Recent progress on graphs with smallest eigenvalue at least -3

Jack Koolen*

*School of Mathematical Sciences
University of Science and Technology of China
(Based on joint work with Akihiro Munemasa (Tohoku University), Masood Ur Rehman (USTC), Jae Young Yang (AHU) and QianQian Yang (USTC))

JCCA2018,
May 23, 2018

Outline

(9) Introduction

- Definitions
- Integral lattices
- Results of Conway and Sloane
- A lattice associated to a graph
(2) Smallest eigenvalue -2
- Smallest eigenvalue -2
- A result of Hoffman
(3) Smallest eigenvalue -3
- Main result

4 Strongly regular graphs

- Geometric SRG
- -3

Outline

(9) Introduction

- Definitions
- Integral lattices
- Results of Conway and Sloane
- A lattice associated to a graph
(2) Smallest eigenvalue -2
- Smallest eigenvalue -2
- A result of Hoffman
(3) Smallest eigenvalue -3
- Main result
(4) Strongly regular graphs
- Geometric SRG
- -3

Defintion

Graph: $G=(V, E)$ with vertex set V and edge set $E \subseteq\binom{V}{2}$.

- All graphs in this talk are undirected and simple.
- The adjacency matrix A of a graph Γ is the matrix whose rows and columns are indexed by its vertices such that $A_{x y}=1$ if $x y$ is an edge and 0 otherwise.

Defintion

Graph: $G=(V, E)$ with vertex set V and edge set $E \subseteq\binom{V}{2}$.

- All graphs in this talk are undirected and simple.
- The adjacency matrix A of a graph Γ is the matrix whose rows and columns are indexed by its vertices such that $A_{x y}=1$ if $x y$ is an edge and 0 otherwise.
- The eigenvalues of Γ are the eigenvalues of its adjacency matrix.
- In this talk, I will mainly be interested in the smallest eigenvalue of Γ, denoted by $\lambda_{\text {min }}$.

Defintion

Graph: $G=(V, E)$ with vertex set V and edge set $E \subseteq\binom{V}{2}$.

- All graphs in this talk are undirected and simple.
- The adjacency matrix A of a graph Γ is the matrix whose rows and columns are indexed by its vertices such that $A_{x y}=1$ if $x y$ is an edge and 0 otherwise.
- The eigenvalues of Γ are the eigenvalues of its adjacency matrix.
- In this talk, I will mainly be interested in the smallest eigenvalue of Γ, denoted by $\lambda_{\text {min }}$.
- First I will introduce lattices. They form an important tool for us.

Outline

(9) Introduction

- Definitions
- Integral lattices
- Results of Conway and Sloane
- A lattice associated to a graphSmallest eigenvalue - 2
- Smallest eigenvalue -2
- A result of Hoffman
(3) Smallest eigenvalue - 3
- Main result
(4) Strongly regular graphs
- Geometric SRG
- -3

Definition

- Let $U \subset R^{n}$ be a finite set.
- The lattice \wedge generated by U is the set $\left\{\sum \alpha_{u} \boldsymbol{u} \mid \boldsymbol{u} \in \boldsymbol{U}, \alpha_{\boldsymbol{u}} \in Z\right.$ for all \boldsymbol{u}. The lattice Λ is called integral if $\left\langle u_{1}, u_{2}\right\rangle$ is an integer for all $u_{1}, u_{2} \in U$.

Definition

- Let $U \subset R^{n}$ be a finite set.
- The lattice \wedge generated by U is the set $\left\{\sum \alpha_{\boldsymbol{u}} \boldsymbol{u} \mid \boldsymbol{u} \in \boldsymbol{U}, \alpha_{\boldsymbol{u}} \in Z\right.$ for all \boldsymbol{u}. The lattice Λ is called integral if $\left\langle u_{1}, u_{2}\right\rangle$ is an integer for all $u_{1}, u_{2} \in U$.
- A root lattice is an integral lattice, generated by norm 2 vectors.

