Edge-regular graphs and regular cliques

Gary Greaves

Nanyang Technological University, Singapore

$$
\text { 23rd May } 2018
$$

joint work with J. H. Koolen

Gary Greaves - Edge-regular graphs and regular cliques

Gary Greaves - Edge-regular graphs and regular cliques

Gary Greaves - Edge-regular graphs and regular cliques

$k=6$

$k=6$

$k=6$

$k=6$

$k=6$

$k=6$

$k=6$

$\lambda=3$

$k=6$

$\lambda=3$

edge-regular $\operatorname{erg}(10,6,3)$

edge-regular $\operatorname{erg}(10,6,3)$

clique
of order 4

clique of order 4

clique
of order 4

clique
of order 4

clique
of order 4

edge-regular erg(10,6,3)

clique
of order 4

clique
of order 4

edge-regular $\operatorname{erg}(10,6,3)$

2-regular clique of order 4

Theorem (Neumaier 1981)

Let Γ be edge-regular with a regular clique. Suppose Γ is vertex-transitive and edge-transitive. Then Γ is strongly regular.

Theorem (Neumaier 1981)

Let Γ be edge-regular with a regular clique.
Suppose Γ is vertex-transitive and edge-transitive.
Then Γ is strongly regular.

Theorem (Neumaier 1981)

Let Γ be edge-regular with a regular clique.
Suppose Γ is vertex-transitive and edge-transitive.
Then Γ is strongly regular.

Theorem (Neumaier 1981)

Let Γ be edge-regular with a regular clique.
Suppose Γ is vertex-transitive and edge-transitive.
Then Γ is strongly regular.

Theorem (Neumaier 1981)

Let Γ be edge-regular with a regular clique.
Suppose Γ is vertex-transitive and edge-transitive.
Then Γ is strongly regular.

Theorem (Neumaier 1981)

Let Γ be edge-regular with a regular clique.
Suppose Γ is vertex-transitive and edge-transitive.
Then Γ is strongly regular.

Theorem (Neumaier 1981)

Let Γ be edge-regular with a regular clique.
Suppose Γ is vertex-transitive and edge-transitive.
Then Γ is strongly regular.

Theorem (Neumaier 1981)

Let Γ be edge-regular with a regular clique.
Suppose Γ is vertex-transitive and edge-transitive.
Then Γ is strongly regular.

Theorem (Neumaier 1981)

Let Γ be edge-regular with a regular clique.
Suppose Γ is vertex-transitive and edge-transitive.
Then Γ is strongly regular.

Theorem (Neumaier 1981)

Let Γ be edge-regular with a regular clique.
Suppose Γ is vertex-transitive and edge-transitive.
Then Γ is strongly regular.

strongly regular $\operatorname{srg}(10,6,3,4)$

Question (Neumaier 1981)
 Is every edge-regular graph with a regular clique strongly regular?

Question (Neumaier 1981)
 Is every edge-regular graph with a regular clique strongly regular?

Answer (GG and Koolen 2018)
No.

Question (Neumaier 1981)
Is every edge-regular graph with a regular clique strongly regular?

Answer (GG and Koolen 2018)
No. There exist infinitely many non-strongly-regular, edge-regular vertex-transitive graphs with regular cliques.

An example

```
-)
ii Gary - magma.exe • magma - 94×34
Graph
Vertex Neighbours
    8
    8}99101016 19 20 23 25 28,
    9}101011117 20 21 22 24 26 ; 
    10
    11}121213 15 16 19 24 26 28;
    12}131314 16 17 17 20 22 25 27 ;
    8}1314141718 181 23 26 28 ; 
    1
    11 2 3 16 18 21 23 26 27 ;
    2
    3}445151618 20 22 25 28 ;
    4 5 5 6 17 19 19 21 22 23 26 ;
    5
    1 6
    1445 8 10 13 22 23 28 ;
    2}55\mp@code{6}9911114 22 23 24;
    3 6 7 8 10 12 23 24 25 ;
    1447 9 111 13 24 25 26 ;
    1 2 5 10 12 14 25 26 27 ;
    2 3
    3 4 7 7 9 12 14 22 27 28 ;
    1
    2 4 7 9 12 13 15 16 17 ;
    1
    2 4 6 8 111 14 17 18 19 ;
    3}55%78%12 12 18 19 20;
    1446 9 10 13 19 20 21 ;
    2}
```


