On Gelfand-Cetlin Polytopes

Yunhyung Cho
Sungkyunkwan University

JCCA - Mini symposium
May 23, 2018

Outline

1. Polytopes and Geometry
2. Gelfand-Cetlin Polytopes
3. String Polytopes
4. Polytopes and Geometry

Polytopes and Geometry

From polytopes to algebraic varieties :

- Given convex polytope $P \subset \mathbb{R}^{N}$, the corresponding normal fan Σ_{P} :

- Each cone corresponds to an affine toric variety
- Intersection of cones \Rightarrow gluing varieties \Rightarrow obtain X_{P} (proj. toric var.)

Polytopes and Geometry

From polytopes to algebraic varieties :

- Given convex polytope $P \subset \mathbb{R}^{N}$, the corresponding normal fan Σ_{P} :

- Each cone corresponds to an affine toric variety
- Intersection of cones \Rightarrow gluing varieties

Polytopes and Geometry

From polytopes to algebraic varieties :

- Given convex polytope $P \subset \mathbb{R}^{N}$, the corresponding normal fan Σ_{P} :

- Each cone corresponds to an affine toric variety
- Intersection of cones \Rightarrow gluing varieties

Polytopes and Geometry

From polytopes to algebraic varieties :

- Given convex polytope $P \subset \mathbb{R}^{N}$, the corresponding normal fan Σ_{P} :

- Each cone corresponds to an affine toric variety
- Intersection of cones \Rightarrow gluing varieties

Polytopes and Geometry

From algebraic varieties to polytopes :

- Let $T_{\mathbb{C}}:=\left(\mathbb{C}^{*}\right)^{n}: n$-dimensional complex torus.
- For any $S=\left\{m_{1}, \cdots, m_{N}\right\} \subset \mathbb{Z}^{n}$ given, consider the torus embedding

$$
\left.i: \begin{array}{ccc}
T_{\mathbb{C}} & \hookrightarrow & \mathbb{P}^{N-1} \\
& \left(t_{1}, \cdots, t_{n}\right) & \mapsto
\end{array} t^{m_{1}}, \cdots, t^{m_{N}}\right] \quad t^{m}:=t_{1}^{a_{1}} t_{2}^{a_{2}} \cdots t_{n}^{a_{n}}, m=\left(a_{1}, \cdots, a_{n}\right) .
$$

- The Zariski closure of $i\left(T_{\mathbb{C}}\right)$ is called a projective toric variety and denoted by X_{S}
- For the map

$$
\begin{aligned}
& \mu: \quad \mathbb{P}^{N} \rightarrow \Delta^{N} \\
& {\left[z_{1}, \cdots, z_{N}\right] } \mapsto \\
&\left.\left\lvert\, \frac{\left|z_{1}\right|^{2}}{\left|z_{1}\right|^{2}+\cdots+\left|z_{N}\right|^{2}}\right., \cdots, \frac{\left|z_{N}\right|^{2}}{\left|z_{1}\right|^{2}+\cdots+\left|z_{N}\right|^{2}}\right),
\end{aligned}
$$

with the projection map $\pi: \mathbb{R}^{N} \rightarrow \mathbb{R}^{n}$ represented by the matrix $\left(m_{1} \cdots m_{N}\right)$, the image $\pi \circ \mu\left(X_{S}\right)$ is a convex polytope, called the moment polytope of X_{S}, denoted by $\Delta_{X_{S}}$

Polytopes and Geometry

Theorem

(1) For X : projective toric variety with a moment polytope Δ_{X}, we have $X \cong X_{\Delta_{X}}$
(2) X is a smooth if and only if Δ_{X} is a non-singular simple integral polytope.

Philosophy

Any T-invariant topological and geometric invariants of X are encoded in Δ_{X}

Example :

- Betti numbers of $X \quad \Leftrightarrow \quad h$-vector of Δ_{X}
- (Equivariant) (co)homology of $X \quad \Leftrightarrow \quad$ Stanley-Reisner ring of Δ_{X}
- Quantum cohomology \Leftrightarrow defining equations of $\Delta_{X} \quad$ (Batyrev)
- open Gromov-Witten invariants \Leftrightarrow defining equations of $\Delta_{X} \quad$ (FOOO) counts of hol. discs bounded by $\mu^{-1}(\mathbf{b})$

Polytopes and Geometry

Recent Progress : Given smooth projective variety X,

- (in many case) one can associate a polytope Δ (Newton-Okounkov body),
- \exists many similarities between X and X_{0}.