Definition

- Let $U \subset R^{n}$ be a finite set.
- The lattice Λ generated by U is the set $\left\{\sum \alpha_{u} u \mid u \in U, \alpha_{u} \in Z\right.$ for all $\left.u\right\}$. The lattice Λ is called integral if $\left\langle u_{1}, u_{2}\right\rangle$ is an integer for all $u_{1}, u_{2} \in U$.
- A root lattice is an integral lattice, generated by norm 2 vectors.
- If Λ can be written as the orthogonal sum of two proper sublattices we say Λ is reducible, and otherwise it is called irreducible.

Definition

- Let $U \subset R^{n}$ be a finite set.
- The lattice Λ generated by U is the set $\left\{\sum \alpha_{u} u \mid u \in U, \alpha_{u} \in Z\right.$ for all $\left.u\right\}$. The lattice Λ is called integral if $\left\langle u_{1}, u_{2}\right\rangle$ is an integer for all $u_{1}, u_{2} \in U$.
- A root lattice is an integral lattice, generated by norm 2 vectors.
- If Λ can be written as the orthogonal sum of two proper sublattices we say Λ is reducible, and otherwise it is called irreducible.
- We say an integral lattice is s-integrable if $\sqrt{s} \wedge$ is isomorphic to a sublattice of the standard lattice.

Root Lattices

- Let e_{1}, \ldots, e_{n} the standard basis of R^{n}.

Root Lattices

- Let e_{1}, \ldots, e_{n} the standard basis of R^{n}.
- A_{n} is the root lattice generated by

$$
\left\{e_{i}-e_{j} \mid 1 \leq i, j \leq n+1, i \neq j\right\} \quad(n \geq 1)
$$

- D_{n} is the root lattice generated by $\left\{e_{i}-e_{j}, e_{i}+e_{j} \mid 1 \leq i, j \leq n\right\}$.

Root Lattices

- Let e_{1}, \ldots, e_{n} the standard basis of R^{n}.
- A_{n} is the root lattice generated by $\left\{e_{i}-e_{j} \mid 1 \leq i, j \leq n+1, i \neq j\right\} \quad(n \geq 1)$.
- D_{n} is the root lattice generated by $\left\{e_{i}-e_{j}, e_{i}+e_{j} \mid 1 \leq i, j \leq n\right\}$.

Theorem

(Witt (1941)) The only irreducible root lattices are A_{n}, D_{n} and E_{6}, E_{7}, E_{8}.

The root lattices E_{6}, E_{7} and E_{8} are 2-integrable, but can not be 1 -integrated.

$$
\begin{aligned}
& \text { A basis of } E_{8} \\
& N=\frac{1}{\sqrt{2}}\left(\begin{array}{cccccccc}
0 & 2 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 2 & 1 & 0 \\
-1 & 0 & 0 & 0 & 1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \\
-1 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

Outline

(9) Introduction

- Definitions
- Integral lattices
- Results of Conway and Sloane
- A lattice associated to a graphSmallest eigenvalue -2
- Smallest eigenvalue -2
- A result of Hoffman
(3) Smallest eigenvalue -3
- Main result
(4) Strongly regular graphs
- Geometric SRG
- -3

Results of Conway and Sloane

Definitions

Let s be a positive integer. We define $c(s)$ as the smallest positive integer t such that there exists an integral lattice Λ with $\operatorname{dim}(\Lambda)=t$, that can not be s-integrated. It is not a priori clear that this number exists.

Results of Conway and Sloane

Definitions

Let s be a positive integer. We define $c(s)$ as the smallest positive integer t such that there exists an integral lattice Λ with $\operatorname{dim}(\Lambda)=t$, that can not be s-integrated. It is not a priori clear that this number exists.

Conway and Sloane (1989) showed:

Theorem

- $c(1)=6, c(2)=12, c(3)=14$,

Results of Conway and Sloane

Definitions

Let s be a positive integer. We define $c(s)$ as the smallest positive integer t such that there exists an integral lattice Λ with $\operatorname{dim}(\Lambda)=t$, that can not be s-integrated. It is not a priori clear that this number exists.

Conway and Sloane (1989) showed:

Theorem

- $c(1)=6, c(2)=12, c(3)=14$,
- $21 \leq c(4) \leq 25,16 \leq c(5) \leq 22$,

Results of Conway and Sloane

Definitions

Let s be a positive integer. We define $c(s)$ as the smallest positive integer t such that there exists an integral lattice Λ with $\operatorname{dim}(\Lambda)=t$, that can not be s-integrated. It is not a priori clear that this number exists.

