, Topology Appl. 153 (2006), no. 12, 2155–2168.
- S. Choi, B. Park and S. Park, Pseudograph and its associated real toric manifold, J. Math. Soc. Japan 69 (2017), no. 2, 693–714.
- S. Choi and H. Park, A new graph invariant arises in toric topology, J. Math. Soc. Japan 67 (2015), no. 2, 699–720.
- C. De Concini and C. Procesi, Wonderful models of subspace arrangements, Selecta Math. (N.S.) 1 (1995), 459–494.
- S. L. Devadoss, T. Heath and W. Vipismakul, Deformations of bordered surfaces and convex polytopes, Notices Amer. Math. Soc. 58 (2011), no. 4, 530–541.

References

- T. Manneville and V. Pilaud, Compatibility fans for graphical nested complexes, J. Combin. Theory Ser. A 150 (2017), 36–107.
- T. Oda, Convex Bodies and Algebraic Geometry. An Introduction to the Theory of Toric Varieties, Ergeb. Math. Grenzgeb. (3) 15, Springer-Verlag, Berlin, 1988.
- B. Park, H. Park and S. Park, Graph cubeahedra and graph associahedra in toric topology, arXiv:1801.00296.
- H. Sato, Toward the classification of higher-dimensional toric Fano varieties, Tohoku Math. J. 52 (2000), no. 3, 383–413.
- Y. Suyama, Toric Fano varieties associated to graph cubeahedra, arXiv:1802.07059.