Relative t-designs on one shell of Johnson association schemes

Yan Zhu (朱艳)
Shanghai University
Joint with Eiichi Bannai

May 21, 2018
JCCA 2018 @ Sendai

Johnson association scheme and its shell

For positive integers v, k with $v \geq 2 k$, let $V=\{1,2, \cdots, v\}$ and $X=\binom{v}{k}$. Define

$$
R_{r}=\{(x, y) \in X \times X:|x \cap y|=k-r\} .
$$

Then $J(v, k)=\left(X,\left\{R_{r}\right\}_{r=0}^{k}\right)$ is Johnson association scheme.

Johnson association scheme and its shell

For positive integers v, k with $v \geq 2 k$, let $V=\{1,2, \cdots, v\}$ and $X=\binom{v}{k}$. Define

$$
R_{r}=\{(x, y) \in X \times X:|x \cap y|=k-r\} .
$$

Then $J(v, k)=\left(X,\left\{R_{r}\right\}_{r=0}^{k}\right)$ is Johnson association scheme.

For a fixed point $u_{0}=\{1,2, \cdots, k\}$, define $X_{r}:=\left\{x:\left|x \cap u_{0}\right|=k-r\right\}$.

Johnson association scheme and its shell

For positive integers v, k with $v \geq 2 k$, let $V=\{1,2, \cdots, v\}$ and $X=\binom{v}{k}$. Define

$$
R_{r}=\{(x, y) \in X \times X:|x \cap y|=k-r\} .
$$

Then $J(v, k)=\left(X,\left\{R_{r}\right\}_{r=0}^{k}\right)$ is Johnson association scheme.

For a fixed point $u_{0}=\{1,2, \cdots, k\}$, define $X_{r}:=\left\{x:\left|x \cap u_{0}\right|=k-r\right\}$.
(Y, w) is a weighted subset of X on p shells $X_{r_{1}} \cup \cdots \cup X_{r_{p}}$ if
$1 Y \subset X$.
(2 $w: Y \rightarrow \mathbb{R}_{>0}$.
$3\left\{r_{1}, \ldots, r_{p}\right\}=\left\{r \mid Y \cap X_{r} \neq \emptyset\right\}$.

Block designs

A $t-(v, k, \lambda)$ design, or t-design in $J(v, k)$ consists of sets of

- points: V with $|V|=v$,
- blocks: non-empty subset \mathcal{B} of $\binom{V}{k}$, so that for every $T \in\binom{v}{t}$,

$$
\#\{B \in \mathcal{B}: T \subseteq B\}=\lambda>0
$$

Block designs

A $t-(v, k, \lambda)$ design, or t-design in $J(v, k)$ consists of sets of

- points: V with $\mid V=v$,
- blocks: non-empty subset \mathcal{B} of $\binom{V}{k}$, so that for every $T \in\binom{V}{t}$,

$$
\#\{B \in \mathcal{B}: T \subseteq B\}=\lambda>0
$$

- $w: \mathcal{B} \rightarrow \mathbb{R}_{>0}$.
- Replace $\binom{V}{k}$ by $\binom{V}{k_{1}} \cup\binom{V}{k_{2}} \cdots \cup\binom{V}{k_{p}}$.
(V, \mathcal{B}, w) is called a weighted regular t-wise balanced design if

$$
\sum_{B \in \mathcal{B}, T \subseteq B} w(B)=\lambda>0 .
$$

Block designs

A $t-(v, k, \lambda)$ design, or t-design in $J(v, k)$ consists of sets of

- points: V with $\mid V=v$,
- blocks: non-empty subset \mathcal{B} of $\binom{V}{k}$, so that for every $T \in\binom{v}{t}$,

$$
\#\{B \in \mathcal{B}: T \subseteq B\}=\lambda>0
$$

- $w: \mathcal{B} \rightarrow \mathbb{R}_{>0}$.
- Replace $\binom{V}{k}$ by $\binom{V}{k_{1}} \cup\binom{V}{k_{2}} \cdots \cup\binom{V}{k_{p}}$.
(V, \mathcal{B}, w) is called a weighted regular t-wise balanced design if

$$
\sum_{B \in \mathcal{B}, T \subseteq B} w(B)=\lambda>0 .
$$

\Longleftrightarrow A relative t-design in $H(v, 2)$ with w.r.t. $u_{0}=(0,0, \cdots, 0)$.

