Yunhyung Cho Sungkyunkwan University

> JCCA - Mini symposium May 23, 2018

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

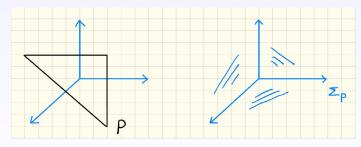
2. Gelfand-Cetlin Polytopes

3. String Polytopes

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

From polytopes to algebraic varieties :

• Given convex polytope $P \subset \mathbb{R}^N$, the corresponding normal fan Σ_P :

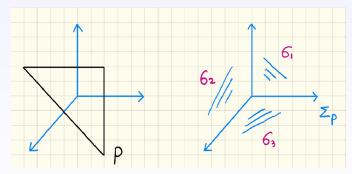


- Each cone corresponds to an affine toric variety
- Intersection of cones \Rightarrow gluing varieties \Rightarrow obtain X_P (proj. toric var.)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

From polytopes to algebraic varieties :

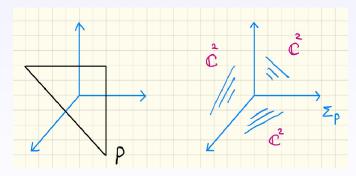
• Given convex polytope $P \subset \mathbb{R}^N$, the corresponding normal fan Σ_P :



- Each cone corresponds to an affine toric variety
- Intersection of cones \Rightarrow gluing varieties

From polytopes to algebraic varieties :

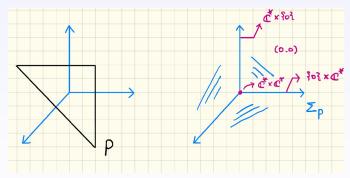
• Given convex polytope $P \subset \mathbb{R}^N$, the corresponding normal fan Σ_P :



- Each cone corresponds to an affine toric variety
- Intersection of cones \Rightarrow gluing varieties

From polytopes to algebraic varieties :

• Given convex polytope $P \subset \mathbb{R}^N$, the corresponding normal fan Σ_P :



- Each cone corresponds to an affine toric variety
- Intersection of cones \Rightarrow gluing varieties

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

From algebraic varieties to polytopes :

- Let $T_{\mathbb{C}} := (\mathbb{C}^*)^n$: *n*-dimensional complex torus.
- For any $S = \{m_1, \cdots, m_N\} \subset \mathbb{Z}^n$ given, consider the torus embedding

$$\begin{array}{rccc} i & : & T_{\mathbb{C}} & \hookrightarrow & \mathbb{P}^{N-1} \\ & & (t_1, \cdots, t_n) & \mapsto & [t^{m_1}, \cdots, t^{m_N}] \end{array} \qquad t^m := t_1^{a_1} t_2^{a_2} \cdots t_n^{a_n}, m = (a_1, \cdots, a_n). \end{array}$$

- The Zariski closure of $i(T_{\mathbb{C}})$ is called a projective toric variety and denoted by X_S
- For the map

with the projection map $\pi : \mathbb{R}^N \to \mathbb{R}^n$ represented by the matrix $(m_1 \cdots m_N)$, the image $\pi \circ \mu(X_S)$ is a convex polytope, called the moment polytope of X_S , denoted by Δ_{X_S}

Theorem

(1) For *X* : projective toric variety with a moment polytope Δ_X , we have $X \cong X_{\Delta_X}$

(2) *X* is a smooth if and only if Δ_X is a non-singular simple integral polytope.

Philosophy

Any *T*-invariant topological and geometric invariants of *X* are encoded in Δ_X

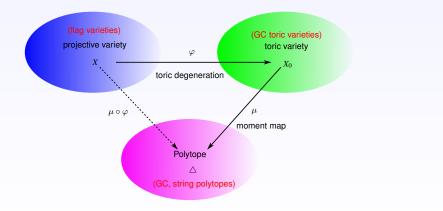
Example :

- Betti numbers of $X \Leftrightarrow h$ -vector of Δ_X
- (Equivariant) (co)homology of $X \Leftrightarrow$ Stanley-Reisner ring of Δ_X
- Quantum cohomology \Leftrightarrow defining equations of Δ_X (Batyrev)
- open Gromov-Witten invariants \Leftrightarrow defining equations of Δ_X (FOOO)

counts of hol. discs bounded by $\mu^{-1}(\mathbf{b})$

Recent Progress : Given smooth projective variety X,

- (in many case) one can associate a polytope Δ (Newton-Okounkov body),
- \exists many similarities between *X* and *X*₀.