Conway and Sloane (1989) showed:

Theorem

- $c(1)=6, c(2)=12, c(3)=14$,
- $21 \leq c(4) \leq 25,16 \leq c(5) \leq 22$,
- $c(s)=O(s)$

Results of Conway and Sloane

Definitions

Let s be a positive integer. We define $c(s)$ as the smallest positive integer t such that there exists an integral lattice Λ with $\operatorname{dim}(\Lambda)=t$, that can not be s-integrated. It is not a priori clear that this number exists.

Conway and Sloane (1989) showed:

Theorem

- $c(1)=6, c(2)=12, c(3)=14$,
- $21 \leq c(4) \leq 25,16 \leq c(5) \leq 22$,
- $c(s)=O(s)$
- $c(s) \rightarrow \infty \quad(s \rightarrow \infty)$

Some Remarks

- $c(1)=6$ was shown by Ko and Mordell (1937).

Some Remarks

- $c(1)=6$ was shown by Ko and Mordell (1937).
- Lagrange theorem states that every positive integer can be written as the sum of four squares. This means that any 1-dimensional lattice is isomorphic to a sublattice of Z^{4}.

Some Remarks

- $c(1)=6$ was shown by Ko and Mordell (1937).
- Lagrange theorem states that every positive integer can be written as the sum of four squares. This means that any 1-dimensional lattice is isomorphic to a sublattice of Z^{4}.
- Conway and Sloane also generalized this result for higher dimensional lattices, i.e. they showed that you only need a few extra dimensions to make the lattice s-integrable.

Some Remarks

- $c(1)=6$ was shown by Ko and Mordell (1937).
- Lagrange theorem states that every positive integer can be written as the sum of four squares. This means that any 1-dimensional lattice is isomorphic to a sublattice of Z^{4}.
- Conway and Sloane also generalized this result for higher dimensional lattices, i.e. they showed that you only need a few extra dimensions to make the lattice s-integrable.
- The main idea of Conway and Sloane is that for any integral lattice Λ, there exists a unimodular lattice Λ^{\prime} that contains Λ as a sublattice and $\operatorname{dim}\left(\Lambda^{\prime}\right)-\operatorname{dim}(\Lambda)$ is at most three.

Some Remarks

- $c(1)=6$ was shown by Ko and Mordell (1937).
- Lagrange theorem states that every positive integer can be written as the sum of four squares. This means that any 1-dimensional lattice is isomorphic to a sublattice of Z^{4}.
- Conway and Sloane also generalized this result for higher dimensional lattices, i.e. they showed that you only need a few extra dimensions to make the lattice s-integrable.
- The main idea of Conway and Sloane is that for any integral lattice Λ, there exists a unimodular lattice Λ^{\prime} that contains Λ as a sublattice and $\operatorname{dim}\left(\Lambda^{\prime}\right)-\operatorname{dim}(\Lambda)$ is at most three.
- For an unimodular lattice one needs the same number of positions as the dimension to show its s-integrability.
- And then they classified the low dimensional unimodular lattices.

Outline

(9) Introduction

- Definitions
- Integral lattices
- Results of Conway and Sloane
- A lattice associated to a graphSmallest eigenvalue -2
- Smallest eigenvalue -2
- A result of Hoffman
(3) Smallest eigenvalue -3
- Main result
(4) Strongly regular graphs
- Geometric SRG
- -3

Definition

- Let G be a graph with smallest eigenvalue $\lambda_{\text {min }}$.
- Let A be the adjacency matrix of G.

Definition

- Let G be a graph with smallest eigenvalue $\lambda_{\text {min }}$.
- Let A be the adjacency matrix of G.
- Let $B:=A-\left\lfloor\lambda_{\text {min }}\right\rfloor I=N^{T} N$.
- Then B is positive semidefinite and hence a Gram matrix.

