Classification of Combinatorial
 Polynomials (in particular, Ehrhart Polynomials of Zonotopes)

Matthias Beck
San Francisco State University
Katharina Jochemko
Kungliga Tekniska Högskolan
Emily McCullough
University of San Francisco

Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope $\mathcal{P} \subset \mathbb{R}^{d}$, $\operatorname{ehr}_{\mathcal{P}}(t):=\left|t \mathcal{P} \cap \mathbb{Z}^{d}\right|$ is a polynomial in t of degree $d:=$ $\operatorname{dim} \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

$$
\operatorname{Ehr}_{\mathcal{P}}(z):=1+\sum_{t \geq 1} \operatorname{ehr}_{\mathcal{P}}(t) z^{t}=\frac{h^{*}(z)}{(1-z)^{d+1}}
$$

Equivalent descriptions of an Ehrhart polynomial:
$-\operatorname{ehr}_{\mathcal{P}}(t)=c_{d} t^{d}+c_{d-1} t^{d-1}+\cdots+c_{0}$

- via roots of $\operatorname{ehr}_{\mathcal{P}}(t)$
$-\operatorname{Ehr}_{\mathcal{P}}(z) \longrightarrow \quad \operatorname{ehr}_{\mathcal{P}}(t)=h_{0}^{*}\binom{t+d}{d}+h_{1}^{*}\binom{t+d-1}{d}+\cdots+h_{d}^{*}\binom{t}{d}$
(Wide) Open Problem Classify Ehrhart polynomials.

Two-dimensional Ehrhart Polynomials

Essentially due to Pick (1899) and Scott (1976)

Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P}, $\operatorname{ehr}_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\operatorname{dim} \mathcal{P}$ with leading coefficient vol \mathcal{P} and constant term 1.

$$
\begin{aligned}
& \text { 4. } \operatorname{Ehr}_{\mathcal{P}}(z):=1+\sum_{t \geq 1} \operatorname{ehr}_{\mathcal{P}}(t) z^{t}=\frac{h^{*}(z)}{(1-z)^{d+1}} \\
& \longrightarrow \quad \operatorname{ehr}_{\mathcal{P}}(t)=h_{0}^{*}\binom{t+d}{d}+h_{1}^{*}\binom{t+d-1}{d}+\cdots+h_{d}^{*}\binom{t}{d}
\end{aligned}
$$

Theorem (Macdonald 1971) $(-1)^{d} \operatorname{ehr}_{\mathcal{P}}(-t)$ enumerates the interior lattice points in $t \mathcal{P}$. Equivalently,

$$
\operatorname{ehr}_{\mathcal{P}^{\circ}}(t)=h_{d}^{*}\binom{t+d-1}{d}+h_{d-1}^{*}\binom{t+d-2}{d}+\cdots+h_{0}^{*}\binom{t-1}{d}
$$

Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P}, $\operatorname{ehr}_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\operatorname{dim} \mathcal{P}$ with leading coefficient vol \mathcal{P} and constant term 1 .

$$
\operatorname{Ehr}_{\mathcal{P}}(z):=1+\sum_{t \geq 1} \operatorname{ehr}_{\mathcal{P}}(t) z^{t}=\frac{h^{*}(z)}{(1-z)^{d+1}}
$$

$$
\longrightarrow \quad \operatorname{ehr}_{\mathcal{P} \circ}(t)=h_{d}^{*}\binom{t+d-1}{d}+h_{d-1}^{*}\binom{t+d-2}{d}+\cdots+h_{0}^{*}\binom{(t-1}{d}
$$

Theorem (Stanley 1980) $h_{0}^{*}, h_{1}^{*}, \ldots, h_{d}^{*}$ are nonnegative integers.

Corollary If $h_{d+1-k}^{*}>0$ then $k \mathcal{P}^{\circ}$ contains an integer point.

