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Polytopes and Geometry

From polytopes to algebraic varieties :

Given convex polytope P ⊂ RN , the corresponding normal fan ΣP :

Each cone corresponds to an affine toric variety

Intersection of cones ⇒ gluing varieties ⇒ obtain XP (proj. toric var.)



5 / 50

Polytopes and Geometry

From polytopes to algebraic varieties :

Given convex polytope P ⊂ RN , the corresponding normal fan ΣP :

Each cone corresponds to an affine toric variety

Intersection of cones ⇒ gluing varieties



6 / 50

Polytopes and Geometry

From polytopes to algebraic varieties :

Given convex polytope P ⊂ RN , the corresponding normal fan ΣP :

Each cone corresponds to an affine toric variety

Intersection of cones ⇒ gluing varieties



7 / 50

Polytopes and Geometry

From polytopes to algebraic varieties :

Given convex polytope P ⊂ RN , the corresponding normal fan ΣP :

Each cone corresponds to an affine toric variety

Intersection of cones ⇒ gluing varieties



8 / 50

Polytopes and Geometry

From algebraic varieties to polytopes :

Let TC := (C∗)n : n-dimensional complex torus.

For any S = {m1, · · · ,mN} ⊂ Zn given, consider the torus embedding

i : TC ↪→ PN−1

(t1, · · · , tn) 7→ [tm1 , · · · , tmN ]
tm := ta1

1 ta2
2 · · · t

an
n ,m = (a1, · · · , an).

The Zariski closure of i(TC) is called a projective toric variety and denoted by XS

For the map

µ : PN → ∆N

[z1, · · · , zN ] 7→
(

|z1|2
|z1|2+···+|zN |2

, · · · , |zN |2
|z1|2+···+|zN |2

)
,

with the projection map π : RN → Rn represented by the matrix (m1 · · ·mN), the
image π ◦ µ(XS) is a convex polytope, called the moment polytope of XS, denoted
by ∆XS
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Polytopes and Geometry

Theorem

(1) For X : projective toric variety with a moment polytope ∆X , we have X ∼= X∆X

(2) X is a smooth if and only if ∆X is a non-singular simple integral polytope.

Philosophy
Any T-invariant topological and geometric invariants of X are encoded in ∆X

Example :

Betti numbers of X ⇔ h-vector of ∆X

(Equivariant) (co)homology of X ⇔ Stanley-Reisner ring of ∆X

Quantum cohomology ⇔ defining equations of ∆X (Batyrev)

open Gromov-Witten invariants︸ ︷︷ ︸
counts of hol. discs bounded by µ−1(b)

⇔ defining equations of ∆X (FOOO)
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Polytopes and Geometry

Recent Progress : Given smooth projective variety X,

(in many case) one can associate a polytope ∆ (Newton-Okounkov body),

∃ many similarities between X and X0.

projective variety

X

toric variety

X0

Polytope

4

ϕ

toric degeneration

µ

moment map

µ ◦ ϕ

(flag varieties) (GC toric varieties)

(GC, string polytopes)
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2. Gelfand-Cetlin Polytopes
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Gelfand-Cetlin polytopes

Definition : Given λ = {λ1 ≥ · · · ≥ λn} : sequence of real numbers, assign a polytope

∆λ = {(xi,j)} ⊂ RN , i, j > 0, 2 ≤ i + j ≤ n + 1, N =
n(n + 1)

2

such that

λ1 = x1,n, λ2 = x2,n−1, · · · , λn = xn,1

xi,j ≥ xi+1,j

xi,j+1 ≥ xi,j

Such ∆λ is called a Gelfand-Cetlin polytope
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Gelfand-Cetlin polytopes

Example : For λ = (1,−1) and λ = (1, 0, 0),



14 / 50

Gelfand-Cetlin polytopes

Example : Let λ = (2, 0,−2) : Fill �(1,3),�(2,2),�(3,1) with λ1, λ2, λ3
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Gelfand-Cetlin polytopes

Face structure of ∆λ :

The ladder diagram Γλ is a grid graph defined by

Γλ :=
⋃

�(i,j), xi,j 6= const. in ∆λ.