Cayley graphs

- Let G be an (additive) group and $S \subseteq G$ a (symmetric) generating subset, i.e., $s \in S \Longrightarrow-s \in S$ and $G=\langle S\rangle$.
- The Cayley graph $\operatorname{Cay}(G, S)$ has vertex set G and edge set

$$
\{\{g, g+s\}: g \in G \text { and } s \in S\} .
$$

Example

$$
\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{5}, S\right) \quad \text { Generating set } S=\{-1,1\}
$$

An example

- $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}, S\right)$

Generating set S
$(01,0) \quad(01, \pm 1)$
$(10,0)$
$(10, \pm 2)$
$(11,0) \quad(11, \pm 3)$

An example

- $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}, S\right)$
- Γ is edge-regular $(28,9,2)$:

Generating set S

$(01,0) \quad(01, \pm 1)$
$(10,0) \quad(10, \pm 2)$
$(11,0) \quad(11, \pm 3)$

An example

- $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}, S\right)$
- Γ is edge-regular $(28,9,2)$:

Generating set S

$(01,0) \quad(01, \pm 1)$
$(10,0) \quad(10, \pm 2)$
$(11,0) \quad(11, \pm 3)$
$(00,0)$

An example

- $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}, S\right)$
- Γ is edge-regular $(28,9,2)$:

Generating set S

$(01,0) \quad(01, \pm 1)$
$(10,0) \quad(10, \pm 2)$
$(11,0) \quad(11, \pm 3)$

$(00,0) \longrightarrow$| $(01,0)$ | $(10,0)$ | $(11,0)$ |
| :---: | :---: | :---: |
| $(01,1)$ | $(11,3)$ | $(10,2)$ |
| $(10,-2)$ | | $(01,-1)$ |

An example

- $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}, S\right)$
- Γ is edge-regular $(28,9,2)$:

Generating set S

$(01,0) \quad(01, \pm 1)$
$(10,0) \quad(10, \pm 2)$
$(11,0) \quad(11, \pm 3)$

An example

- $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}, S\right)$
- Γ is edge-regular (28,9,2);
- Γ has a 1-regular 4-clique:

Generating set S
$(01,0) \quad(01, \pm 1)$
$(10,0) \quad(10, \pm 2)$
$(11,0) \quad(11, \pm 3)$

An example

- $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}, S\right)$
- Γ is edge-regular $(28,9,2)$;

Generating set S

$(01,0)$
$(01, \pm 1)$
$(10,0) \quad(10, \pm 2)$
$(11,0) \quad(11, \pm 3)$

- Γ has a 1-regular 4-clique:

An example

- $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}, S\right)$
- Γ is edge-regular $(28,9,2)$;

Generating set S

$(01,0)$
$(01, \pm 1)$
$(10,0) \quad(10, \pm 2)$
$(11,0) \quad(11, \pm 3)$

- Γ has a 1-regular 4-clique:

$$
(a, b) \quad b \neq 0
$$

An example

- $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}, S\right)$
- Γ is edge-regular $(28,9,2)$;

Generating set S

$(01,0)$
$(01, \pm 1)$
$(10,0) \quad(10, \pm 2)$
$(11,0) \quad(11, \pm 3)$

- Γ has a 1-regular 4-clique:

An example

- $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}, S\right)$
- Γ is edge-regular (28,9,2);
- Γ has a 1-regular 4-clique;

Generating set S

$(01,0) \quad(01, \pm 1)$
$(10,0) \quad(10, \pm 2)$
$(11,0) \quad(11, \pm 3)$

- Γ is not strongly regular:

An example

- $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}, S\right)$
- Γ is edge-regular ($28,9,2$);
- Γ has a 1-regular 4-clique;

Generating set S

$(01,0)$
$(01, \pm 1)$
$(10,0) \quad(10, \pm 2)$
$(11,0) \quad(11, \pm 3)$

- Γ is not strongly regular:

An example

- $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}, S\right)$
- Γ is edge-regular ($28,9,2$);
- Γ has a 1-regular 4-clique;

Generating set S

$(01,0)$
$(01, \pm 1)$
$(10,0) \quad(10, \pm 2)$
$(11,0) \quad(11, \pm 3)$

- Γ is not strongly regular:

An example

- $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}, S\right)$
- Γ is edge-regular ($28,9,2$);
- Γ has a 1-regular 4-clique;

Generating set S

$(01,0)$
$(01, \pm 1)$
$(10,0) \quad(10, \pm 2)$
$(11,0) \quad(11, \pm 3)$

- Γ is not strongly regular:

An example

- $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}, S\right)$
- Γ is edge-regular ($28,9,2$);
- Γ has a 1-regular 4-clique;

