Edge-regular graphs and regular cliques

Gary Greaves

Nanyang Technological University, Singapore

23rd May 2018

joint work with J. H. Koolen

 $\begin{array}{c} \mathsf{edge-regular} \\ \mathsf{erg}(10,6,3) \end{array}$

Gary Greaves - Edge-regular graphs and regular cliques

Let Γ be edge-regular with a regular clique. Suppose Γ is vertex-transitive and edge-transitive. Then Γ is strongly regular.

Gary Greaves — Edge-regular graphs and regular cliques

Question (Neumaier 1981)

Is every edge-regular graph with a regular clique strongly regular?

Question (Neumaier 1981)

Is every edge-regular graph with a regular clique strongly regular?

Answer (GG and Koolen 2018) No.

Question (Neumaier 1981)

Is every edge-regular graph with a regular clique strongly regular?

Answer (GG and Koolen 2018)

No. There exist infinitely many non-strongly-regular, edge-regular vertex-transitive graphs with regular cliques.

Graph	
Vertex	Neighbours
1	8 9 14 15 18 19 22 24 27 ;
2	8 9 10 16 19 20 23 25 28 ;
3	9 10 11 17 20 21 22 24 26 ;
4	10 11 12 15 18 21 23 25 27 ;
5	11 12 13 15 16 19 24 26 28 ;
6	12 13 14 16 17 20 22 25 27 ;
7	8 13 14 17 18 21 23 26 28 ;
8	1 2 7 15 17 20 22 25 26 ;
9	1 2 3 16 18 21 23 26 27 ;
10	2 3 4 15 17 19 24 27 28 ;
11	3 4 5 16 18 20 22 25 28 ;
12	4 5 6 17 19 21 22 23 26 ;
13	5 6 7 15 18 20 23 24 27 ;
14	1 6 7 16 19 21 24 25 28 ;
15	1 4 5 8 10 13 22 23 28 ;
16	2 5 6 9 11 14 22 23 24 ;
17	3 6 7 8 10 12 23 24 25 ;
18	1 4 7 9 11 13 24 25 26 ;
19	1 2 5 10 12 14 25 26 27 ;
20	2 3 6 8 11 13 26 27 28 ;
21	3 4 7 9 12 14 22 27 28 ;
22 23	1 3 6 8 11 12 15 16 21 ;
23	2 4 7 9 12 13 15 16 17 ;
24	1 3 5 10 13 14 16 17 18 ; 2 4 6 8 11 14 17 18 19 ;
25	3 5 7 8 9 12 18 19 20 ;
20	1 4 6 9 10 13 19 20 21 ;
28	2 5 7 10 11 14 15 20 21 ;

Cayley graphs

- ▶ Let G be an (additive) group and $S \subseteq G$ a (symmetric) generating subset, i.e., $s \in S \implies -s \in S$ and $G = \langle S \rangle$.
- ► The Cayley graph Cay(G, S) has vertex set G and edge set

$$\left\{ \left\{ g,g+s\right\} :g\in G\text{ and }s\in S\right\} .$$

Example

An example $ightarrow \Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$

Generating set S

$$\Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$$

Γ is edge-regular (28,9,2):

Generating set ${\cal S}$

$$\begin{array}{ll} (01,0) & (01,\pm 1) \\ (10,0) & (10,\pm 2) \\ (11,0) & (11,\pm 3) \end{array}$$

$$\Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$$

Γ is edge-regular (28, 9, 2):

Generating set S

 $\begin{array}{ll} (01,0) & (01,\pm 1) \\ (10,0) & (10,\pm 2) \\ (11,0) & (11,\pm 3) \end{array}$

(00, 0)

•
$$\Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$$

Γ is edge-regular (28,9,2);

• Γ has a 1-regular 4-clique:

$$\bullet \ \Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$$

Γ is edge-regular (28,9,2);

• Γ has a 1-regular 4-clique:

$$\bullet \ \Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$$

Γ is edge-regular (28,9,2);

Γ has a 1-regular 4-clique:

$$(a,b)$$
 $b \neq 0$

$$\bullet \ \Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$$

Γ is edge-regular (28,9,2);

Γ has a 1-regular 4-clique:

- $\blacktriangleright \ \Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$
- Γ is edge-regular (28,9,2);
- Γ has a 1-regular 4-clique;
- Γ is not strongly regular:

Generating set S

$$\begin{array}{ccc} (01,0) & (01,\pm 1) \\ (10,0) & (10,\pm 2) \\ (11,0) & (11,\pm 3) \end{array}$$

$$\bullet \ \Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$$

- Γ is edge-regular (28,9,2);
- Γ has a 1-regular 4-clique;