Definition

- Let G be a graph with smallest eigenvalue $\lambda_{\text {min }}$.
- Let A be the adjacency matrix of G.
- Let $B:=A-\left\lfloor\lambda_{\text {min }}\right\rfloor I=N^{T} N$.
- Then B is positive semidefinite and hence a Gram matrix.
- Let $\Lambda=\Lambda(G)$ be the (integral) lattice generated by the columns of N. (Note that Λ is well defined as the isomorphism class of Λ only depends on B.)

Definition

- Let G be a graph with smallest eigenvalue $\lambda_{\text {min }}$.
- Let A be the adjacency matrix of G.
- Let $B:=A-\left\lfloor\lambda_{\text {min }}\right\rfloor I=N^{T} N$.
- Then B is positive semidefinite and hence a Gram matrix.
- Let $\Lambda=\Lambda(G)$ be the (integral) lattice generated by the columns of N. (Note that Λ is well defined as the isomorphism class of Λ only depends on B.)
- We say G is s-integrable if Λ is s-integrable.

Outline

(1) Introduction

- Definitions
- Integral lattices
- Results of Conway and Sloane
- A lattice associated to a graph
(2) Smallest eigenvalue -2
- Smallest eigenvalue -2
- A result of Hoffman
(3) Smallest eigenvalue -3
- Main result
(4) Strongly regular graphs
- Geometric SRG
- -3

Smallest eigenvalue -2

Definition

We say a connected graph G with smallest eigenvalue at least -2 and adjacency matrix A is a generalized line graph if there exists an integral matrix N such that $A+2 I=N^{\top} N$.

Smallest eigenvalue -2

Definition

We say a connected graph G with smallest eigenvalue at least -2 and adjacency matrix A is a generalized line graph if there exists an integral matrix N such that $A+2 I=N^{\top} N$.

Note that if I can take N with entries only 0^{\prime} s and 1 's, then G is a line graph. So a generalized line graph is a generalization of a line graph.

The following beautiful result was shown by Cameron, Goethals, Seidel, and Shult (1976):

Theorem

Let G be a connected graph with smallest eigenvalue at least -2 . Then either G has at most 36 vertices or G is a generalized line graph.

The following beautiful result was shown by Cameron, Goethals, Seidel, and Shult (1976):

Theorem

Let G be a connected graph with smallest eigenvalue at least -2 . Then either G has at most 36 vertices or G is a generalized line graph.

We give now a sketch of proof for this result, as we will need this idea later in the talk.

Sketch of proof

- Let G be a connected graph with smallest eigenvalue at least - 2 .

Sketch of proof

- Let G be a connected graph with smallest eigenvalue at least-2.
- Then $A+2 I$ is positive semidefinite, so it is a Gram matrix $A+2 I=N^{T} N$.

Sketch of proof

- Let G be a connected graph with smallest eigenvalue at least-2.
- Then $A+2 l$ is positive semidefinite, so it is a Gram matrix $A+2 I=N^{T} N$.
- Let \wedge be the integral lattice generated by the columns of N.

Sketch of proof

- Let G be a connected graph with smallest eigenvalue at least-2.
- Then $A+2 l$ is positive semidefinite, so it is a Gram matrix $A+2 I=N^{T} N$.
- Let Λ be the integral lattice generated by the columns of N.
- Then Λ is an even lattice, generated by norm two vectors, so it is a root lattice and it is irreducible as G is connected.

Sketch of proof

- Let G be a connected graph with smallest eigenvalue at least -2.
- Then $A+2$ is positive semidefinite, so it is a Gram matrix $A+2 I=N^{\top} N$.
- Let \wedge be the integral lattice generated by the columns of N.
- Then \wedge is an even lattice, generated by norm two vectors, so it is a root lattice and it is irreducible as G is connected.
- The irreducible root lattices were classified by Witt, and are of type A_{n}, D_{n} or E_{6}, E_{7}, E_{8}.

Sketch of proof

- Let G be a connected graph with smallest eigenvalue at least -2.
- Then $A+2 /$ is positive semidefinite, so it is a Gram matrix $A+2 I=N^{\top} N$.
- Let \wedge be the integral lattice generated by the columns of N.
- Then \wedge is an even lattice, generated by norm two vectors, so it is a root lattice and it is irreducible as G is connected.
- The irreducible root lattices were classified by Witt, and are of type A_{n}, D_{n} or E_{6}, E_{7}, E_{8}.
- The first two lattices give us generalized line graphs, and for the last three lattices one can show that the number of vertices is at most 36 .