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

11 / 50

Definition : Given $\lambda = {\lambda_1 \ge \cdots \ge \lambda_n}$: sequence of real numbers, assign a polytope

$$\Delta_{\lambda} = \{ (x^{i,j}) \} \subset \mathbb{R}^N, \qquad i, j > 0, \quad 2 \le i+j \le n+1, \quad N = \frac{n(n+1)}{2}$$

such that

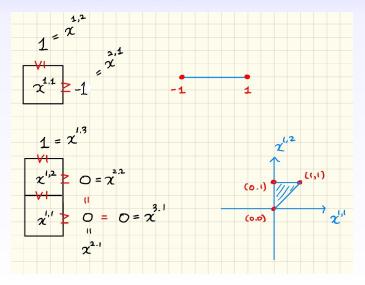
•
$$\lambda_1 = x^{1,n}, \lambda_2 = x^{2,n-1}, \cdots, \lambda_n = x^{n,1}$$

• $x^{i,j} \ge x^{i+1,j}$
• $x^{i,j+1} > x^{i,j}$

Such Δ_{λ} is called a **Gelfand-Cetlin polytope**

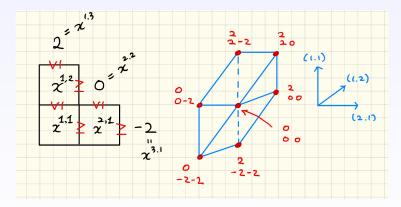
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example : For $\lambda = (1, -1)$ and $\lambda = (1, 0, 0)$,



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example : Let $\lambda = (2, 0, -2)$: Fill $\Box^{(1,3)}, \Box^{(2,2)}, \Box^{(3,1)}$ with $\lambda_1, \lambda_2, \lambda_3$

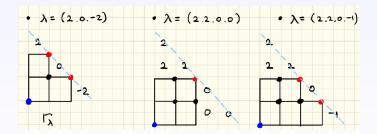


◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Face structure of Δ_{λ} :

The ladder diagram Γ_{λ} is a grid graph defined by

 $\Gamma_{\lambda} := \bigcup \Box^{(i,j)}, \qquad x^{i,j} \neq \text{const. in } \Delta_{\lambda}.$



- Blue dot is called the origin
- Red dots are called terminal vertices (farthest vertices from the origin)

A positive path is a shortest path from the origin to some terminal vertex.

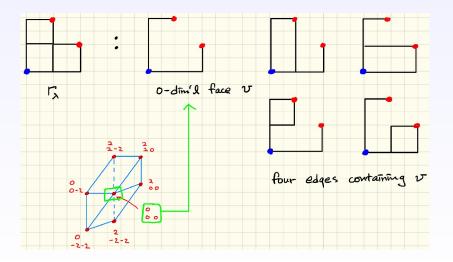
A face of Γ_{λ} is a subgraph γ of Γ_{λ} such that

- γ is a union of shortest paths
- γ contains all terminal vertices

A **dimension** of γ is defined to be the number of minimal cycles in γ .

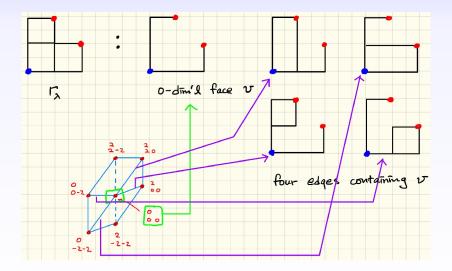
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ◆ ○ ◆ ○ ◆

Example : $\lambda = (2, 0, -2)$



17 / 50

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで



18 / 50

Theorem (An-C.-Kim) Face structure of Δ_{λ} is equivalent to face structure of Γ_{λ} .