2. Gelfand-Cetlin Polytopes

Gelfand-Cetlin polytopes

Definition : Given $\lambda=\left\{\lambda_{1} \geq \cdots \geq \lambda_{n}\right\}$: sequence of real numbers, assign a polytope

$$
\Delta_{\lambda}=\left\{\left(x^{i, j}\right)\right\} \subset \mathbb{R}^{N}, \quad i, j>0, \quad 2 \leq i+j \leq n+1, \quad N=\frac{n(n+1)}{2}
$$

such that

- $\lambda_{1}=x^{1, n}, \lambda_{2}=x^{2, n-1}, \cdots, \lambda_{n}=x^{n, 1}$
- $x^{i, j} \geq x^{i+1, j}$
- $x^{i, j+1} \geq x^{i, j}$

Such Δ_{λ} is called a Gelfand-Cetlin polytope

Gelfand-Cetlin polytopes
Example : For $\lambda=(1,-1)$ and $\lambda=(1,0,0)$,

Gelfand-Cetlin polytopes

Example : Let $\lambda=(2,0,-2)$: Fill $\square^{(1,3)}, \square^{(2,2)}, \square^{(3,1)}$ with $\lambda_{1}, \lambda_{2}, \lambda_{3}$

Gelfand-Cetlin polytopes

Face structure of Δ_{λ} :
The ladder diagram Γ_{λ} is a grid graph defined by

$$
\Gamma_{\lambda}:=\bigcup \square^{(i, j)}, \quad x^{i, j} \neq \text { const. in } \Delta_{\lambda} .
$$

- Blue dot is called the origin
- Red dots are called terminal vertices (farthest vertices from the origin)

A positive path is a shortest path from the origin to some terminal vertex.

Gelfand-Cetlin polytopes

A face of Γ_{λ} is a subgraph γ of Γ_{λ} such that

- γ is a union of shortest paths
- γ contains all terminal vertices

A dimension of γ is defined to be the number of minimal cycles in γ.

Gelfand-Cetlin polytopes

Example : $\lambda=(2,0,-2)$

four edges containing v

Gelfand-Cetlin polytopes

Gelfand-Cetlin polytopes

Theorem (An-C.-Kim) Face structure of Δ_{λ} is equivalent to face structure of Γ_{λ}.

Theorem (An-C.-Kim) Let $\mathbf{F}_{\mathbf{k}}(t)$ be the f-polynomial for λ where

$$
\lambda_{1}=\cdots=\lambda_{k_{1}}>\lambda_{k_{1}+1}=\cdots=\lambda_{k_{1}+k_{2}}>\cdots>\lambda_{k_{1}+\cdots k_{s-1}+1}=\lambda_{k_{1}+\cdots k_{s}}
$$

and $\mathbf{k}=\left(k_{1}, \cdots, k_{s}\right) \in\left(\mathbb{Z}_{\geq 0}\right)^{s}$. Then $\mathbf{F}_{\mathbf{k}}(t)$ satisfies the following recurrence relation :

$$
\mathbf{F}_{\mathbf{k}}(t)=\sum_{\mathbf{w} \in W_{s-1}} \mathbf{F}_{r_{\mathbf{w}}(\mathbf{k}) * \widetilde{\mathbf{w}}}(t) \cdot t^{|\mathbf{w}|}
$$

where

- W_{s-1} : set of sequences of length $s-1$ on the set $\{(0,1),(1,0),(1,1)\}$
- $\left(x_{1}, x_{2}, \cdots, x_{m}\right) *\left(y_{1}, \cdots, y_{m-1}\right):=\left(x_{1}, y_{1}, \cdots, x_{m-1}, y_{m-1}, x_{m}\right)$ and for $\mathbf{w}=\left(\left(\alpha_{1}, \beta_{1}\right), \cdots,\left(\alpha_{s-1}, \beta_{s-1}\right)\right) \in W_{s-1}$,
- $r_{\mathbf{w}}(\mathbf{k})=\left(k_{1}^{\prime}, \cdots, k_{s}^{\prime}\right)$ with $k_{i}^{\prime}:=k_{i}+1-\alpha_{i}-\beta_{i-1}\left(\alpha_{s}=\beta_{0}=1\right)$
- $\widetilde{\mathbf{w}}=\left(\alpha_{1} \beta_{1}, \cdots, \alpha_{s-1} \beta_{s-1}\right)$
- $|\widetilde{\boldsymbol{w}}|=\sum_{i=1}^{s-1} \alpha_{i} \beta_{i}$.