Outline

(1) Introduction

- Definitions
- Integral lattices
- Results of Conway and Sloane
- A lattice associated to a graph
(2) Smallest eigenvalue -2
- Smallest eigenvalue -2
- A result of Hoffman
(3) Smallest eigenvalue -3
- Main result
(4) Strongly regular graphs
- Geometric SRG
- -3

Smallest eigenvalue $-1-\sqrt{2}$

Hoffman (1977) showed the following result:

Theorem

Let $2 \leq \lambda<1+\sqrt{2}$. Then there is constant $K=K(\lambda)$ such that if Γ is a connected graph with minimal valency at least K and smallest eigenvalue $\lambda_{\text {min }} \geq-\lambda$, then Γ is a generalised line graph. In particular, $\lambda_{\min } \geq-2$.

- This result means that there exists a real number $\tau(k)<-2$ such that any connected graph with minimal valency at least k has smallest eigenvalue either at least -2 or at most $\tau(k)$, and $\tau(k) \rightarrow-1-\sqrt{2}(k \rightarrow \infty)$.
- Hoffman did not use the classification of irreducible root lattices, but he needed to pay the price by assuming large minimal valency.
- Hoffman did not use the classification of irreducible root lattices, but he needed to pay the price by assuming large minimal valency.
- Woo and Neumaier (1995) generalized this result by Hoffman by going slightly below $-1-\sqrt{2}$.

Rephrasing the results of Cameron et al. and Hoffman

As the generalised line graphs are exactly the graphs with smallest eigenvalue at least -2 which are 1 -integrable, we can rephrase the results of Cameron et al. and Hoffman as follows:

Theorem

Let G be a connected graph with smallest eigenvalue at least -2. Then G is 2 -integrable.

Rephrasing the results of Cameron et al. and Hoffman

As the generalised line graphs are exactly the graphs with smallest eigenvalue at least -2 which are 1 -integrable, we can rephrase the results of Cameron et al. and Hoffman as follows:

Theorem

Let G be a connected graph with smallest eigenvalue at least -2. Then G is 2 -integrable.

Theorem

Let $2 \geq \lambda<1+\sqrt{2}$. Then there is constant $K=K(\lambda)$ such that if Γ is a connected graph with minimal valency at least K and smallest eigenvalue $\lambda_{\text {min }} \geq-\lambda$, then $\lambda_{\min }(\Gamma) \geq-2$ and Γ is 1 -integrable.

Can we generalize these two results to graphs with smallest eigenvalue at least -3 ?

Can we generalize these two results to graphs with smallest eigenvalue at least -3 ? In this talk we will show a generalization of the result of Hoffman, and that to generalize the first result is probably difficult.

Outline

(1) Introduction

- Definitions
- Integral lattices
- Results of Conway and Sloane
- A lattice associated to a graph
(2) Smallest eigenvalue -2
- Smallest eigenvalue -2
- A result of Hoffman
(3) Smallest eigenvalue -3
- Main result
(4) Strongly regular graphs
- Geometric SRG
- -3

Main result

Our main result is:

Theorem

There exists a constant $K>0$ such that any connected graph G with minimal valency at least K and $\lambda_{\text {min }}$ at least -3 is 2-integrable.

Remarks

- The meaning is that a graph with large minimal valency and $\lambda_{\text {min }}$ at least -3 is still a structured graph, like a generalized line graph, but of course more complicated than a generalized line graph.

Remarks

- The meaning is that a graph with large minimal valency and $\lambda_{\text {min }}$ at least -3 is still a structured graph, like a generalized line graph, but of course more complicated than a generalized line graph.
- Adding three vertices to the srg with parameters (275, 162, 105, 81), K., Munemasa, Rehman and Yang showed that $K \geq 166$. I will come back to this later.