Theorem (An-C.-Kim) Let $\mathbf{F}_{\mathbf{k}}(t)$ be the *f*-polynomial for λ where

$$\lambda_1 = \dots = \lambda_{k_1} > \lambda_{k_1+1} = \dots = \lambda_{k_1+k_2} > \dots > \lambda_{k_1+\dots+k_{s-1}+1} = \lambda_{k_1+\dots+k_s}$$

and $\mathbf{k} = (k_1, \cdots, k_s) \in (\mathbb{Z}_{\geq 0})^s$. Then $\mathbf{F}_{\mathbf{k}}(t)$ satisfies the following recurrence relation :

$$\mathbf{F}_{\mathbf{k}}(t) = \sum_{\mathbf{w} \in W_{s-1}} \mathbf{F}_{r_{\mathbf{w}}(\mathbf{k}) * \widetilde{\mathbf{w}}}(t) \cdot t^{|\mathbf{w}|}$$

where

•
$$W_{s-1}$$
: set of sequences of length $s - 1$ on the set $\{(0, 1), (1, 0), (1, 1) \}$
• $(x_1, x_2, \dots, x_m) * (y_1, \dots, y_{m-1}) := (x_1, y_1, \dots, x_{m-1}, y_{m-1}, x_m)$
and for $\mathbf{w} = ((\alpha_1, \beta_1), \dots, (\alpha_{s-1}, \beta_{s-1})) \in W_{s-1},$
• $r_{\mathbf{w}}(\mathbf{k}) = (k'_1, \dots, k'_s)$ with $k'_i := k_i + 1 - \alpha_i - \beta_{i-1} (\alpha_s = \beta_0 = 1)$
• $\widetilde{\mathbf{w}} = (\alpha_1 \beta_1, \dots, \alpha_{s-1} \beta_{s-1})$
• $|\widetilde{\mathbf{w}}| = \sum_{i=1}^{s-1} \alpha_i \beta_i.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Theorem (An-C.-Kim) If we denote by

$$\Psi_s(x_1,\cdots,x_s;t):=\sum_{\mathbf{k}\geq 0}\mathbf{F}_{\mathbf{k}}(t)\frac{x_1^{k_1}\cdots x_s^{k_s}}{k_1!\cdots k_s!}$$

the exponential generating function, then $\{\Psi_s\}$ satisfies

$$\mathcal{D}_{s}\left(\Psi_{2s-1}(x_{1}, y_{1}, \cdots, x_{s-1}, y_{s-1}, x_{s}; t)\right)|_{y_{1}=\cdots=y_{s-1}=0}=0$$

where

$$\mathcal{D}_s = \frac{\partial^s}{\partial x_1 \cdots \partial x_s} - \prod_{i=1}^{s-1} \left(\frac{\partial}{\partial x_i} + \frac{\partial}{\partial x_{i+1}} + t \cdot \frac{\partial}{\partial y_i} \right)$$

◆□> <圖> < E> < E> < E < のへで</p>

Example : For $\mathbf{k} = (1, 1)$ (i.e., the case of $\lambda = (1, 0)$),

$$\begin{aligned} \mathbf{F}_{\mathbf{k}}(t) &= \sum_{\mathbf{w} \in W_{s-1}} \mathbf{F}_{r_{\mathbf{w}}(\mathbf{k}) * \widetilde{\mathbf{w}}}(t) \cdot t^{|\mathbf{w}|} \\ &= \mathbf{F}_{(1,0)*(0)}(t) t^{0} + \mathbf{F}_{(0,1)*(0)}(t) t^{0} + \mathbf{F}_{(0,0)*(1)}(t) t^{1} \\ &= t+2 \end{aligned}$$

Example : For $\mathbf{k} = (1, 1, 1)$ (i.e., the case of $\lambda = (2, 0, -2)$),

$$\begin{aligned} \mathbf{F}_{\mathbf{k}}(t) &= \sum_{\mathbf{w} \in W_{s-1}} \mathbf{F}_{r_{\mathbf{w}}(\mathbf{k}) * \widetilde{\mathbf{w}}}(t) \cdot t^{|\mathbf{w}|} \\ &= \mathbf{F}_{(0,0,1,0,1)} t^{0} + \mathbf{F}_{(0,0,2,0,0)} t^{0} + \mathbf{F}_{(0,0,1,1,0)} t^{1} + \mathbf{F}_{(1,0,0,0,1)} t^{0} + \mathbf{F}_{(1,0,1,0,0)} t^{0} \\ &+ \mathbf{F}_{(1,0,0,1,0)} t^{1} + \mathbf{F}_{(0,1,0,0,1)} t^{1} + \mathbf{F}_{(0,1,1,0,0)} t^{1} + \mathbf{F}_{(0,1,0,1,0)} t^{2} \\ &= (t+2) t^{0} + t^{0} + (t+2) t^{1} + (t+2) t^{0} + (t+2) t^{0} \\ &+ (t+2) t^{1} + (t+2) t^{1} + (t+2) t^{1} + (t+2) t^{2} \\ &= t^{3} + 6t^{2} + 11t + 7 \end{aligned}$$

