Regular unimodular triangulations of dilated empty simplices and Gröbner basis

Akihiro Higashitani

JCCA2018
Sendai International Center
May 20-24, 2018

This talk is based on the joint work with Takayuki Hibi and Koutarou Yoshida.

Lattice polytopes and h^{*}-vectors

$P \subset \mathbb{R}^{d}$: lattice polytope \Longleftrightarrow a convex polytope each of whose vertices belongs to \mathbb{Z}^{d}
Consider the Ehrhart series:

$$
\sum_{n \geq 0}\left|n P \cap \mathbb{Z}^{d}\right| t^{n}=\frac{h_{P}^{*}(t)}{(1-t)^{d+1}}
$$

where $h_{P}^{*}(t)$ is a polynomial in t of degree at most d. We call $h_{P}^{*}(t)$ the h^{*}-polynomial of P.

Ex

$$
\sum_{n \geq 0}\left|n P \cap \mathbb{Z}^{3}\right| t^{n}=\frac{1+t}{(1-t)^{4}}
$$

Empty simplices $P \subset \mathbb{R}^{d}$: lattice polytope with $h_{P}^{*}(t)=1+h_{1}^{*} t+\cdots \cdots$.
$P \subset \mathbb{R}^{d}$: empty simplex \Longleftrightarrow a lattice simplex with $P \cap \mathbb{Z}^{d}=\{$ vertices of $P\}$

$$
\Longleftrightarrow h_{1}^{*}=0
$$

Remark

- 2 -dim empty simplex $\Longleftrightarrow \operatorname{conv}((0,0),(1,0),(0,1))$
- 3 -dim empty simplex $\Longleftrightarrow \operatorname{conv}((0,0,0),(1,0,0),(0,0,1),(p, q, 1))$, where p and q are coprime (White (1964)).
- 4-dim empty simplex : Fransisco Santos' talk! (very recent result)
- ≥ 5-dim empty simplex : OPEN (I guess)

For a 3-dim lattice polytope P, we know that

$$
P: \text { empty simplex } \Longleftrightarrow h_{P}^{*}(t)=1+(m-1) t^{2}\left(m \in \mathbb{Z}_{\geq 1}\right) .
$$

On the other hand,

Theorem (Batyrev-Hofscheier, 2010)

$d=2 k-1\left(k \in \mathbb{Z}_{\geq 2}\right)$
$P \subset \mathbb{R}^{d}$ is an empty simplex of $\operatorname{dim} d$ with $h_{P}^{*}(t)=1+(m-1) t^{k}\left(m \in \mathbb{Z}_{\geq 2}\right)$
$\Longleftrightarrow P \cong \operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1}, \ldots, \mathbf{e}_{d-1}, \sum_{i=1}^{k-1} a_{i} \mathbf{e}_{i}+\sum_{j=k}^{d-1}\left(m-a_{d-j}\right) \mathbf{e}_{j}+m \mathbf{e}_{d}\right)$,
where $a_{1}, \ldots, a_{k-1} \in \mathbb{Z}_{>0}$ with $1 \leq a_{i} \leq m / 2$ and $\operatorname{gcd}\left(a_{i}, m\right)=1$ ($\left.\forall i\right)$

Ex $d=3: \operatorname{conv}\left((0,0,0),(1,0,0),(0,1,0),\left(a_{1}, m-a_{1}, m\right)\right)$
$d=5: \operatorname{conv}\left(\mathbf{0},(1,0,0,0,0), \ldots,(0,0,0,1,0),\left(a_{1}, a_{2}, m-a_{2}, m-a_{1}, m\right)\right)$

IDP and Unimodular Triangulation

$P \subset \mathbb{R}^{d}$: a lattice polytope

- We say that P has integer decomposition property (IDP) if for any $n \in \mathbb{Z}_{>0}$ and
$\gamma \in n P \cap \mathbb{Z}^{d}$, there exist $\gamma^{(1)}, \ldots, \gamma^{(n)} \in P \cap \mathbb{Z}^{d}$ such that $\gamma=\gamma^{(1)}+\cdots+\gamma^{(n)}$.
- We say that a triangulation (covering) Δ of P is unimodullar if $h_{\sigma}^{*}(t)=1$ for $\forall \sigma \in \Delta$.
regular unimodular tri. \Rightarrow unimodular tri. \Rightarrow unimodular covering \Rightarrow IDP
(NOTE: Regular triangulation means the triangulation is obtain by "pulling".)

Motivation

OUR GOAL

We want to know the existence of unimodular triangulation of dilations of

$$
\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1}, \ldots, \mathbf{e}_{d-1}, \sum_{i=1}^{k-1} a_{i} \mathbf{e}_{i}+\sum_{j=k}^{d-1}\left(m-a_{d-j}\right) \mathbf{e}_{j}+m \mathbf{e}_{d}\right)
$$

For a lattice polytope $P \subset \mathbb{R}^{d}$ of dim d, the following facts are known:

- $n P$ has IDP for any $n \geq d-1$ (Bruns-Gubeladze-Trung (1997)).
- There exists a constant n_{0} such that $n P$ has a unimodular covering for any $n \geq n_{0}$ (BGT (1997)).
- There exists a constant c such that $c P$ has a unimodular triangulation.

However, the existence of a constant n_{0} satisfying the following is widely open:
" $n P$ has a unimodular triangulation for any $n \geq n_{0}$ "

On the other hand,

Theorem (Santos-Ziegler, 2014)

$P:$ 3-dim lattice polytope
$\Longrightarrow n P$ has a unimodular triangulation for any $n \geq 6$.