Remarks

- The meaning is that a graph with large minimal valency and $\lambda_{\text {min }}$ at least -3 is still a structured graph, like a generalized line graph, but of course more complicated than a generalized line graph.
- Adding three vertices to the srg with parameters (275, 162, 105, 81), K., Munemasa, Rehman and Yang showed that $K \geq 166$. I will come back to this later.
- We only know an implicit upper bound for K, but certainly our bound is far from the true value.

Remarks

- The meaning is that a graph with large minimal valency and $\lambda_{\text {min }}$ at least -3 is still a structured graph, like a generalized line graph, but of course more complicated than a generalized line graph.
- Adding three vertices to the srg with parameters (275, 162, 105, 81), K., Munemasa, Rehman and Yang showed that $K \geq 166$. I will come back to this later.
- We only know an implicit upper bound for K, but certainly our bound is far from the true value.
- We have a family of connected non 2-integrable graphs with unbounded number of vertices and smallest eigenvalue at least -3 (using the same srg as above). So this means that the result of Cameron et al. is not so easy to be generalized.

Representations

- The proof is a combination of the techniques used in the result of Cameron et al. of 1976 and the result of Hoffman of 1977 . I will only give the main idea behind the proof.

Representations

- The proof is a combination of the techniques used in the result of Cameron et al. of 1976 and the result of Hoffman of 1977 . I will only give the main idea behind the proof.
- We first need to discuss representations of graphs

Representations of graphs

- A representation of a graph G with norm m is a map $x \mapsto \bar{x}$ satisfying
- $\langle\bar{x}, \bar{x}\rangle=m$
- $\langle\bar{x}, \bar{y}\rangle=1$ if $x \sim y$ and 0 otherwise.

Representations of graphs

- A representation of a graph G with norm m is a map $x \mapsto \bar{x}$ satisfying
- $\langle\bar{x}, \bar{x}\rangle=m$
- $\langle\bar{x}, \bar{y}\rangle=1$ if $x \sim y$ and 0 otherwise.
- A representation of G is called $\mathbf{1}$-covering if there exists a set U of orthonormal vectors such that
- for all $x \in V(G)$ and all $u \in U$, the inner product $\langle\bar{x}, u\rangle \in\{0,1\}$, and
- for any $x \in V(G)$, there exists $u \in U$ such that $\langle\bar{x}, u\rangle=1$.

Main result

The following result implies our main result.

Main result

The following result implies our main result.

Theorem

There exists a positive constant K such that any connected graph G with minimal valency at least K and $\lambda_{\text {min }}$ at least -3 has a 1-covering representation of norm 3.

Main result

The following result implies our main result.

Theorem

There exists a positive constant K such that any connected graph G with minimal valency at least K and $\lambda_{\text {min }}$ at least -3 has a 1-covering representation of norm 3.

- Now we take the orthogonal projection on the orthogonal complement of subspace generated by the set U of the fat representation, to obtain the representation $x \mapsto \tilde{x}$.

Main result

The following result implies our main result.

Theorem

There exists a positive constant K such that any connected graph G with minimal valency at least K and $\lambda_{\text {min }}$ at least -3 has a 1 -covering representation of norm 3.

- Now we take the orthogonal projection on the orthogonal complement of subspace generated by the set U of the fat representation, to obtain the representation $x \mapsto \tilde{x}$.
- Note $\langle\tilde{x}, \tilde{x}\rangle \leq 2$ and $\langle\tilde{x}, \tilde{y}\rangle \in Z$.

Main result

The following result implies our main result.

Theorem

There exists a positive constant K such that any connected graph G with minimal valency at least K and $\lambda_{\text {min }}$ at least -3 has a 1 -covering representation of norm 3.

- Now we take the orthogonal projection on the orthogonal complement of subspace generated by the set U of the fat representation, to obtain the representation $x \mapsto \tilde{x}$.
- Note $\langle\tilde{x}, \tilde{x}\rangle \leq 2$ and $\langle\tilde{x}, \tilde{y}\rangle \in Z$.
- So now we are done by the classification of the root lattices and the fact that they are all 2 -integrable.

One conjecture and a question

Conjecture and Question

- There exists a positive integer s such that any connected graph with smallest eigenvalue at least -3 is s-integrable. (Maybe $s=4$?)

