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1. Polytopes and Geometry
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Polytopes and Geometry

From polytopes to algebraic varieties :

@ Given convex polytope P C R", the corresponding normal fan Zp :

P

@ Each cone corresponds to an affine toric variety
@ Intersection of cones =- gluing varieties =- obtain Xp (proj. toric var.)
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Polytopes and Geometry

From polytopes to algebraic varieties :

@ Given convex polytope P C RY, the corresponding normal fan 3p :

P

@ Each cone corresponds to an affine toric variety
@ Intersection of cones =  gluing varieties
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Polytopes and Geometry

From polytopes to algebraic varieties :

@ Given convex polytope P C RY, the corresponding normal fan 3p :

A\ 4

P

@ Each cone corresponds to an affine toric variety
@ Intersection of cones =  gluing varieties
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Polytopes and Geometry

From polytopes to algebraic varieties :

@ Given convex polytope P C R", the corresponding normal fan Zp :

& x ot

P

@ Each cone corresponds to an affine toric variety
@ Intersection of cones =  gluing varieties
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Polytopes and Geometry

From algebraic varieties to polytopes :

@ Let T := (C*)" : n-dimensional complex torus.

@ Forany S = {my,--- ,my} C Z" given, consider the torus embedding
i T — PN-1
¢ " ::l(flt‘212~~tﬁ”,m:(a1,--~,a,,).
(117'.' 7t/'l) '_) [fnl"'. 7tmN]

@ The Zariski closure of i(T¢) is called a projective toric variety and denoted by Xs

@ For the map
[T PV — AN

|21 | wl? )
T
[2, - an] 212+ +len 2?2 fa Pt lan]? )

with the projection map = : RY — R” represented by the matrix (m; - - - my), the
image 7 o u(Xy) is a convex polytope, called the moment polytope of X, denoted
by AXS
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Polytopes and Geometry

Theorem

(1) For X : projective toric variety with a moment polytope Ax, we have X = X,

(2) X is a smooth if and only if Ay is a non-singular simple integral polytope.

%Philosophy

| Any T-invariant topological and geometric invariants of X are encoded in Ay

Example :

@ Bettinumbers of X <« h-vector of Ay

@ (Equivariant) (co)homology of X <  Stanley-Reisner ring of Ay

@ Quantum cohomology < defining equations of Ax  (Batyrev)

@ open Gromov-Witten invariants < defining equations of Ax  (FOOO)

counts of hol. discs bounded by 1~ (b)



Polytopes and Geometry

Recent Progress : Given smooth projective variety X,

@ (in many case) one can associate a polytope A (Newton-Okounkov body),
@ J many similarities between X and Xj.

toric varieties)
toric variety

Xo

moment map

A

g polytopes)
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2. Gelfand-Cetlin Polytopes
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Gelfand-Cetlin polytopes

Definition : Given A = {\; > --- > \,} : sequence of real numbers, assign a polytope

n(n+1)
2

Ay={()}CRY, ij>0, 2<i+j<n+1, N=

such that
@ N\ =xbn dy =x2nl Lo ), =l
@ xiv > xitli

o xit > xid

Such A, is called a Gelfand-Cetlin polytope
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Gelfand-Cetlin polytopes

Example : For A = (1,—1) and A = (1,0, 0),

1,
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Gelfand-Cetlin polytopes

Example : Let A = (2,0, —2) : Fill (13 022 O6G:D with A, A, A3

3
97{' 2 o
9_ a-2 20
\ sl »* ()
Ty . tea)
,2 v (2
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x 2
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Gelfand-Cetlin polytopes

Face structure of A, :
The ladder diagram Ty, is a grid graph defined by

Ty = JO®), ¥ # const. in Ay.

e A= (2.0.-2) e A= (22.0.0) e A= (2.2.0.4)
PS 2 5
—
-] 2 2 L%
-2 o 0
l’,: 0 ¢ =N,

@ Blue dot is called the origin
@ Red dots are called terminal vertices (farthest vertices from the origin)

A positive path is a shortest path from the origin to some terminal vertex.



Gelfand-Cetlin polytopes

A face of "), is a subgraph ~ of I\, such that

@ v is a union of shortest paths
@ ~ contains all terminal vertices

A dimension of v is defined to be the number of minimal cycles in ~.

16/50
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Gelfand-Cetlin polytopes
Example : A = (2,0, -2)

—o —
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Gelfand-Cetlin polytopes

1 ,

four QA((& W*%:\?‘Aj v

/




Gelfand-Cetlin polytopes

Theorem (An-C.-Kim) Face structure of A is equivalent to face structure of T"y.