Positivity Among Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P}, $\operatorname{ehr}_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\operatorname{dim} \mathcal{P}$ with leading coefficient vol \mathcal{P} and constant term 1.

$$
\operatorname{Ehr}_{\mathcal{P}}(z):=1+\sum_{t \geq 1} \operatorname{ehr}_{\mathcal{P}}(t) z^{t}=\frac{h^{*}(z)}{(1-z)^{d+1}}
$$

Theorem (Stanley 1980) $h_{0}^{*}, h_{1}^{*}, \ldots, h_{d}^{*}$ are nonnegative integers.
Theorem (Betke-McMullen 1985, Stapledon 2009) If $h_{d}^{*}>0$ then

$$
h^{*}(z)=a(z)+z b(z)
$$

where $a(z)=z^{d} a\left(\frac{1}{z}\right)$ and $b(z)=z^{d-1} b\left(\frac{1}{z}\right)$ with nonnegative coefficients.

Positivity Among Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P}, $\operatorname{ehr}_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\operatorname{dim} \mathcal{P}$ with leading coefficient vol \mathcal{P} and constant term 1.

$$
\operatorname{Ehr}_{\mathcal{P}}(z):=1+\sum_{t \geq 1} \operatorname{ehr}_{\mathcal{P}}(t) z^{t}=\frac{h^{*}(z)}{(1-z)^{d+1}}
$$

Theorem (Stanley 1980) $h_{0}^{*}, h_{1}^{*}, \ldots, h_{d}^{*}$ are nonnegative integers.
Theorem (Betke-McMullen 1985, Stapledon 2009) If $h_{d}^{*}>0$ then

$$
h^{*}(z)=a(z)+z b(z)
$$

where $a(z)=z^{d} a\left(\frac{1}{z}\right)$ and $b(z)=z^{d-1} b\left(\frac{1}{z}\right)$ with nonnegative coefficients.

Open Problem Try to prove the analogous theorem for your favorite combinatorial polynomial with nonnegative coefficients.

Unimodality \& Real-rooted Polynomials

The polynomial $h(z)=\sum_{j=0}^{d} h_{j} z^{j}$ is unimodal if for some $k \in\{0,1, \ldots, d\}$

$$
h_{0} \leq h_{1} \leq \cdots \leq h_{k} \geq \cdots \geq h_{d}
$$

Crucial Example $h(z)$ has only real roots

Conjectures $h^{*}(z)$ is unimodal/real-rooted for

- hypersimplices
- order polytopes
- alcoved polytopes
- lattice polytopes with unimodular triangulations
- IDP polytopes (integer decomposition property)

Unimodality \& Real-rooted Polynomials

The polynomial $h(z)=\sum_{j=0}^{d} h_{j} z^{j}$ is unimodal if for some $k \in\{0,1, \ldots, d\}$

$$
h_{0} \leq h_{1} \leq \cdots \leq h_{k} \geq \cdots \geq h_{d}
$$

Crucial Example $h(z)$ has only real roots
Conjecture (Stanley 1989) $h^{*}(z)$ is unimodal for IDP polytopes.
Classic Example $\mathcal{P}=[0,1]^{d}$ comes with the Eulerian polynomial $h^{*}(z)$
Theorem (Schepers-Van Langenhoven 2013) $h^{*}(z)$ is unimodal for lattice parallelepipeds.

Zonotopes

The zonotope generated by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{d}$ is $\left\{\sum_{j=1}^{n} \lambda_{j} \mathbf{v}_{j}: 0 \leq \lambda_{j} \leq 1\right\}$
Theorem (MB-Jochemko-McCullough) $h^{*}(z)$ is real rooted for lattice zonotopes.

Zonotopes

The zonotope generated by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{d}$ is $\left\{\sum_{j=1}^{n} \lambda_{j} \mathbf{v}_{j}: 0 \leq \lambda_{j} \leq 1\right\}$
Theorem (MB-Jochemko-McCullough) $h^{*}(z)$ is real rooted for lattice zonotopes.

Theorem (MB-Jochemko-McCullough) The convex hull of the h^{*}-polynomials of all d-dimensional lattice zonotopes is the d-dimensional simplicial cone

$$
A_{1}(d+1, z)+\mathbb{R}_{\geq 0} A_{2}(d+1, z)+\cdots+\mathbb{R}_{\geq 0} A_{d+1}(d+1, z)
$$

where we define an (A, j)-Eulerian polynomial as

$$
A_{j}(d, z):=\sum_{k=0}^{d-1} \mid\left\{\sigma \in S_{d}: \sigma(d)=d+1-j \text { and } \operatorname{des}(\sigma)=k\right\} \mid z^{k}
$$

