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Known results

v(k, λ): the maximum possible order of a connected k-regular
graph G with λ2 ≤ λ (λ2: second eigenvalue)

Theorem 1 (Cioabă, Koolen, N. and Vermette (2016))

Let λ be the second-largest eigenvalue of matrix T (t, k, c). Then
we have

v(k, λ) ≤ 1 +

t−3∑
i=0

k(k − 1)i +
k(k − 1)t−2

c
.

Equality holds ⇔ Distance-regular graph with g ≥ 2d.
(g: girth, d+ 1: # of eigen.)

For d ≥ 7, there does not exist a distance-regular graph with
g ≥ 2d (Damerell–Georgiadcodis (1981), Bannai–Ito (1981))
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Second-largest eigenvalue of regular graph

G = (V,E): a simple k-regular graph.

A: the adjacency matrix of G.

A(u, v) =

{
1 if {u, v} ∈ E,

0 otherwise.

λ1 = k > λ2 > · · · > λr: the distinct eigenvalues of A.

Theorem 2 (Alon–Boppana, Serre)

For given k and λ with λ < 2
√
k − 1 , there exist finitely many

k-regular graphs with λ2 ≤ λ.
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Spectral gap

Spectral gap τ(G) = k − λ2.

For ∅ ̸= S ⊂ V ,

∂S = {{u, v} ∈ E | u ∈ S, v ∈ V \ S}.

Edge expansion ratio:

h(G) = min
S⊂V,1≤|S|≤|V |/2

|∂S|
|S|

.

Theorem 3 (Cheeger inequalities, Alon and Milman (1985))

τ(G)/2 ≤ h(G) ≤
√

2kτ(G).

Small λ2 (k: fixed) −→ Large τ(G), h(G) −→ High connectivity
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Problem

v(k, λ): the maximum possible order of a connected bipartite
k-regular graph G with λ2 ≤ λ.

Problem 4

Determine v(k, λ), and classify the graphs meeting v(k, λ).
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Polynomials for regular bipartite graphs

F0(x) = 1, F1(x) = x−k, F2(x) = x2−(3k−2)x+k(k−1)

Fi(x) = (x− 2k + 2)Fi−1(x)− (k − 1)2Fi−2(x)(i ≥ 3)

Let B be the biadjacency matrix of a k-regular bipartite graph.

A =

(
O B
B⊤ O

)
,A2 =

(
BB⊤ O
O B⊤B

)
,A2i =

(
(BB⊤)i O

O (B⊤B)i

)
Each entry of Fi(BB⊤) is non-negative.

6 / 10



Linear programming bound for regular bipartite graphs

Theorem 5 (Cioabă, Koolen, and N.)

Let G = (V,E) be a connected k-regular bipartite graph. Suppose
there exists a polynomial f(x) =

∑s
i=0 ciFi(x) s.t.

f(k2) > 0, f(λ2) ≤ 0 for each eigenvalue λ ̸= k,−k of G,

c0 > 0, and ci ≥ 0 for each i = 1, . . . , s.

Then

|V | ≤ 2f(k2)

c0
.
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New bounds for regular bipartite graphs

T = T (k, t, c) =



0 k
1 0 k − 1

. . .
. . .

. . .

1 0 k − 1
c 0 k − c

k 0


: t× t tridiagonal matrix for 1 ≤ c ≤ k.

Theorem 6 (Cioabă, Koolen, and N.)

Let λ be the second-largest eigenvalue of T . Then we have

v(k, λ) ≤ 2

(
t−4∑
i=0

(k − 1)i +
(k − 1)t−3

c
+

(k − 1)t−2

c

)
.

This equality holds if and only if the graph is a bipartite
distance-regular graph with the intersection matrix T (k, t, c).
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Examples attaining the bound

Equality holds ⇔ g ≥ 2d− 2
where g: girth, d+ 1: # of distinct eigenvalues.

k λ v(k, λ) Name
2 2 cos(2π/n) n (even) n-cycle Cn

k 0 2k Complete bipartite graph Kk,k

k
√
k − λ 2(1 + k(k−1)

λ
) Symmetric (v, k, λ)-design

r2 − r + 1 r 2(r2 + 1)× pg(r2 − r + 1, r2 − r + 1, (r − 1)2)

(r2 − r + 1)
q

√
q 2q2 AG(2, q) minus a parallel class

q + 1
√
2q 2

∑3
i=0 q

i GQ(q, q)

q + 1
√
3q 2

∑5
i=0 q

i GH(q, q)
6 2 162 pg(6, 6, 2)

(q: prime power, r: power of 2)

9 / 10



Non-existence of bip. DRG with g ≥ 2d− 2 for large d

Theorem 7 (Cioabă, Koolen, and N.)

Suppose k ≥ 3. There does not exist a bipartite distance-regular
graph Γ with the intersection matrix T (k, d+ 1, c) for d ≥ 15 and
d = 11.

We use a similar manner given by Fuglister (1987) and Bannai–Ito
(1981).

mθ is the multiplicity of an eigenvalue θ

mθ =
|V |k(k − 1)

(
ϕ− 4

)(
(c− 1)(k − 1)ϕ+ (k − c)2

)
2
(
(k − 1)ϕ− k2

)
[(d− 1)(c− 1)(k − 1)ϕ+ d(k − c)2 + 2(c− 1)(k − c)]

,

where (k − 1)ϕ = θ2.

Factorization of the characteristic polynomial mod prime p.

Thank you.
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