One conjecture and a question

Conjecture and Question

- There exists a positive integer s such that any connected graph with smallest eigenvalue at least -3 is s-integrable. (Maybe $s=4$?)
- Can we extend our result to smallest eigenvalue -4 ?

One conjecture and a question

Conjecture and Question

- There exists a positive integer s such that any connected graph with smallest eigenvalue at least -3 is s-integrable. (Maybe $s=4$?)
- Can we extend our result to smallest eigenvalue -4 ?
- Our method can not be extended to -4.

One conjecture and a question

Conjecture and Question

- There exists a positive integer s such that any connected graph with smallest eigenvalue at least -3 is s-integrable. (Maybe $s=4$?)
- Can we extend our result to smallest eigenvalue -4 ?
- Our method can not be extended to -4.
- If this is true then I believe you can easily replace -4 by any negative integer.

Strongly Regular Graphs

A graph Γ on n vertices is called strongly regular (srg) with parameters (n, k, λ, μ) if Γ is k-regular and two distinct vertices have λ resp. μ common neighbours depending whether they are adjacent or not.

A graph Γ on n vertices is called strongly regular (srg) with parameters (n, k, λ, μ) if Γ is k-regular and two distinct vertices have λ resp. μ common neighbours depending whether they are adjacent or not. We are interested the s-integrality of srg.

Outline

(1) Introduction

- Definitions
- Integral lattices
- Results of Conway and Sloane
- A lattice associated to a graph
(2) Smallest eigenvalue - 2
- Smallest eigenvalue -2
- A result of Hoffman
(3) Smallest eigenvalue -3
- Main result

4 Strongly regular graphs

- Geometric SRG
- - 3

Geometric SRG

- Recall that if Γ is SRG with smallest ev $\lambda_{\text {min }}$ then a maximal clique has order at most $1+\frac{k}{-\lambda_{\text {min }}}$ and a clique with this order is called a Delsarte clique.

Geometric SRG

- Recall that if Γ is SRG with smallest ev $\lambda_{\text {min }}$ then a maximal clique has order at most $1+\frac{k}{-\lambda_{\text {min }}}$ and a clique with this order is called a Delsarte clique.
- A SRG is called geometric if the edge set can be partitioned into Delsarte cliques.

Geometric SRG

- Recall that if Γ is SRG with smallest ev $\lambda_{\text {min }}$ then a maximal clique has order at most $1+\frac{k}{-\lambda_{\text {min }}}$ and a clique with this order is called a Delsarte clique.
- A SRG is called geometric if the edge set can be partitioned into Delsarte cliques.
- Examples of geometric SRG: $t \times t$-grid, $T(n)$, and so on.

Geometric SRG

- Recall that if Γ is SRG with smallest ev $\lambda_{\text {min }}$ then a maximal clique has order at most $1+\frac{k}{-\lambda_{\text {min }}}$ and a clique with this order is called a Delsarte clique.
- A SRG is called geometric if the edge set can be partitioned into Delsarte cliques.
- Examples of geometric SRG: $t \times t$-grid, $T(n)$, and so on.
- It is easy to see that a geometric SRG is 1-integrable.

Geometric SRG

- Recall that if Γ is SRG with smallest ev $\lambda_{\text {min }}$ then a maximal clique has order at most $1+\frac{k}{-\lambda_{\text {min }}}$ and a clique with this order is called a Delsarte clique.
- A SRG is called geometric if the edge set can be partitioned into Delsarte cliques.
- Examples of geometric SRG: $t \times t$-grid, $T(n)$, and so on.
- It is easy to see that a geometric SRG is 1-integrable.
- Also the regular complete multipartite graphs are 1-integrable.

SRG with smallest ev -2

- The square grid graphs, the triangular graphs and the Cocktail Party graphs are all 1-integrable.

SRG with smallest ev -2

- The square grid graphs, the triangular graphs and the Cocktail Party graphs are all 1-integrable.
- All other srg with smallest ev -2 are 2-integrable, but not 1-integrable.