Problem

t-designs in $J(v, k)$

relative t-designs in $H(v, 2)$

$$
\binom{V}{k_{1}} \cup \cdots \cup\binom{V}{k_{p}}
$$

Question

relative t-designs in $J(v, k)$

$$
X_{r_{1}} \cup \cdots \cup X_{r_{p}}
$$

Question: Interpretation of relative t-designs on one shell in $J(v, k)$.

Q-polynomial association scheme

$\mathfrak{X}=\left(X,\left\{R_{r}\right\}_{r=0}^{k}\right)$: a symmetric association scheme (i.e. $\left.R_{r}={ }^{t} R_{r}\right)$.
Bose-Mesner algebra:

$$
\mathcal{A}=\left\langle A_{0}, A_{1}, \ldots, A_{k}\right\rangle=\left\langle E_{0}, E_{1}, \ldots, E_{k}\right\rangle
$$

Adjacency matries Primitive idempotents

Q-polynomial association scheme

$\mathfrak{X}=\left(X,\left\{R_{r}\right\}_{r=0}^{k}\right)$: a symmetric association scheme (i.e. $\left.R_{r}={ }^{t} R_{r}\right)$.
Bose-Mesner algebra:

$$
\begin{aligned}
\mathcal{A}= & \left\langle A_{0}, A_{1}, \ldots, A_{k}\right\rangle= \\
& \text { Adjacency matries }
\end{aligned} \quad\left\langle E_{0}, E_{1}, \ldots, E_{k}\right\rangle .
$$

■ \mathfrak{X} is called Q-polynomial w.r.t. the ordering $E_{0}, E_{1}, \ldots, E_{k}$, if there exists a polynomial $v_{i}^{*}(x)$ of degree i such that $E_{i}=v_{i}^{*}\left(E_{1}^{\circ}\right)$, where E_{1}° means entry-wise multiplication.

Q-polynomial association scheme

$\mathfrak{X}=\left(X,\left\{R_{r}\right\}_{r=0}^{k}\right)$: a symmetric association scheme (i.e. $\left.R_{r}={ }^{t} R_{r}\right)$.
Bose-Mesner algebra:

$$
\begin{aligned}
\mathcal{A}= & \left\langle A_{0}, A_{1}, \ldots, A_{k}\right\rangle= \\
& \text { Adjacency matries }
\end{aligned} \quad\left\langle E_{0}, E_{1}, \ldots, E_{k}\right\rangle .
$$

- \mathfrak{X} is called Q-polynomial w.r.t. the ordering $E_{0}, E_{1}, \ldots, E_{k}$, if there exists a polynomial $v_{i}^{*}(x)$ of degree i such that $E_{i}=v_{i}^{*}\left(E_{1}^{\circ}\right)$, where E_{1}° means entry-wise multiplication.

It is known that $J(v, k)$ are Q-polynomial association schemes.

Relative t-designs in Q-polynomial A.S.

Definition (Delsarte, 1977)

Let \mathfrak{X} be a Q-polynomial association scheme. A weighted subset (Y, w) of X is called a relative t-design in \mathfrak{X} with respect to u_{0} if $E_{j} X_{(Y, w)}$ and $E_{j} X_{\left\{u_{0}\right\}}$ are linearly dependent for all $1 \leq j \leq t$, where

$$
X_{(Y, w)}(y)= \begin{cases}w(y), & \text { if } y \in Y \\ 0, & \text { otherwise }\end{cases}
$$

Relative t-designs in Q-polynomial A.S.