Eulerian Polynomials

The (type A) Eulerian polynomials are

$$
A(d, z):=\sum_{k=0}^{d-1}\left|\left\{\sigma \in S_{d}: \operatorname{des}(\sigma)=k\right\}\right| z^{k}
$$

where $\operatorname{des}(\sigma)$ is the number of descents $\sigma(j+1)<\sigma(j)$
$A(d, z)$ is symmetric, real rooted, and $\sum_{t \geq 0}(t+1)^{d} z^{t}=\frac{A(d, z)}{(1-z)^{d+1}}$

Eulerian Polynomials

The (type A) Eulerian polynomials are

$$
A(d, z):=\sum_{k=0}^{d-1}\left|\left\{\sigma \in S_{d}: \operatorname{des}(\sigma)=k\right\}\right| z^{k}
$$

where $\operatorname{des}(\sigma)$ is the number of descents $\sigma(j+1)<\sigma(j)$
$A(d, z)$ is symmetric, real rooted, and $\sum_{t \geq 0}(t+1)^{d} z^{t}=\frac{A(d, z)}{(1-z)^{d+1}}$
My favorite proof Compute the Ehrhart series of

$$
[0,1]^{d}=\bigsqcup_{\sigma \in S_{d}}\left\{\mathbf{x} \in \mathbb{R}^{d}: \begin{array}{l}
0 \leq x_{\sigma(d)} \leq x_{\sigma(d-1)} \leq \cdots \leq x_{\sigma(1)} \leq 1 \\
x_{\sigma(j+1)}<x_{\sigma(j)} \text { if } j \in \operatorname{Des}(\sigma)
\end{array}\right\}
$$

Eulerian Polynomials

The (type A) Eulerian polynomials are

$$
A(d, z):=\sum_{k=0}^{d-1}\left|\left\{\sigma \in S_{d}: \operatorname{des}(\sigma)=k\right\}\right| z^{k}
$$

where $\operatorname{des}(\sigma)$ is the number of descents $\sigma(j+1)<\sigma(j)$
$A(d, z)$ is symmetric, real rooted, and $\sum_{t \geq 0}(t+1)^{d} z^{t}=\frac{A(d, z)}{(1-z)^{d+1}}$

$$
A_{j}(d, z):=\sum_{k=0}^{d-1} \mid\left\{\sigma \in S_{d}: \sigma(d)=d+1-j \text { and } \operatorname{des}(\sigma)=k\right\} \mid z^{k}
$$

seem to have first been used by Brenti-Welker (2008). They are not all symmetric but unimodal (Kubitzke-Nevo 2009) and real rooted (SavageVisontai 2015).

The Geometry of Refined Eulerian Polynomials

Lemma $1 A_{j}(d, z)=\sum_{k=0}^{d-1} \mid\left\{\sigma \in S_{d}: \sigma(d)=d+1-j\right.$ and $\left.\operatorname{des}(\sigma)=k\right\} \mid z^{k}$ is the h^{*}-polynomial of the half-open cube

$$
C_{j}^{d}:=[0,1]^{d} \backslash\left\{\mathbf{x} \in \mathbb{R}^{d}: x_{d}=x_{d-1}=\cdots=x_{d+1-j}=1\right\}
$$

Lemma 2 The h^{*}-polynomial of a half-open lattice parallelepiped is a linear combination of $A_{j}(d, z)$.

Lemma 3

Zonotopal h^{*}-polynomials

Theorem (MB-Jochemko-McCullough) $h^{*}(z)$ is real rooted for lattice zonotopes.

Theorem (MB-Jochemko-McCullough) The convex hull of the h^{*}-polynomials of all d-dimensional lattice zonotopes is the d-dimensional simplicial cone

$$
\mathcal{K}:=A_{1}(d+1, z)+\mathbb{R}_{\geq 0} A_{2}(d+1, z)+\cdots+\mathbb{R}_{\geq 0} A_{d+1}(d+1, z)
$$

Open Problem Classify h^{*}-polynomials of d-dimensional lattice zonotopes.
This is nontrivial: we can prove that each h^{*}-polynomial is actually in

$$
A_{1}(d+1, z)+\mathbb{Z}_{\geq 0} A_{2}(d+1, z)+\cdots+\mathbb{Z}_{\geq 0} A_{d+1}(d+1, z)
$$

however, \mathcal{K} is not IDP. (And the above is not complete either.)