Generating set S

Γ is not strongly regular:

$$(00,0) \qquad \begin{array}{c} (01,0) & (11,0) \\ (01,0) & (01,1) \\ (11,3) & (10,0) \\ (10,-2) & (01,-1) \\ (11,-3) & (10,2) \end{array}$$

$$\bullet \ \Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$$

- Γ is edge-regular (28,9,2);
- Γ has a 1-regular 4-clique;

Generating set S

Γ is not strongly regular:

- $\blacktriangleright \ \Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$
- Γ is edge-regular (28,9,2);
- Γ has a 1-regular 4-clique;

Generating set S

Γ is not strongly regular:

- $\blacktriangleright \ \Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$
- Γ is edge-regular (28,9,2);
- Γ has a 1-regular 4-clique;

Generating set S

Γ is not strongly regular:

General construction

- Generalise: $\mathbb{Z}_2^2 \oplus \mathbb{Z}_7$ to $\mathbb{Z}_{(c+1)/2} \oplus \mathbb{Z}_2^2 \oplus \mathbb{F}_q$.
- Works for q ≡ 1 (mod 6) such that the 3rd cyclotomic number c = c_q³(1, 2) is odd.
- ► Then there exists an erg(2(c+1)q, 2c+q, 2c) having a 1-regular clique of order 2c + 2.
- ▶ Take $p \equiv 1 \pmod{3}$ a prime s.t. $2 \not\equiv x^3 \pmod{p}$. Then there exist *a* such that $c_{p^a}^3(1,2)$ is odd.

Examples in the wild

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

Том 11, стр. 268-310 (2014)

УДК 519.17 MSC 05C

КЭЛИ-ДЕЗА ГРАФЫ, ИМЕЮЩИЕ МЕНЕЕ 60 ВЕРШИН

С.В. ГОРЯИНОВ, Л.В. ШАЛАГИНОВ

ABSTRACT. Deza graph, which is the Cayley graph is called the Cayley-Deza graph. The paper describes all non-isomorphic Cayley-Deza graphs of diameter 2 having less than 60 vertices.

Keywords: Deza graph, Cayley graph, graph isomorphism, automorphism group.

1. Введение

В этой статье мы начинаем изучение графов Деза, которые ныляются графами Кэли. Графы Деза принято рассматривать как обобщение сильно ретулярных графов. В ряде исследований было выженею, что графы Деза наследуют некоторые свойства сильно регулярных графов. Например, в [1] показано, что вершинная связность графа Деза, полученного из салью регулярного графа с помощью инволюции, совладает с валетностью.

Four erg(24, 8, 2) graphs with a 1-regular clique

Open problems

• Find general construction that includes erg(24, 8, 2)

 Smallest non-strongly-regular, edge-regular graph with regular clique (Neumaier graph)

All known examples have 1-regular cliques

Open Closed problems

- ▶ Find general construction that includes erg(24, 8, 2)
 - GG and Koolen (2018+): New infinite construction *a*-antipodal erg(v, k, λ) to erg(v(λ + 2)/a, k + λ + 1, λ).
- Smallest non-strongly-regular, edge-regular graph with regular clique (Neumaier graph)
 - ▶ Evans and Goryainov (2018+): Smallest is erg(16,9,4)
- All known examples have 1-regular cliques
 - ► Evans and Goryainov (2018+): 2-regular cliques

Problems

- ▶ Find general construction that includes erg(24, 8, 2)
 - ► GG and Koolen (2018+): New infinite construction *a*-antipodal $erg(v, k, \lambda)$ to $erg(v(\lambda + 2)/a, k + \lambda + 1, \lambda)$.
- Smallest non-strongly-regular, edge-regular graph with regular clique (Neumaier graph)
 - ▶ Evans and Goryainov (2018+): Smallest is erg(16,9,4)
- All known examples have 1-regular cliques
 - ► Evans and Goryainov (2018+): 2-regular cliques
- ▶ \exists Neumaier graphs with 3-regular cliques?

Problems

- ▶ Find general construction that includes erg(24, 8, 2)
 - GG and Koolen (2018+): New infinite construction *a*-antipodal erg(v, k, λ) to erg(v(λ + 2)/a, k + λ + 1, λ).
- Smallest non-strongly-regular, edge-regular graph with regular clique (Neumaier graph)
 - ▶ Evans and Goryainov (2018+): Smallest is erg(16,9,4)
- All known examples have 1-regular cliques
 - ► Evans and Goryainov (2018+): 2-regular cliques
- ▶ \exists Neumaier graphs with 3-regular cliques?
- ▶ \exists Neumaier graphs with diameter ≥ 3 ?

Thank you for your attention

Further reading:

G. R. W. Greaves and J. H. Koolen, *Edge-regular graphs with regular cliques*, European J. Combin. **71** (2018), pp. 194–201.