Blue dot is called the origin
Red dots are called terminal vertices (farthest vertices from the origin)

A positive path is a shortest path from the origin to some terminal vertex.
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Gelfand-Cetlin polytopes

A face of Γλ is a subgraph γ of Γλ such that

γ is a union of shortest paths

γ contains all terminal vertices

A dimension of γ is defined to be the number of minimal cycles in γ.
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Gelfand-Cetlin polytopes

Example : λ = (2, 0,−2)
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Gelfand-Cetlin polytopes
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Gelfand-Cetlin polytopes

Theorem (An-C.-Kim) Face structure of ∆λ is equivalent to face structure of Γλ.

Theorem (An-C.-Kim) Let Fk(t) be the f -polynomial for λ where

λ1 = · · · = λk1 > λk1+1 = · · · = λk1+k2 > · · · > λk1+···ks−1+1 = λk1+···ks

and k = (k1, · · · , ks) ∈ (Z≥0)s. Then Fk(t) satisfies the following recurrence relation :

Fk(t) =
∑

w∈Ws−1

Frw(k)∗w̃(t) · t|w|

where

Ws−1 : set of sequences of length s− 1 on the set {(0, 1), (1, 0), (1, 1)}
(x1, x2, · · · , xm) ∗ (y1, · · · , ym−1) := (x1, y1, · · · , xm−1, ym−1, xm)

and for w = ((α1, β1), · · · , (αs−1, βs−1)) ∈ Ws−1,

rw(k) = (k′1, · · · , k
′
s) with k′i := ki + 1− αi − βi−1 (αs = β0 = 1)

w̃ = (α1β1, · · · , αs−1βs−1)

|w̃| =
∑s−1

i=1 αiβi.
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Gelfand-Cetlin polytopes

Theorem (An-C.-Kim) If we denote by

Ψs(x1, · · · , xs; t) :=
∑
k≥0

Fk(t)
xk1

1 · · · x
ks
s

k1! · · · ks!

the exponential generating function, then {Ψs} satisfies

Ds (Ψ2s−1(x1, y1, · · · , xs−1, ys−1, xs; t)) |y1=···=ys−1=0 = 0

where

Ds =
∂s

∂x1 · · · ∂xs
−

s−1∏
i=1

(
∂

∂xi
+

∂

∂xi+1
+ t ·

∂

∂yi

)
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Gelfand-Cetlin polytopes

Example : For k = (1, 1) (i.e., the case of λ = (1, 0)),

Fk(t) =
∑

w∈Ws−1

Frw(k)∗w̃(t) · t|w|

= F(1,0)∗(0)(t)t0 + F(0,1)∗(0)(t)t0 + F(0,0)∗(1)(t)t1

= t + 2

Example : For k = (1, 1, 1) (i.e., the case of λ = (2, 0,−2)),

Fk(t) =
∑

w∈Ws−1

Frw(k)∗w̃(t) · t|w|

= F(0,0,1,0,1)t0 + F(0,0,2,0,0)t0 + F(0,0,1,1,0)t1 + F(1,0,0,0,1)t0 + F(1,0,1,0,0)t0

+ F(1,0,0,1,0)t1 + F(0,1,0,0,1)t1 + F(0,1,1,0,0)t1 + F(0,1,0,1,0)t2

= (t + 2)t0 + t0 + (t + 2)t1 + (t + 2)t0 + (t + 2)t0

+ (t + 2)t1 + (t + 2)t1 + (t + 2)t1 + (t + 2)t2

= t3 + 6t2 + 11t + 7
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Gelfand-Cetlin polytopes

Gelfand-Cetlin systems: The GC polytope ∆λ can be also obtained as follows :

Let Oλ : set of (n× n) Hermitian matrices having spectra λ = (λ1, · · · , λn).
Oλ is called a flag manifold of type A

Define

Φλ :=
(

Φi,j
λ

)
, Φi,j

λ (A) := i-th largest eigenvalue of A(i+j−1)

where A(i) is the i-th leading principal minor matrix of A. (E.g. Φ1,1
λ (A) = a11.)

We call Φλ a Gelfand-Cetlin system.