Generating set S

$(01,0)$
$(01, \pm 1)$
$(10,0) \quad(10, \pm 2)$
$(11,0) \quad(11, \pm 3)$

- Γ is not strongly regular:

General construction

- Generalise: $\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}$ to $\mathbb{Z}_{(c+1) / 2} \oplus \mathbb{Z}_{2}^{2} \oplus \mathbb{F}_{q}$.
- Works for $q \equiv 1(\bmod 6)$ such that the 3rd cyclotomic number $c=c_{q}^{3}(1,2)$ is odd.
- Then there exists an $\operatorname{erg}(2(c+1) q, 2 c+q, 2 c)$ having a 1 -regular clique of order $2 c+2$.
- Take $p \equiv 1(\bmod 3)$ a prime s.t. $2 \not \equiv x^{3}(\bmod p)$. Then there exist a such that $c_{p^{a}}^{3}(1,2)$ is odd.

Examples in the wild

Siberian Electronic Mathematical Reports

> http://semr.math.nsc.ru

Том 11, cmp. 268-310 (2014)
УДК 519.17
MSC 05C

КЭЛИ-ДЕЗА ГРАФЫ, ИМЕЮЩИЕ МЕНЕЕ 60 ВЕРШИН

С.В. ГОРЯИНОВ, Л.В. ШАЛАГИНОВ

Abstract

Deza graph, which is the Cayley graph is called the CayleyDeza graph. The paper describes all non-isomorphic Cayley-Deza graphs of diameter 2 having less than 60 vertices.

Keywords: Deza graph, Cayley graph, graph isomorphism, automorphism group.

1. ВВЕДЕНиЕ

В этой статье мы начинаем изучение графов Деза, которые являются графами Кэли. Графы Деза принято рассматривать как обобпение сильно регулярных графов. В ряде исследований было выяснено, что графы Деза наследуют некоторые свойства сильно регулярных графов. Например, в [1] показано, что вершинная связность графа Деза, полученного из сильно регулярного графа с помощью инволюции, совнадает с валетностью.

Four $\operatorname{erg}(24,8,2)$ graphs with a 1-regular clique

Open problems

- Find general construction that includes $\operatorname{erg}(24,8,2)$
- Smallest non-strongly-regular, edge-regular graph with regular clique (Neumaier graph)
- All known examples have 1-regular cliques

Open Closed problems

- Find general construction that includes $\operatorname{erg}(24,8,2)$
- GG and Koolen (2018+): New infinite construction a-antipodal $\operatorname{erg}(v, k, \lambda)$ to $\operatorname{erg}(v(\lambda+2) / a, k+\lambda+1, \lambda)$.
- Smallest non-strongly-regular, edge-regular graph with regular clique (Neumaier graph)
- Evans and Goryainov (2018+): Smallest is $\operatorname{erg}(16,9,4)$
- All known examples have 1-regular cliques
- Evans and Goryainov (2018+): 2-regular cliques

Problems

- Find general construction that includes $\operatorname{erg}(24,8,2)$
- GG and Koolen (2018+): New infinite construction a-antipodal $\operatorname{erg}(v, k, \lambda)$ to $\operatorname{erg}(v(\lambda+2) / a, k+\lambda+1, \lambda)$.
- Smallest non-strongly-regular, edge-regular graph with regular clique (Neumaier graph)
- Evans and Goryainov (2018+): Smallest is $\operatorname{erg}(16,9,4)$
- All known examples have 1-regular cliques
- Evans and Goryainov (2018+): 2-regular cliques
- \exists Neumaier graphs with 3-regular cliques?

Problems

- Find general construction that includes $\operatorname{erg}(24,8,2)$
- GG and Koolen (2018+): New infinite construction a-antipodal $\operatorname{erg}(v, k, \lambda)$ to $\operatorname{erg}(v(\lambda+2) / a, k+\lambda+1, \lambda)$.
- Smallest non-strongly-regular, edge-regular graph with regular clique (Neumaier graph)
- Evans and Goryainov (2018+): Smallest is $\operatorname{erg}(16,9,4)$
- All known examples have 1-regular cliques
- Evans and Goryainov (2018+): 2-regular cliques
- \exists Neumaier graphs with 3-regular cliques?
- \exists Neumaier graphs with diameter $\geqslant 3$?

Thank you for your attention

Further reading:

G. R. W. Greaves and J. H. Koolen, Edge-regular graphs with regular cliques, European J. Combin. 71 (2018), pp. 194-201.