Definition (Delsarte, 1977)

Let \mathfrak{X} be a Q-polynomial association scheme. A weighted subset (Y, w) of X is called a relative t-design in \mathfrak{X} with respect to u_{0} if $E_{j} X_{(Y, w)}$ and $E_{j} X_{\left\{u_{0}\right\}}$ are linearly dependent for all $1 \leq j \leq t$, where

$$
X_{(Y, w)}(y)= \begin{cases}w(y), & \text { if } y \in Y \\ 0, & \text { otherwise }\end{cases}
$$

In particular, if $\mathfrak{X}=J(v, k)$, then the above condition is equivalent that

$$
\sum_{z \subset y, y \in Y} w(y)=\lambda_{t, j}
$$

depends only on t and $j=\left|z \cap u_{0}\right|$ but not the choice of $z \in\binom{V}{t}$.

Main result

Theorem (Bannai-Z., 2018)
If (Y, w) is a relative t-design in $J(v, k)$ on p shells $X_{r_{1}} \cup \cdots \cup X_{r_{p}}$, then $\left(Y \cap X_{r_{i}}, w\right)$ is a weighted $(t+1-p)$-design in $X_{r_{i}}$ as a product association scheme for $1 \leq i \leq p$.

Main result

Theorem (Bannai-Z., 2018)
If (Y, w) is a relative t-design in $J(v, k)$ on p shells $X_{r_{1}} \cup \cdots \cup X_{r_{p}}$, then $\left(Y \cap X_{r_{i}}, w\right)$ is a weighted $(t+1-p)$-design in $X_{r_{i}}$ as a product association scheme for $1 \leq i \leq p$.

1 Algebraic condition $+[1]+[2]+[3]$.
[1] C. F. Dunkl. An addition theorem for Hahn polynomials: the spherical
functions. SIAM J. Mathematical Analysis, 9 (1978), no. 4, 627-637.
[2]. W. J. Martin, Mixed block designs, J. Combin. Designs 6 (1998), 151-163.
[3]. H. Tanaka, New proofs of the Assmus-Mattson theorem based on the Terwilliger algebra, Europ. J. Combin. 30 (2009), no. 3, 736-746.

Main result

Theorem (Bannai-Z., 2018)
If (Y, w) is a relative t-design in $J(v, k)$ on p shells $X_{r_{1}} \cup \cdots \cup X_{r_{p}}$, then $\left(Y \cap X_{r_{i}}, w\right)$ is a weighted $(t+1-p)$-design in $X_{r_{i}}$ as a product association scheme for $1 \leq i \leq p$.

1 Algebraic condition $+[1]+[2]+[3]$.
[1] C. F. Dunkl. An addition theorem for Hahn polynomials: the spherical
functions. SIAM J. Mathematical Analysis, 9 (1978), no. 4, 627-637.
[2]. W. J. Martin, Mixed block designs, J. Combin. Designs 6 (1998), 151-163.
[3]. H. Tanaka, New proofs of the Assmus-Mattson theorem based on the Terwilliger algebra, Europ. J. Combin. 30 (2009), no. 3, 736-746.

2 Geometric condition.

Product association schemes

$\left(Y_{\ell}, \mathcal{A}_{\ell}\right)$: an association scheme of class k_{ℓ} with Bose-Mesner Algebra \mathcal{A}_{ℓ}. The direct product of some association schemes is

$$
(X, \mathcal{A})=\left(Y_{1}, \mathcal{A}_{1}\right) \otimes\left(Y_{2}, \mathcal{A}_{2}\right) \otimes \cdots \otimes\left(Y_{m}, \mathcal{A}_{m}\right)
$$

defined by

$$
\begin{gathered}
X=Y_{1} \times Y_{2} \times \cdots \times Y_{m} \\
\mathcal{A}=\left\{\otimes_{\ell=1}^{m} B_{\ell} \mid B_{\ell} \in \mathcal{A}_{\ell}, 1 \leq \ell \leq m\right\} .
\end{gathered}
$$

An example: structure of one shell of $J(v, k)$.