Theorem : ∆λ = Im(Φλ) and dim ∆λ = dimCOλ.
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Gelfand-Cetlin polytopes

Theorem(C.-Kim-Oh) “Topology of fibers Φ−1
λ (u) and dimensions”

Let f be a face of ∆λ and let γf be the corresponding face of Γλ.
Let’s play a Tetris game on γf using only “L-blocks” where L-blocks are given as

Then, fill γf using L-blocks obeying the following rules :

the top and the rightmost edges of an L-block should overlap an edge of γf

No edge of γf is in the interior of an L-block.
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Gelfand-Cetlin polytopes
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Gelfand-Cetlin polytopes
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Gelfand-Cetlin polytopes

Theorem(C.-Kim-Oh) For any u in the relative interior of the face f of ∆λ, the fiber
Φ−1
λ (u) is a smooth submanifold diffeomorphic to

Φ−1
λ (u) ∼= (S1)dim f × Yf , Yf : some iterated bundle of product of odd spheres

and its dimension equals the area of the region covered by L-blocks.

Remark : When L-blocks covers whole γf , then

dim Φ−1
λ (u) = dimCOλ, ∀u ∈ f̊ .

Such fiber is called a Lagrangian and it is a main object in the study of symplectic
manifolds, a candidate for generating the Fukaya category of Oλ.
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3. String polytopes
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String polytopes

Main problems : Let X be a smooth projective variety over C

projective variety

X

toric variety

X0

Polytope

4

ϕ

toric degeneration

µ

moment map

µ ◦ ϕ

(flag varieties) (GC toric varieties)

(GC, string polytopes)
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String polytopes

Main problems : Let X be a smooth projective variety over C

Find a toric degeneration of X : (problem in commutative algebra)

Find a flat homomorphism C[t]→ C[X, t] such that
- C[X, 1] = C[X]

- C[X, 0] : toric
(E.g. C[X] = C[x, y, z]/〈y2z = x3 + z3〉 and C[X, t] := C[x, y, z]/〈y2z = x3 + t6z3〉)

Determine whether X0 := Spec C[X, 0] is nice to study X :

- ∆X0 is reflexive
- ∆X0 admits a small resolution
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String polytopes

Reflexive polytope : Lattice polytope containing O whose dual is also a lattice
polytope.
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String polytopes

Small resolution : We say that a polytope P admits a small resolution if the normal fan
has a smooth refinement. That is, each maximal cone of the normal fan can be
decomposed into smooth cones without inserting any ray.
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String polytopes

Theorem (Nishinou-Nohara-Ueda) If X admits a toric degeneration to a Fano toric
variety admitting small resolution, then many information of X (such as an open
GW-invariant and a potential function) can be recovered from ∆X0 .

Theorem (Batyrev - Ciocan-Fontanine - Kim - van Straten) For a proper λ, the
Gelfand-Cetlin polytope ∆λ is a reflexive polytope and admits a small resolution.
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String polytopes

String polytopes : Let W ∼= Sn−1 be the Weyl group of U(n) and let s1, · · · , sn−1 be the
simple transposition (corresponding to a base). Let w0 be the longest element of W and
let w0 = (si1 si2 · · · siN ) be a reduced expression of w0.

For each dominant weight λ, the string polytope ∆w0 (λ) is a convex rational polytope

whose integral points parametrize certain basis (called “crystal basis”) of a irreducible
U(n) representation with highest weight λ.
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Gleizer - Postnikov description
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Gleizer - Postnikov description
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Gleizer - Postnikov description
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String polytopes

Theorem String polytope ∆w0 (λ) is the intersection of the string cone and the λ-cone.

Theorem (C.-Kim-Lee-Park) (Alexeev-Brion Conjecture, 2004) For a proper λ, any
string polytope ∆w0 (λ) is a reflexive polytope and admits a small resolution.
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String polytopes

Open questions :

We know that any reduced expression of w0 can be obtained by a sequence of
2-moves and 3-moves starting from s1s2s1 · · · sn−1 · · · s1. Moreover, Berenstein
and Zelevinsky described how the defining equations change along 2 or 3 moves.
How does the f -vector (or h-vector) change along 2 or 3 move?

Can we construct a map Φ : Hλ → ∆w0 (λ) explicitly?
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Thank you!