Gelfand-Cetlin polytopes

Theorem (An-C.-Kim) If we denote by

$$
\Psi_{s}\left(x_{1}, \cdots, x_{s} ; t\right):=\sum_{\mathbf{k} \geq 0} \mathbf{F}_{\mathbf{k}}(t) \frac{x_{1}^{k_{1}} \cdots x_{s}^{k_{s}}}{k_{1}!\cdots k_{s}!}
$$

the exponential generating function, then $\left\{\Psi_{s}\right\}$ satisfies

$$
\left.\mathcal{D}_{s}\left(\Psi_{2 s-1}\left(x_{1}, y_{1}, \cdots, x_{s-1}, y_{s-1}, x_{s} ; t\right)\right)\right|_{y_{1}=\cdots=y_{s-1}=0}=0
$$

where

$$
\mathcal{D}_{s}=\frac{\partial^{s}}{\partial x_{1} \cdots \partial x_{s}}-\prod_{i=1}^{s-1}\left(\frac{\partial}{\partial x_{i}}+\frac{\partial}{\partial x_{i+1}}+t \cdot \frac{\partial}{\partial y_{i}}\right)
$$

Gelfand-Cetlin polytopes

Example : For $\mathbf{k}=(1,1)$ (i.e., the case of $\lambda=(1,0)$),

$$
\begin{aligned}
\mathbf{F}_{\mathbf{k}}(t) & =\sum_{\mathbf{w} \in W_{s-1}} \mathbf{F}_{r_{\mathbf{w}}(\mathbf{k}) * \widetilde{\mathbf{w}}}(t) \cdot t^{|\mathbf{w}|} \\
& =\mathbf{F}_{(1,0) *(0)}(t) t^{0}+\mathbf{F}_{(0,1) *(0)}(t) t^{0}+\mathbf{F}_{(0,0) *(1)}(t) t^{1} \\
& =t+2
\end{aligned}
$$

Example : For $\mathbf{k}=(1,1,1)$ (i.e., the case of $\lambda=(2,0,-2)$),

$$
\begin{aligned}
\mathbf{F}_{\mathbf{k}}(t)= & \sum_{\mathbf{w} \in W_{s-1}} \mathbf{F}_{r_{\mathbf{w}}(\mathbf{k}) * \widetilde{\mathbf{w}}}(t) \cdot t^{|\mathbf{w}|} \\
= & \mathbf{F}_{(0,0,1,0,1)} t^{0}+\mathbf{F}_{(0,0,2,0,0)} t^{0}+\mathbf{F}_{(0,0,1,1,0)} t^{1}+\mathbf{F}_{(1,0,0,0,1)} t^{0}+\mathbf{F}_{(1,0,1,0,0)} t^{0} \\
& +\mathbf{F}_{(1,0,0,1,0)} t^{1}+\mathbf{F}_{(0,1,0,0,1)} t^{1}+\mathbf{F}_{(0,1,1,0,0)} t^{1}+\mathbf{F}_{(0,1,0,1,0)} t^{2} \\
= & (t+2) t^{0}+t^{0}+(t+2) t^{1}+(t+2) t^{0}+(t+2) t^{0} \\
& +(t+2) t^{1}+(t+2) t^{1}+(t+2) t^{1}+(t+2) t^{2} \\
= & t^{3}+6 t^{2}+11 t+7
\end{aligned}
$$

Gelfand-Cetlin polytopes

Gelfand-Cetlin systems: The GC polytope Δ_{λ} can be also obtained as follows :

- Let \mathcal{O}_{λ} : set of $(n \times n)$ Hermitian matrices having spectra $\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right)$. \mathcal{O}_{λ} is called a flag manifold of type A
- Define

$$
\Phi_{\lambda}:=\left(\Phi_{\lambda}^{i, j}\right), \quad \Phi_{\lambda}^{i, j}(A):=i \text {-th largest eigenvalue of } A^{(i+j-1)}
$$

where $A^{(i)}$ is the i-th leading principal minor matrix of A. (E.g. $\Phi_{\lambda}^{1,1}(A)=a_{11}$.) We call Φ_{λ} a Gelfand-Cetlin system.

Theorem : $\Delta_{\lambda}=\operatorname{Im}\left(\Phi_{\lambda}\right)$ and $\operatorname{dim} \Delta_{\lambda}=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{\lambda}$.

