Maximizing the order of regular bipartite graphs for given valency and second eigenvalue

Hiroshi Nozaki

Aichi University of Education Joint work with S.M. Cioabă and J.H. Koolen

> JCCA 2018 Sendai International Center May 23, 2018

Known results

 $v(k,\lambda)$: the maximum possible order of a connected k-regular graph G with $\lambda_2 \leq \lambda$ (λ_2 : second eigenvalue)

Theorem 1 (Cioabă, Koolen, N. and Vermette (2016))

Let λ be the second-largest eigenvalue of matrix T(t,k,c). Then we have

$$v(k,\lambda) \le 1 + \sum_{i=0}^{t-3} k(k-1)^i + \frac{k(k-1)^{t-2}}{c}$$

Equality holds \Leftrightarrow Distance-regular graph with $g \ge 2d$. (g: girth, d + 1: # of eigen.)

For $d \ge 7$, there does not exist a distance-regular graph with $g \ge 2d$ (Damerell–Georgiadcodis (1981), Bannai–Ito (1981))

• G = (V, E): a simple k-regular graph.

• A: the adjacency matrix of G.

$$\boldsymbol{A}(u,v) = \begin{cases} 1 \text{ if } \{u,v\} \in E, \\ 0 \text{ otherwise.} \end{cases}$$

• $\lambda_1 = k > \lambda_2 > \cdots > \lambda_r$: the distinct eigenvalues of A.

Theorem 2 (Alon–Boppana, Serre)

For given k and λ with $\lambda < 2\sqrt{k-1}$, there exist finitely many k-regular graphs with $\lambda_2 \leq \lambda.$

Spectral gap

$$\partial S = \{\{u,v\} \in E \mid u \in S, v \in V \setminus S\}.$$

Edge expansion ratio:

$$h(G) = \min_{S \subset V, 1 \le |S| \le |V|/2} \frac{|\partial S|}{|S|}.$$

Theorem 3 (Cheeger inequalities, Alon and Milman (1985))

 $\tau(G)/2 \le h(G) \le \sqrt{2k\tau(G)}.$

Small λ_2 (k: fixed) \longrightarrow Large $\tau(G)$, $h(G) \longrightarrow$ High connectivity

• $v(k, \lambda)$: the maximum possible order of a connected bipartite *k*-regular graph *G* with $\lambda_2 \leq \lambda$.

Problem 4

Determine $v(k, \lambda)$, and classify the graphs meeting $v(k, \lambda)$.

Polynomials for regular bipartite graphs

$$\begin{aligned} \mathscr{F}_0(x) &= 1, \qquad \mathscr{F}_1(x) = x - k, \qquad \mathscr{F}_2(x) = x^2 - (3k - 2)x + k(k - 1) \\ \\ \mathscr{F}_i(x) &= (x - 2k + 2)\mathscr{F}_{i-1}(x) - (k - 1)^2 \mathscr{F}_{i-2}(x) (i \ge 3) \end{aligned}$$

Let \boldsymbol{B} be the biadjacency matrix of a k-regular bipartite graph.

$$\boldsymbol{A} = \begin{pmatrix} O & \boldsymbol{B} \\ \boldsymbol{B}^{\top} & O \end{pmatrix}, \boldsymbol{A}^2 = \begin{pmatrix} \boldsymbol{B}\boldsymbol{B}^{\top} & O \\ O & \boldsymbol{B}^{\top}\boldsymbol{B} \end{pmatrix}, \boldsymbol{A}^{2i} = \begin{pmatrix} (\boldsymbol{B}\boldsymbol{B}^{\top})^i & O \\ O & (\boldsymbol{B}^{\top}\boldsymbol{B})^i \end{pmatrix}$$

Each entry of $\mathscr{F}_i(\boldsymbol{B}\boldsymbol{B}^{\top})$ is non-negative.

Theorem 5 (Cioabă, Koolen, and N.)