Recall $u_{0}=\{1,2, \ldots, k\}$ and $X_{r}=\left\{x \in\binom{y_{k}}{k}:\left|x \cap u_{0}\right|=k-r\right\}$.
1 If $2 \leq r \leq \frac{k}{2}$, take $X_{r}:=\left\{\left(u_{0}-x, x-u_{0}\right) \mid x \in X_{r}\right\}$, i.e.,

$$
X_{r}=J(k, r) \otimes J(v-k, r) .
$$

2 If $\frac{k}{2}<r \leq \frac{v-k}{2}$, take $X_{r}:=\left\{\left(x \cap u_{0}, x-u_{0}\right) \mid x \in X_{r}\right\}$, i.e.,

$$
X_{r}=J(k, k-r) \otimes J(v-k, r)
$$

3 If $\frac{v-k}{2}<r \leq k-2$, take $X_{r}:=\left\{\left(x \cap u_{0},\left(V-u_{0}\right)-x \mid x \in X_{r}\right\}\right.$, i.e.,

$$
X_{r}=J(k, k-r) \otimes J(v-k, v-k-r) .
$$

Mixed t-designs

Definition (Martin, 1998)

Let $\left|V_{i}\right|=v_{i}$ for $i=1,2$ and $X=\binom{V_{1}}{k_{1}} \times\binom{ V_{2}}{k_{2}}$. A weighted subset (Y, w) of X is called a weighted t-design in $J\left(v_{1}, k_{1}\right) \otimes J\left(v_{2}, k_{2}\right)$ if for $j_{1}+j_{2}=t$

$$
\sum_{\substack{\left(y_{1}, y_{2}\right) \in Y \\ z_{1} \subseteq y_{1}, z_{2} \subseteq y_{2}}} w\left(y_{1}, y_{2}\right)=\lambda_{\left(j_{1}, j_{2}\right)}
$$

is independent on the choice of $\left(z_{1}, z_{2}\right) \in\binom{V_{1}}{j_{1}} \times\binom{ V_{2}}{j_{2}}$.

■ In particular, it is called a mixed t-design if $w=1$.
■ Mixed t-designs $\Longleftrightarrow t$-design in X_{r} of $J(v, k)$.

Examples: mixed 2-designs

(V, \mathcal{B}) is a symmetric $2-(v, k, \lambda)$ design.
Let V_{1} be the points set of a block $B \in \mathcal{B}$ and $V_{2}=\bigvee V_{1}$. ($V, \mathcal{B} \backslash B$) (with $v-1$ blocks) forms a mixed 2-design with

$$
\lambda_{(2,0)}+1=\lambda_{(1,1)}=\lambda_{(0,2)}=\lambda .
$$

Examples: mixed 2-designs

(V, \mathcal{B}) is a symmetric $2-(v, k, \lambda)$ design.
Let V_{1} be the points set of a block $B \in \mathcal{B}$ and $V_{2}=\bigvee V_{1}$.
($V, \mathcal{B} \backslash B$) (with $v-1$ blocks) forms a mixed 2-design with

$$
\lambda_{(2,0)}+1=\lambda_{(1,1)}=\lambda_{(0,2)}=\lambda .
$$

$$
\begin{gathered}
\text { ploints } \\
\text { blocks }\left(\right) . \begin{array}{c}
\\
V_{2}
\end{array}
\end{gathered}
$$

2-(7,3,1) design gives a 2-design in $J(3,1) \otimes J(4,2)$.