The key of the proof of this theorem is the existence of regular unimodular triangulation for dilated empty 3-simplices.
\longrightarrow For the higher-dimesional version of Santos-Ziegler's theorem, the existence of (regular) unimodular triangulations of "dilated empty simplices" might be crucial.
\longrightarrow How about Batyrev-Hofscheier's empty simplices?

Given $k, m \in \mathbb{Z}_{\geq 2}$ and $a_{1}, \ldots, a_{k-1} \in \mathbb{Z}_{\geq 1}$ with $\operatorname{gcd}\left(a_{i}, m\right)=1 \forall i$, let

$$
\begin{aligned}
& P\left(a_{1}, \ldots, a_{k-1}, m\right)= \\
& \operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1}, \ldots, \mathbf{e}_{d-1}, \sum_{i=1}^{k-1} a_{i} \mathbf{e}_{i}+\sum_{j=k}^{d-1}\left(m-a_{d-j}\right) \mathbf{e}_{j}+m \mathbf{e}_{d}\right)
\end{aligned}
$$

Given k, m, a_{i}, we have

$$
n P\left(a_{1}, \ldots, a_{k-1}, m\right) \text { has IDP } \Longleftrightarrow n \geq k
$$

Remark This result is independent of a_{i}.

Main Theorem

Given k, m, a_{i}, we have
$k P\left(a_{1}, \ldots, a_{k-1}, m\right)$ has a regular unimodular triangulation $\Longleftrightarrow a_{1}=\cdots=a_{k-1}=1$

Remark This is a generalization of (a part of) Santos-Ziegler's lemma.

How can we prove?? \longrightarrow Using Göbner basis!!

How to apply Gröbner basis? (We need some algebraic setting.)

K : a field
$K\left[t_{1}^{ \pm}, \ldots, t_{d}^{ \pm}, s\right]$: the Laurent polynomial ring with $(d+1)$ variables
For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{Z}^{d}$,
we associate the Laurent monomial $u_{\alpha}=t_{1}^{\alpha_{1}} \cdots t_{d}^{\alpha_{d}} \in K\left[t_{1}^{ \pm}, \ldots, t_{d}^{ \pm}, s\right]$,
$P \subset \mathbb{R}^{d}:$ a lattice polytope with $P \cap \mathbb{Z}^{d}=\left\{v_{1}, \ldots, v_{m}\right\}$
The toric riing of P is defined by $K[P]=K\left[u_{\alpha} s: \alpha \in P \cap \mathbb{Z}^{d}\right]$.
$S=K\left[x_{1}, \ldots, x_{m}\right]:$ polynomial ring with $\left|P \cap \mathbb{Z}^{d}\right|$ variables

Consider the surjective homomorphism $\pi: S \rightarrow K[P]$ by setting $\pi\left(x_{i}\right)=u_{v_{i}} s$.
$I=\operatorname{ker} \pi:$ the toric ideal of P
$<$: a monomial order on $S=K\left[x_{1}, \ldots, x_{m}\right] \quad$ in $_{<}(f)$: initial monomial of $f \in S$ $g_{1}, \ldots, g_{\ell} \in I \subset S:$ a system of generators of I

We say that g_{1}, \ldots, g_{ℓ} is a Gröbner basis of I with respect to $<$
$\Longleftrightarrow \operatorname{in}_{<}(I)=\left(\operatorname{in}_{<}\left(g_{1}\right), \ldots, \operatorname{in}_{<}\left(g_{\ell}\right)\right)$, where $\mathrm{in}_{<}(I)=\left(\operatorname{in}_{<}(f): f \in I\right)$.

Ex

$\pi: K\left[x_{1}, \ldots, x_{5}\right] \rightarrow K\left[s, t_{1} s, t_{2} s, t_{1} t_{2} s, t_{3} s\right] \quad I=\left(x_{1} x_{4}-x_{2} x_{3}\right):$ toric ideal of P $x_{1} x_{4}-x_{2} x_{3}$ is a Gröbner basis of I (w.r.t. any monomial order)

We say that a Göbner basis g_{1}, \ldots, g_{ℓ} of I w.r.t. $<$ is squarefree if $\mathrm{in}_{<}\left(g_{i}\right)$ is squarefree. Theorem(Sturméls)
$P \subset \mathbb{R}^{d}$: lattice polytope $\quad I_{P}$: toric ideal of P
P has a regular unimodular triangulation $\Longleftrightarrow I_{P}$ has a squarefree Gröbner basis

Strategy of Proof of Main Theorem

$\underline{\left.\underline{k P(} a_{1}, \ldots, a_{k-1}, m\right) \text { has a reg. uni. tri. } \Longrightarrow a_{1}=\cdots=a_{k-1}=1}$
Prove the non-existence of $<$ such that $I_{k P\left(a_{1}, \ldots, a_{k-1}, m\right)}$ has a squarefree Göbner basis if $\left(a_{1}, \ldots, a_{k-1}\right) \neq(1, \ldots, 1)$.
$a_{1}=\cdots=a_{k-1}=1 \Longrightarrow k P\left(a_{1}, \ldots, a_{k-1}, m\right)$ has a reg. uni. tri.
Construct a monomial order $<$ such that $I_{k P(1, \ldots, 1, m)}$ has a squarefree Göbner basis.

ありがとうございます。