Theorem (An-C.-Kim) Let Fi(¢) be the f-polynomial for A where

Al == /\kI > >‘kl+1 =ooc = >‘k|+k2 > 000 > Ak1+.“kyil+l = >\k|+"'ks

andk = (ki,--- ,ks) € (Z>0)’. Then Fy(r) satisfies the following recurrence relation :

()= > F () ™

weW,_
where
@ W,_, : set of sequences of length s — 1 on the set {(0, 1), (1,0), (1,1)}
° (xlvxlz"' ,Xm) * (yl7"' 7)7m71) = (x17y17"' 7xm717y'm711xm)

and for w = ((al)ﬁl)a T 7(a5'7176571)) € Ws—1,
] rw(k) = (ki, 0o ,ké) with k’/ =ki+1—a; — Bi— (O[S =By = 1)
o w= (alﬁlv"' 7a.r—lﬁ.r—1)

o ‘W‘ = Z:;ll a,ﬂi.
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Gelfand-Cetlin polytopes

Theorem (An-C.-Kim) If we denote by
.. .xkx
Wy, x5 t) =y Fy( I) 1 -
k>0
the exponential generating function, then {¥,} satisfies
Dy (\I/2x—l(x17y1 st s Xs—15 Ys—1,Xs3 t)) Iy1=-"=)'x,1=0 =0

where

o
szi— t- —
: H (ax, ax,+. * ay,-)
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Gelfand-Cetlin polytopes

Example : Fork = (1, 1) (i.e., the case of A = (1,0)),
Fu() = > Fogus(n) "
weW,_
F(l,o)*(o)(f)fo +Fo,1)«(0) (0 + F(0,0)x(1) ()t
= 1+2

Example : Fork = (1,1, 1) (i.e., the case of A = (2,0, —2)),
Fu() = Z Fooww(t) - ™
weW,_
= F,0,1,00" +F0,0200 +F0,0,1,1,0t" +F(1,00,01 +F1,0,1,001
+F1,00,10!" +Fo,1,001! +Fo,1,1,00 +F0,1,0,1,01

= (+2)0+O04+ @ +2)  + (t+2) 4+ (¢ +2)F°
+ 2+ 2+ 2+ (24 2)72
= P4+62+11t+7
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Gelfand-Cetlin polytopes

Gelfand-Cetlin systems: The GC polytope A can be also obtained as follows :

@ Let O, : set of (n x n) Hermitian matrices having spectra A = (Ay,--- , As).
O, is called a flag manifold of type A

@ Define

Py = <<I>’)\’) ,  ®Y(A) := ith largest eigenvalue of A(H/—1)

where A() s the i-th leading principal minor matrix of A. (E.g. ®}'(4) = a1.)
We call &, a Gelfand-Cetlin system.

Theorem : Ay =Im(®,) and dim Ay = dimc O,
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Gelfand-Cetlin polytopes

Theorem(C.-Kim-Oh) “Topology of fibers <I>;' (u) and dimensions”

Let f be a face of Ay and let ; be the corresponding face of T".
Let’s play a Tetris game on ~¢ using only “L-blocks” where L-blocks are given as

A

Lo Ly

Then, fill 4+ using L-blocks obeying the following rules :
@ the top and the rightmost edges of an L-block should overlap an edge of ~¢
@ No edge of -, is in the interior of an L-block.
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Gelfand-Cetlin polytopes

Theorem(C.-Kim-Oh) “Topology of fibers <I>;' (u) and dimensions”

A= (23.2.2.41)
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Gelfand-Cetlin polytopes

Theorem(C.-Kim-Oh) “Topology of fibers <I>;' (u) and dimensions”

A= (33 2.2.11)

[]




26/50

Gelfand-Cetlin polytopes

Theorem(C.-Kim-Oh) “Topology of fibers <I>;' (u) and dimensions”

A=(33.22.11)

>3
=S
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Gelfand-Cetlin polytopes

Theorem(C.-Kim-Oh) “Topology of fibers <I>;' (u) and dimensions”

5

RS

A= (33 22.01)
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Gelfand-Cetlin polytopes

Theorem(C.-Kim-Oh) “Topology of fibers <I>;' (u) and dimensions”

A=(23.2.2.11)




Gelfand-Cetlin polytopes

Theorem(C.-Kim-Oh) “Topology of fibers <I>;' (u) and dimensions”

A= (233.2.2.11)

>

dim i@
= area. °f

covered region

:él.
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Gelfand-Cetlin polytopes

Theorem(C.-Kim-Oh) For any u in the relative interior of the face f of A, the fiber
<I>;1(u) is a smooth submanifold diffeomorphic to

@y '(u) = (sH)™ x ¥;, ¥ : some iterated bundle of product of odd spheres

and its dimension equals the area of the region covered by L-blocks.

Remark : When L-blocks covers whole ~;, then
dim®; ' (u) = dimc Oy, Vu € f.

Such fiber is called a Lagrangian and it is a main object in the study of symplectic
manifolds, a candidate for generating the Fukaya category of O,.