Gelfand-Cetlin polytopes

Theorem(C.-Kim-Oh) "Topology of fibers $\Phi_{\lambda}^{-1}(\mathbf{u})$ and dimensions"
Let f be a face of Δ_{λ} and let γ_{f} be the corresponding face of Γ_{λ}.
Let's play a Tetris game on γ_{f} using only "L-blocks" where L-blocks are given as

Then, fill γ_{f} using L-blocks obeying the following rules:

- the top and the rightmost edges of an L-block should overlap an edge of γ_{f}
- No edge of γ_{f} is in the interior of an L-block.

Gelfand-Cetlin polytopes

Theorem(C.-Kim-Oh) "Topology of fibers $\Phi_{\lambda}^{-1}(\mathbf{u})$ and dimensions"

$$
\lambda=(3.3,2,2,1,1)
$$

r_{λ}

Υ_{f}

Gelfand-Cetlin polytopes

Theorem(C.-Kim-Oh) "Topology of fibers $\Phi_{\lambda}^{-1}(\mathbf{u})$ and dimensions"

$$
\lambda=(3,3,2,2,1,1)
$$

r_{λ}

γ_{f}

Gelfand-Cetlin polytopes

Theorem(C.-Kim-Oh) "Topology of fibers $\Phi_{\lambda}^{-1}(\mathbf{u})$ and dimensions"

$$
\lambda=(3,3,2,2,1,1)
$$

r_{λ}

Υ_{f}

Gelfand-Cetlin polytopes

Theorem(C.-Kim-Oh) "Topology of fibers $\Phi_{\lambda}^{-1}(\mathbf{u})$ and dimensions"

Gelfand-Cetlin polytopes

Theorem(C.-Kim-Oh) "Topology of fibers $\Phi_{\lambda}^{-1}(\mathbf{u})$ and dimensions"

$$
\lambda=(3.3 .2 .2 \cdot 1.1)
$$

r_{λ}

Υ_{f}

Gelfand-Cetlin polytopes

Theorem(C.-Kim-Oh) "Topology of fibers $\Phi_{\lambda}^{-1}(\mathbf{u})$ and dimensions"

$$
\lambda=(3.3,2,2,1,1)
$$

r_{λ}

$\operatorname{dim} \Phi_{\lambda}^{-1}(u)$
= area of covered region

$$
=8 .
$$

Υ_{f}

Gelfand-Cetlin polytopes

Theorem(C.-Kim-Oh) For any \mathbf{u} in the relative interior of the face f of Δ_{λ}, the fiber $\Phi_{\lambda}^{-1}(\mathbf{u})$ is a smooth submanifold diffeomorphic to
$\Phi_{\lambda}^{-1}(\mathbf{u}) \cong\left(S^{1}\right)^{\operatorname{dim} f} \times Y_{f}, \quad Y_{f}$: some iterated bundle of product of odd spheres and its dimension equals the area of the region covered by L-blocks.

Remark: When L-blocks covers whole γ_{f}, then

$$
\operatorname{dim} \Phi_{\lambda}^{-1}(\mathbf{u})=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{\lambda}, \quad \forall \mathbf{u} \in \dot{f}
$$

Such fiber is called a Lagrangian and it is a main object in the study of symplectic manifolds, a candidate for generating the Fukaya category of \mathcal{O}_{λ}.

3. String polytopes

String polytopes

Main problems : Let X be a smooth projective variety over \mathbb{C}

String polytopes

Main problems : Let X be a smooth projective variety over \mathbb{C}

- Find a toric degeneration of X : (problem in commutative algebra)

Find a flat homomorphism $\mathbb{C}[t] \rightarrow \mathbb{C}[X, t]$ such that

- $\mathbb{C}[X, 1]=\mathbb{C}[X]$
- $\mathbb{C}[X, 0]$: toric
(E.g. $\mathbb{C}[X]=\mathbb{C}[x, y, z] /\left\langle y^{2} z=x^{3}+z^{3}\right\rangle$ and $\mathbb{C}[X, t]:=\mathbb{C}[x, y, z] /\left\langle y^{2} z=x^{3}+t^{6} z^{3}\right\rangle$)
- Determine whether $X_{0}:=\operatorname{Spec} \mathbb{C}[X, 0]$ is nice to study X :
- $\Delta_{X_{0}}$ is reflexive
- $\Delta_{X_{0}}$ admits a small resolution

String polytopes

Reflexive polytope : Lattice polytope containing O whose dual is also a lattice polytope.

String polytopes

Small resolution : We say that a polytope P admits a small resolution if the normal fan has a smooth refinement. That is, each maximal cone of the normal fan can be decomposed into smooth cones without inserting any ray.

String polytopes

Theorem (Nishinou-Nohara-Ueda) If X admits a toric degeneration to a Fano toric variety admitting small resolution, then many information of X (such as an open GW-invariant and a potential function) can be recovered from $\Delta_{X_{0}}$.