Gelfand-Cetlin systems: The GC polytope Δ_{λ} can be also obtained as follows :

Let O_λ : set of (n × n) Hermitian matrices having spectra λ = (λ₁, · · · , λ_n).
 O_λ is called a flag manifold of type A

Define

$$\Phi_{\lambda} := \left(\Phi_{\lambda}^{i,j}\right), \qquad \Phi_{\lambda}^{i,j}(A) := i\text{-th largest eigenvalue of } A^{(i+j-1)}$$

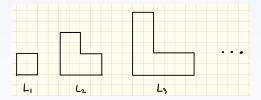
where $A^{(i)}$ is the *i*-th leading principal minor matrix of *A*. (E.g. $\Phi_{\lambda}^{1,1}(A) = a_{11}$.) We call Φ_{λ} a Gelfand-Cetlin system.

Theorem : $\Delta_{\lambda} = \operatorname{Im}(\Phi_{\lambda})$ and $\dim \Delta_{\lambda} = \dim_{\mathbb{C}} \mathcal{O}_{\lambda}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem(C.-Kim-Oh) "Topology of fibers $\Phi_{\lambda}^{-1}(\mathbf{u})$ and dimensions"

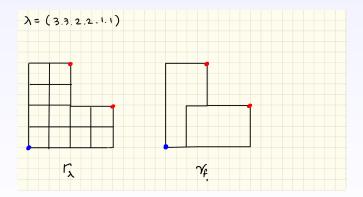
Let *f* be a face of Δ_{λ} and let γ_f be the corresponding face of Γ_{λ} . Let's play a Tetris game on γ_f using only "L-blocks" where L-blocks are given as



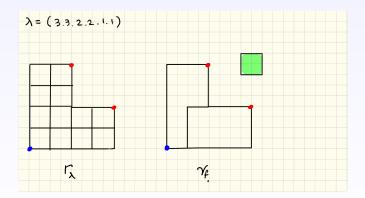
Then, fill γ_f using L-blocks obeying the following rules :

- the top and the rightmost edges of an L-block should overlap an edge of γ_f
- No edge of γ_f is in the interior of an L-block.

Theorem(C.-Kim-Oh) "Topology of fibers $\Phi_{\lambda}^{-1}(\mathbf{u})$ and dimensions"

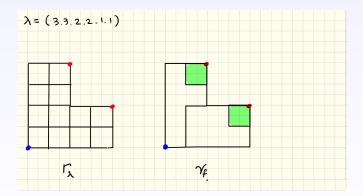


Theorem(C.-Kim-Oh) "Topology of fibers $\Phi_{\lambda}^{-1}(\mathbf{u})$ and dimensions"



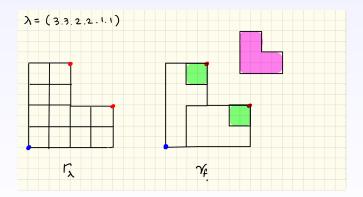
◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆ ◆

Theorem(C.-Kim-Oh) "Topology of fibers $\Phi_{\lambda}^{-1}(\mathbf{u})$ and dimensions"



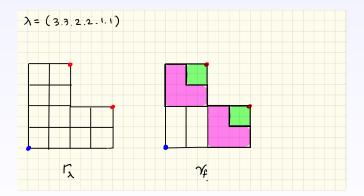
26 / 50

Theorem(C.-Kim-Oh) "Topology of fibers $\Phi_{\lambda}^{-1}(\mathbf{u})$ and dimensions"

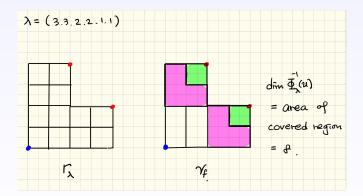


27 / 50

Theorem(C.-Kim-Oh) "Topology of fibers $\Phi_{\lambda}^{-1}(\mathbf{u})$ and dimensions"



Theorem(C.-Kim-Oh) "Topology of fibers $\Phi_{\lambda}^{-1}(\mathbf{u})$ and dimensions"



29 / 50

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ ○ < ○

Theorem(C.-Kim-Oh) For any **u** in the relative interior of the face f of Δ_{λ} , the fiber $\Phi_{\lambda}^{-1}(\mathbf{u})$ is a smooth submanifold diffeomorphic to

 $\Phi_{\lambda}^{-1}(\mathbf{u}) \cong (S^1)^{\dim f} \times Y_f, \qquad Y_f: \text{ some iterated bundle of product of odd spheres}$

and its dimension equals the area of the region covered by L-blocks.