3. String polytopes

<O <> <Erq

it
v

A



String polytopes

Main problems : Let X be a smooth projective variety over C

moment map

pe

polytopes)
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String polytopes

Main problems : Let X be a smooth projective variety over C

@ Find a toric degeneration of X : (problem in commutative algebra)
Find a flat homomorphism C[s] — C[X, ¢] such that
-Clx,1] = C[X]
- C[X, 0] : toric
(E.g. C[X] = Clx,y,2]/(y*z = x* +2°) and C[X, 1] := Clx, y, 2]/ (y’z = 2 +1°2%))
@ Determine whether X, := Spec C[X, 0] is nice to study X :

- Ay, is reflexive
- Ax, admits a small resolution
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String polytopes

Reflexive polytope : Lattice polytope containing O whose dual is also a lattice
polytope.
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String polytopes

Small resolution : We say that a polytope P admits a small resolution if the normal fan
has a smooth refinement. That is, each maximal cone of the normal fan can be
decomposed into smooth cones without inserting any ray.

l..-lr

i A
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String polytopes

Theorem (Nishinou-Nohara-Ueda) If X admits a toric degeneration to a Fano toric
variety admitting small resolution, then many information of X (such as an open
GW-invariant and a potential function) can be recovered from Ay, .

Theorem (Batyrev - Ciocan-Fontanine - Kim - van Straten) For a proper A, the
Gelfand-Cetlin polytope A is a reflexive polytope and admits a small resolution.
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String polytopes

String polytopes : Let W = S, _, be the Weyl group of U(n) and let sy, - - - ,s,—; be the
simple transposition (corresponding to a base). Let wy be the longest element of W and
let wo = (si,si, - - - siy) be a reduced expression of wy.

For each dominant weight A, the string polytope A, () is a convex rational polytope

whose integral points parametrize certain basis (called “crystal basis”) of a irreducible
U(n) representation with highest weight \.
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Gleizer - Postnikov description

Wa = Sl S".S\l

ta




Gleizer - Postnikov description

Wo = SI stn s +
SLE,

Dp 1 ouiented Stenng Aiagmm .
+3 /f

o LAk ghiegs %v “p

ke, ~-, W g'hiMdj %c dowon
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Gleizer - Postnikov description

Wos &8 +

o For eade k, fd al paws 5
fom K 4o k+t ayoidiag
t3

.‘7’ s
= and & 3 2



Gleizer - Postnikov description

Wos 68 *

» For eade k, fud aul paws >
fom K 4o ki avoiding
t3

A b
,’—\i and . 3 12

~r t,-t3 20
v Get X Qiti20 \Vhere

| uhen turing fou " Suat ame’ to kg e
Q= {

=  oterwise
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Gleizer - Postnikov description

Woz 68 +

o For eade k, fud al pates

form K 4o k¥t auoiding
t3

” .
,’—\Q and -:, 3 2

~3 t,-t320
» Get T Qit:20 wheve ~—t 2o

| when +urh'mj Tomw | Swaall zme," o “lsl&m‘
Q= SX

“|  otherwise
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Gleizer - Postnikov description

Wos §68 +



Gleizer - Postnikov description

Wo [ S| S‘z&\
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~y t,-t3 20
~+—tizo
~y t320
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Gleizer - Postnikov description

Wo = Sl S".S‘l : +

~3 t,-132o0
Strmg epualities ~ +tizo

=l 4:310
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Gleizer - Postnikov description

| 23
1
Wo = § stl . t
M- mepualities o~e s
Froe xn+ T gy} ’
e

Wwhewre 3 2

Cj = It s ome column do Aue lefr / Haut
of +1

-1 :P +3 s Tn +he Same colunm an +:

o o thevrwige



Gleizer - Postnikov description

| P} 3
1
W, = S&S . t
+| < A—l*t‘l."—fq
A= mepualities o~e s
426 gty
\S-b;‘é')\i-*?:‘ci‘bj% 3 & Ay
22
Where 3 2
C;= I d s ome column o tue lobr / Hqut
of +1

-1 ;P +j 5 Tn +he Same colunm an +:

o otherwige
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String polytopes

Theorem String polytope Ay, (1) is the intersection of the string cone and the A-cone.

Theorem (C.-Kim-Lee-Park) (Alexeev-Brion Conjecture, 2004) For a proper X, any
string polytope Ay, (A) is a reflexive polytope and admits a small resolution.
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String polytopes

Open questions :
@ We know that any reduced expression of w, can be obtained by a sequence of
2-moves and 3-moves starting from sysps1 - - - s,—1 - - - s7. Moreover, Berenstein
and Zelevinsky described how the defining equations change along 2 or 3 moves.



Thank you!

«O> <> «E»r «

Q>