Theorem (Batyrev - Ciocan-Fontanine - Kim - van Straten) For a proper λ, the Gelfand-Cetlin polytope Δ_{λ} is a reflexive polytope and admits a small resolution.

String polytopes

String polytopes : Let $W \cong S_{n-1}$ be the Weyl group of $U(n)$ and let s_{1}, \cdots, s_{n-1} be the simple transposition (corresponding to a base). Let w_{0} be the longest element of W and let $\underline{w_{0}}=\left(s_{i_{1}} s_{i_{2}} \cdots s_{i_{N}}\right)$ be a reduced expression of w_{0}.

For each dominant weight λ, the string polytope $\Delta_{\underline{w_{0}}}(\lambda)$ is a convex rational polytope whose integral points parametrize certain basis (called "crystal basis") of a irreducible $U(n)$ representation with highest weight λ.

Gleizer - Postnikov description

Gleizer - Postnikov description

Gleizer - Postnikov description

$$
w_{0}=s_{1} s_{2} s_{1}:
$$

- For each k, find all paths from k to $k+1$ avoiding

$$
\therefore \cdot \pi \text { and }
$$

Gleizer - Postnikov description

$$
W_{0}=S_{1} S_{2} S_{1}
$$

- For each k, find all paths from k to $k+1$ avoiding

$$
\leadsto \quad t_{2}-t_{3} \geq 0
$$

- Get $\sum a_{i t i} \geq 0$ where

$$
a_{i}=\left\{\begin{array}{l}
1 \text { when turning from "small one" to "big one } \\
-1 \text { otherwise }
\end{array}\right.
$$

Gleizer - Postnikov description

$$
W_{0}=S_{1} S_{2} S_{1}
$$

- For each k, find all paths from k to $k+1$ avoiding

$$
-\pi \text { and }
$$

- Get $\sum a_{i} t i \geq 0$ where

$$
\begin{array}{ll}
m & t_{2}-t_{3} \geq 0 \\
m & t_{1} \geq 0
\end{array}
$$

$$
a_{i}=\left\{\begin{array}{l}
1 \text { when turning Tom "small one" to "big one } \\
-1 \text { otherwise }
\end{array}\right.
$$

Gleizer - Postnikov description

Gleizer - Postnikov description

$$
w_{0}=s_{1} s_{2} s_{1}: c_{\substack{ }}^{\substack{m \\ m}}
$$

Gleizer - Postnikov description

String inequalities $\begin{cases}m & t_{2}-t_{3} \geq 0 \\ m & t_{1} \geq 0 \\ m & t_{3} \geq 0\end{cases}$

Gleizer - Postnikov description
λ-inequalities are

$$
\left\{t_{i} \leq \lambda_{i}+\sum_{j>i} c_{j} t_{j}\right\}
$$

$C_{j}=\left\{\begin{array}{cl}1 & \text { if } t_{j} \text { is one column to the left / Hight } \\ -2 & \text { if } t_{j} \text { is in the same column of } t_{i} \\ 0 & \text { otherwise }\end{array}\right.$

Gleizer - Postnikov description
λ-inequalities are

$$
\left\{t_{i} \leq \lambda_{i}+\sum_{j>i} c_{j} t_{j}\right\}
$$

$C_{j}= \begin{cases}1 & \text { if } t_{j} \text { is one column to the left / Hight } \\ -2 & \text { if } t_{j} \text { is in the same column of } t_{i} \\ 0 & \text { otherwise }\end{cases}$

String polytopes

Theorem String polytope $\Delta_{\underline{w_{0}}}(\lambda)$ is the intersection of the string cone and the λ-cone.

Theorem (C.-Kim-Lee-Park) (Alexeev-Brion Conjecture, 2004) For a proper λ, any string polytope $\Delta_{\underline{w_{0}}}(\lambda)$ is a reflexive polytope and admits a small resolution.

String polytopes

Open questions :

- We know that any reduced expression of w_{0} can be obtained by a sequence of 2 -moves and 3 -moves starting from $s_{1} s_{2} s_{1} \cdots s_{n-1} \cdots s_{1}$. Moreover, Berenstein and Zelevinsky described how the defining equations change along 2 or 3 moves. How does the f-vector (or h-vector) change along 2 or 3 move?
- Can we construct a map $\Phi: \mathcal{H}_{\lambda} \rightarrow \Delta_{w_{0}}(\lambda)$ explicitly?

Thank you!