Valuations

A \mathbb{Z}^{d}-valuation φ satisfies $\varphi(\varnothing)=0$,

$$
\varphi(\mathcal{P} \cup \mathcal{Q})=\varphi(\mathcal{P})+\varphi(\mathcal{Q})-\varphi(\mathcal{P} \cap \mathcal{Q})
$$

whenever $\mathcal{P}, \mathcal{Q}, \mathcal{P} \cup \mathcal{Q}, \mathcal{P} \cap \mathcal{Q}$ are lattice polytopes, and $\varphi(\mathcal{P}+\mathbf{x})=\varphi(\mathcal{P})$ for all $\mathrm{x} \in \mathbb{Z}^{d}$.

Theorem (McMullen 1977) For any lattice polytope \mathcal{P}

$$
\sum_{t \geq 0} \varphi(t \mathcal{P}) z^{t}=\frac{h_{0}^{\varphi}+h_{1}^{\varphi} z+\cdots+h_{d}^{\varphi}(P) z^{d}}{(1-z)^{d+1}}
$$

Valuations

$\mathrm{A} \mathbb{Z}^{d}$-valuation φ satisfies $\varphi(\varnothing)=0$,

$$
\varphi(\mathcal{P} \cup \mathcal{Q})=\varphi(\mathcal{P})+\varphi(\mathcal{Q})-\varphi(\mathcal{P} \cap \mathcal{Q})
$$

whenever $\mathcal{P}, \mathcal{Q}, \mathcal{P} \cup \mathcal{Q}, \mathcal{P} \cap \mathcal{Q}$ are lattice polytopes, and $\varphi(\mathcal{P}+\mathbf{x})=\varphi(\mathcal{P})$ for all $\mathbf{x} \in \mathbb{Z}^{d}$.

Theorem (McMullen 1977) For any lattice polytope \mathcal{P}

$$
\sum_{t \geq 0} \varphi(t \mathcal{P}) z^{t}=\frac{h_{0}^{\varphi}+h_{1}^{\varphi} z+\cdots+h_{d}^{\varphi} z^{d}}{(1-z)^{d+1}}
$$

Theorem (Jochemko-Sanyal 2016) A \mathbb{Z}^{d}-valuation φ satisfies $h^{\varphi} \geq 0$ for every lattice polytope if and only if $\varphi\left(\Delta^{\circ}\right) \geq 0$ for all lattice simplices Δ.

Theorem (MB-Jochemko-McCullough) $h^{\varphi}(z)$ is real rooted for any lattice zonotope and any combinatorially positive valuation φ.

Type B

Conjecture (Schepers-Van Langenhoven 2013) An IDP polytope with interior lattice points has an alternatingly increasing h^{*}-polynomial.

Theorem (MB-Jochemko-McCullough) The Schepers-Van Langenhoven Conjecture holds for type-B zonotopes $\left\{\sum_{j=1}^{n} \lambda_{j} \mathbf{v}_{j}:-1 \leq \lambda_{j} \leq 1\right\}$

Main tool Type-B Eulerian polynomials stemming from signed permutations

$$
\sum_{t \geq 0}(2 t+1)^{d} z^{t}=\frac{B(d, z)}{(1-z)^{d+1}}
$$

Theorem (Brenti 1994) $B(d, z)$ is real rooted.

Type B

Conjecture (Schepers-Van Langenhoven 2013) An IDP polytope with interior lattice points has an alternatingly increasing h^{*}-polynomial.

Theorem (MB -Jochemko-McCullough) The Schepers-Van Langenhoven Conjecture holds for type-B zonotopes $\left\{\sum_{j=1}^{n} \lambda_{j} \mathbf{v}_{j}:-1 \leq \lambda_{j} \leq 1\right\}$

Main tool We define the (B, l)-Eulerian polynomials

$$
B_{l}(d, z):=\sum_{k=0}^{d} \mid\left\{(\sigma, \epsilon) \in B_{d}: \epsilon_{d} \sigma(d)=d+1-l \text { and } \operatorname{des}(\sigma, \epsilon)=k\right\} \mid z^{k}
$$

prove that they are real rooted and alternatingly increasing, and realize them as h^{*}-polynomials of half-open ± 1-cubes.