Outline

(1) Introduction

- Definitions
- Integral lattices
- Results of Conway and Sloane
- A lattice associated to a graph
(2) Smallest eigenvalue -2
- Smallest eigenvalue -2
- A result of Hoffman
(3) Smallest eigenvalue -3
- Main result

4 Strongly regular graphs

- Geometric SRG
- -3

Some SRG with smallest ev -3

- We only consider non-geometric SRG.

Some SRG with smallest ev -3

- We only consider non-geometric SRG.
- First the complement of the Sims-Gewirtz graph, the unique srg $S G$ with parameters $(56,45,36,36)$.

Some SRG with smallest ev -3

- We only consider non-geometric SRG.
- First the complement of the Sims-Gewirtz graph, the unique srg $S G$ with parameters $(56,45,36,36)$.
- One way to construct $S G$ is to take the quasi-symmetric 2-(21, 6, 4)-design. Two distinct blocks of this design intersect in either 2 or 0 points.
- Now SG has as vertices the blocks and two are adjacent if they intersect in two points. As $\lambda_{\text {min }}(S G)=-3$, it is easily seen that $S G$ is 2 -integrable using the point-block incidence matrix.

Some SRG with smallest ev -3

- We only consider non-geometric SRG.
- First the complement of the Sims-Gewirtz graph, the unique srg $S G$ with parameters $(56,45,36,36)$.
- One way to construct $S G$ is to take the quasi-symmetric 2-(21, 6, 4)-design. Two distinct blocks of this design intersect in either 2 or 0 points.
- Now SG has as vertices the blocks and two are adjacent if they intersect in two points. As $\lambda_{\text {min }}(S G)=-3$, it is easily seen that $S G$ is 2 -integrable using the point-block incidence matrix.
- It is not so difficult to show that $S G$ is not 1 -integrable.
- The complement of the generalized quadrangle $G Q(3,9)$ is the unique strongly regular graph $\overline{G Q}$ with parameters (112, 81, 60, 54).
- It can be shown that it is not 2-integrable. We used the eigenspace of -3 to show this.
- The complement of the generalized quadrangle $G Q(3,9)$ is the unique strongly regular graph $\overline{G Q}$ with parameters (112, 81, 60, 54).
- It can be shown that it is not 2-integrable. We used the eigenspace of -3 to show this.
- $\overline{G Q}$ is the second subconstituent of the complement, McL, of the McLaughlin graph, the srg with parameters (275, 162, 105, 81).
- This is the graph we used in the first part.
- The complement of the generalized quadrangle $G Q(3,9)$ is the unique strongly regular graph $\overline{G Q}$ with parameters (112, 81, 60, 54).
- It can be shown that it is not 2-integrable. We used the eigenspace of -3 to show this.
- $\overline{G Q}$ is the second subconstituent of the complement, McL, of the McLaughlin graph, the srg with parameters (275, 162, 105, 81).
- This is the graph we used in the first part.
- Using the shortened Leech lattice, it can be shown that $M c L$ is 4-integrable.
- The complement of the generalized quadrangle $G Q(3,9)$ is the unique strongly regular graph $\overline{G Q}$ with parameters (112, 81, 60, 54).
- It can be shown that it is not 2-integrable. We used the eigenspace of -3 to show this.
- $\overline{G Q}$ is the second subconstituent of the complement, McL, of the McLaughlin graph, the srg with parameters (275, 162, 105, 81).
- This is the graph we used in the first part.
- Using the shortened Leech lattice, it can be shown that McL is 4-integrable.
- We also showed that the Hoffman-Singleton graph HS with parameters (50, 7, 0, 1) is not 2-integrable.
- The complement of the generalized quadrangle $G Q(3,9)$ is the unique strongly regular graph $\overline{G Q}$ with parameters (112, 81, 60, 54).
- It can be shown that it is not 2-integrable. We used the eigenspace of -3 to show this.
- $\overline{G Q}$ is the second subconstituent of the complement, McL, of the McLaughlin graph, the srg with parameters (275, 162, 105, 81).
- This is the graph we used in the first part.
- Using the shortened Leech lattice, it can be shown that McL is 4-integrable.
- We also showed that the Hoffman-Singleton graph HS with parameters (50, 7, 0, 1) is not 2-integrable.
- We do not know whether HS is 4-integrable.

Thank you for your attention.