Let G = (V, E) be a connected k-regular bipartite graph. Suppose there exists a polynomial $f(x) = \sum_{i=0}^{s} c_i \mathscr{F}_i(x)$ s.t.

• $f(k^2) > 0$, $f(\lambda^2) \le 0$ for each eigenvalue $\lambda \ne k, -k$ of G,

•
$$c_0 > 0$$
, and $c_i \ge 0$ for each $i = 1, ..., s$.

Then

$$|V| \le \frac{2f(k^2)}{c_0}.$$

New bounds for regular bipartite graphs

$$T = T(k, t, c) = \begin{pmatrix} 0 & k & & & \\ 1 & 0 & k - 1 & & \\ & \ddots & \ddots & \ddots & \\ & 1 & 0 & k - 1 & \\ & & c & 0 & k - c \\ & & & k & 0 \end{pmatrix}$$

: $t \times t$ tridiagonal matrix for $1 \le c \le k$.

Theorem 6 (Cioabă, Koolen, and N.)

Let λ be the second-largest eigenvalue of T. Then we have

$$v(k,\lambda) \le 2\left(\sum_{i=0}^{t-4} (k-1)^i + \frac{(k-1)^{t-3}}{c} + \frac{(k-1)^{t-2}}{c}\right)$$

This equality holds if and only if the graph is a bipartite distance-regular graph with the intersection matrix T(k, t, c).

Examples attaining the bound

Equality holds $\Leftrightarrow g \ge 2d - 2$ where g: girth, d + 1: # of distinct eigenvalues.

k	λ	$v(k,\lambda)$	Name
2	$2\cos(2\pi/n)$	n (even)	n -cycle C_n
k	0	2k	Complete bipartite graph $K_{k,k}$
k	$\sqrt{k-\lambda}$	$2(1+\frac{k(k-1)}{\lambda})$	Symmetric (v,k,λ) -design
$r^2 - r + 1$	r	$2(r^2+1)\times$	$pg(r^{2} - r + 1, r^{2} - r + 1, (r - 1)^{2})$
		$(r^2 - r + 1)$	
q	\sqrt{q}	$2q^2$	AG(2,q) minus a parallel class
q+1	$\sqrt{2q}$	$2\sum_{i=0}^{3}q^{i}$	GQ(q,q)
q+1	$\sqrt{3q}$	$2\sum_{i=0}^{5}q^{i}$	GH(q,q)
6	2	162	pg(6,6,2)
(q: prime power, r: power of 2)			

Theorem 7 (Cioabă, Koolen, and N.)

Suppose $k \ge 3$. There does not exist a bipartite distance-regular graph Γ with the intersection matrix T(k, d+1, c) for $d \ge 15$ and d = 11.

We use a similar manner given by Fuglister (1987) and Bannai–Ito (1981).

• m_{θ} is the multiplicity of an eigenvalue θ

 $m_{\theta} = \frac{|V|k(k-1)(\phi-4)((c-1)(k-1)\phi+(k-c)^2)}{2((k-1)\phi-k^2)[(d-1)(c-1)(k-1)\phi+d(k-c)^2+2(c-1)(k-c)]},$

where $(k-1)\phi = \theta^2$.

 Factorization of the characteristic polynomial mod prime p. Thank you.

Theorem 7 (Cioabă, Koolen, and N.)

Suppose $k \ge 3$. There does not exist a bipartite distance-regular graph Γ with the intersection matrix T(k, d+1, c) for $d \ge 15$ and d = 11.

We use a similar manner given by Fuglister (1987) and Bannai–Ito (1981).

• m_{θ} is the multiplicity of an eigenvalue θ

 $m_{\theta} = \frac{|V|k(k-1)(\phi-4)((c-1)(k-1)\phi+(k-c)^2)}{2((k-1)\phi-k^2)[(d-1)(c-1)(k-1)\phi+d(k-c)^2+2(c-1)(k-c)]},$

where $(k-1)\phi = \theta^2$.

Factorization of the characteristic polynomial mod prime p.
Thank you.