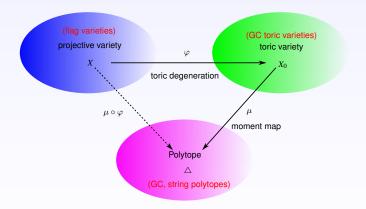
Remark : When L-blocks covers whole γ_f , then

$$\dim \Phi_{\lambda}^{-1}(\mathbf{u}) = \dim_{\mathbb{C}} \mathcal{O}_{\lambda}, \quad \forall \mathbf{u} \in \mathring{f}.$$

Such fiber is called a Lagrangian and it is a main object in the study of symplectic manifolds, a candidate for generating the Fukaya category of \mathcal{O}_{λ} .

<ロ> < 回> < 回> < 三> < 三> < 三</p>

Main problems : Let *X* be a smooth projective variety over \mathbb{C}



Main problems : Let *X* be a smooth projective variety over \mathbb{C}

• Find a toric degeneration of X : (problem in commutative algebra)

Find a flat homomorphism $\mathbb{C}[t] \to \mathbb{C}[X, t]$ such that

- $-\mathbb{C}[X,1] = \mathbb{C}[X]$
- $\mathbb{C}[X,0]$: toric

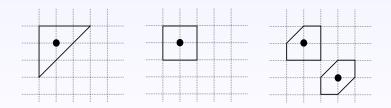
(E.g. $\mathbb{C}[X] = \mathbb{C}[x, y, z]/\langle y^2 z = x^3 + z^3 \rangle$ and $\mathbb{C}[X, t] := \mathbb{C}[x, y, z]/\langle y^2 z = x^3 + t^6 z^3 \rangle$)

• Determine whether $X_0 := \text{Spec } \mathbb{C}[X, 0]$ is nice to study X:

- Δ_{X_0} is reflexive
- Δ_{X_0} admits a small resolution

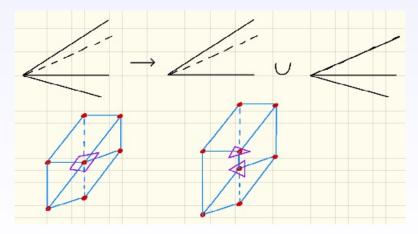
<ロ> <四> <回> <回> <三> <三> <三> <三> <三> <三> <三> <三</p>

Reflexive polytope : Lattice polytope containing *O* whose dual is also a lattice polytope.



< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 >

Small resolution: We say that a polytope *P* admits a small resolution if the normal fan has a smooth refinement. That is, each maximal cone of the normal fan can be decomposed into smooth cones without inserting any ray.

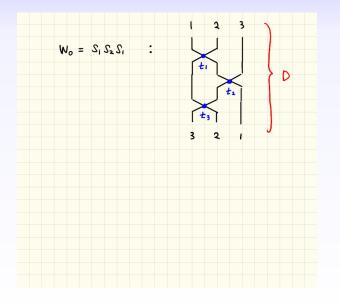


Theorem (Nishinou-Nohara-Ueda) If *X* admits a toric degeneration to a Fano toric variety admitting small resolution, then many information of *X* (such as an open GW-invariant and a potential function) can be recovered from Δ_{X_0} .

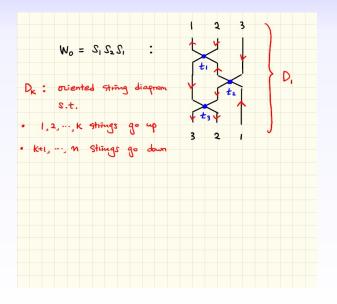
Theorem (Batyrev - Ciocan-Fontanine - Kim - van Straten) For a proper λ , the Gelfand-Cetlin polytope Δ_{λ} is a reflexive polytope and admits a small resolution.

String polytopes : Let $W \cong S_{n-1}$ be the Weyl group of U(n) and let s_1, \dots, s_{n-1} be the simple transposition (corresponding to a base). Let w_0 be the longest element of W and let $w_0 = (s_{i_1}s_{i_2}\cdots s_{i_N})$ be a reduced expression of w_0 .

For each dominant weight λ , the **string polytope** $\Delta_{\underline{w_0}}(\lambda)$ is a convex rational polytope whose integral points parametrize certain basis (called "crystal basis") of a irreducible U(n) representation with highest weight λ .

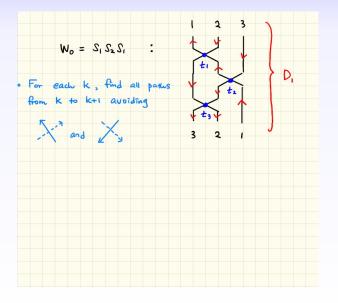


38 / 50

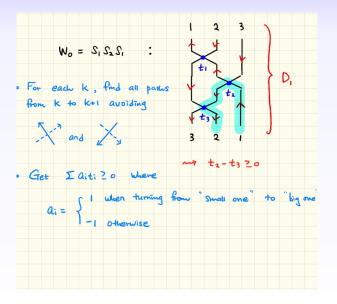


39 / 50

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

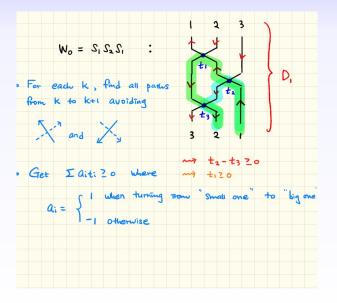


40 / 50

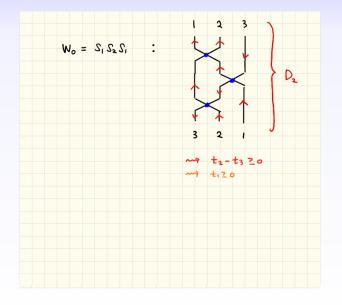


41 / 50

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

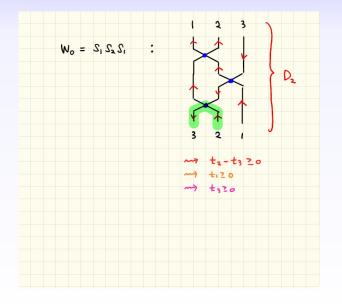


◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●



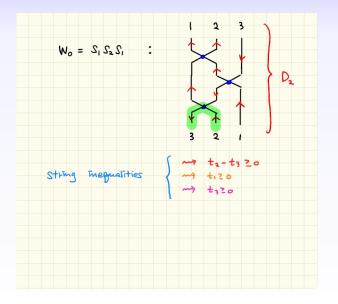
43 / 50

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

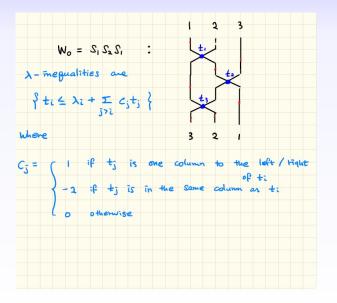


44 / 50

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

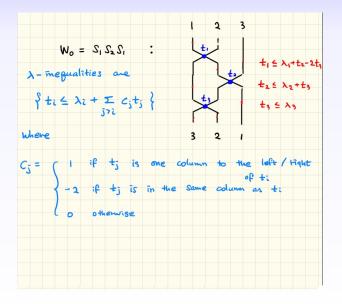


45 / 50



46 / 50

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで



47 / 50

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● のへで

Theorem String polytope $\Delta_{w_0}(\lambda)$ is the intersection of the string cone and the λ -cone.

Theorem (C.-Kim-Lee-Park) (Alexeev-Brion Conjecture, 2004) For a proper λ , any string polytope $\Delta_{w_0}(\lambda)$ is a reflexive polytope and admits a small resolution.

String polytopes

Open questions :

- We know that any reduced expression of w₀ can be obtained by a sequence of 2-moves and 3-moves starting from s₁s₂s₁ ··· s_{n-1} ··· s₁. Moreover, Berenstein and Zelevinsky described how the defining equations change along 2 or 3 moves. How does the *f*-vector (or *h*-vector) change along 2 or 3 move?
- Can we construct a map $\Phi : \mathcal{H}_{\lambda} \to \Delta_{w_0}(\lambda)$ explicitly?

Thank you!

<ロ> < @> < E> < E> E のQC