Lower bound for mixed t-designs

Theorem (Bannai-Bannai-Suda-Tanaka, 2015; Martin, 1998)
Let Y be a t-design in one shell X_{r} of $J(v, k)$. Then

$$
|Y| \geq \begin{cases}\binom{v}{e}-\binom{v}{e-1} & \text { if } t=2 e, \\ 2\left(\binom{v-1}{e}-\binom{v-1}{e-1}\right) & \text { if } t=2 e+1 .\end{cases}
$$

The design (Y, w) is called tight if the above lower bound is attained.

Tight t-designs in X_{r}

1 If $t=2$, then $|Y|=v-1$.

- $\frac{k}{2}<r \leq \frac{v-k}{2}$.

For $v \leq 1000$, all tight mixed 2-designs in X_{r} come from a symmetric $2-(v, k, \lambda)$ with one block removed, except for

v	k	r	$\lambda_{(1,0)}$	$\lambda_{(0,1)}$	$\lambda_{(1,1)}$	$\lambda_{(2,0)}$	$\lambda_{(0,2)}$
528	187	165	62	225	30	7	123

$$
\lambda_{(2,0)}+1=\lambda_{(1,1)}=\lambda_{(0,2)}=\lambda .
$$

Tight t-designs in X_{r}

1 If $t=2$, then $|Y|=v-1$.

- $\frac{k}{2}<r \leq \frac{v-k}{2}$.

For $v \leq 1000$, all tight mixed 2-designs in X_{r} come from a symmetric $2-(v, k, \lambda)$ with one block removed, except for

v	k	r	$\lambda_{(1,0)}$	$\lambda_{(0,1)}$	$\lambda_{(1,1)}$	$\lambda_{(2,0)}$	$\lambda_{(0,2)}$
528	187	165	62	225	30	7	123

$$
\lambda_{(2,0)}+1=\lambda_{(1,1)}=\lambda_{(0,2)}=\lambda .
$$

2 If $t=3$, then $|Y|=2(v-2)$.
Possible parameters of tight 3-designs in X_{r} for $v \leq 1,000$ are of type:

$$
v=4 u, \quad k=2 u, k_{1}=k_{2}=r, \quad \text { for } 2 \leq r \leq u
$$

Tight t-designs in X_{r}

1 If $t=2$, then $|Y|=v-1$.

- $\frac{k}{2}<r \leq \frac{v-k}{2}$.

For $v \leq 1000$, all tight mixed 2-designs in X_{r} come from a symmetric $2-(v, k, \lambda)$ with one block removed, except for

v	k	r	$\lambda_{(1,0)}$	$\lambda_{(0,1)}$	$\lambda_{(1,1)}$	$\lambda_{(2,0)}$	$\lambda_{(0,2)}$
528	187	165	62	225	30	7	123

$$
\lambda_{(2,0)}+1=\lambda_{(1,1)}=\lambda_{(0,2)}=\lambda
$$

2 If $t=3$, then $|Y|=2(v-2)$.
Possible parameters of tight 3-designs in X_{r} for $v \leq 1,000$ are of type:

$$
v=4 u, k=2 u, k_{1}=k_{2}=r, \quad \text { for } 2 \leq r \leq u
$$

Conclusion: If a Hadamard $2-(4 u-1,2 u-1, u-1)$ design exists, then there exists a tight 3-design in X_{u} with $v=4 u$ and $k=2 u$.

Tight t-designs in X_{r}

1 If $t=2$, then $|Y|=v-1$.

- $\frac{k}{2}<r \leq \frac{v-k}{2}$.

For $v \leq 1000$, all tight mixed 2-designs in X_{r} come from a symmetric $2-(v, k, \lambda)$ with one block removed, except for

v	k	r	$\lambda_{(1,0)}$	$\lambda_{(0,1)}$	$\lambda_{(1,1)}$	$\lambda_{(2,0)}$	$\lambda_{(0,2)}$
528	187	165	62	225	30	7	123

$$
\lambda_{(2,0)}+1=\lambda_{(1,1)}=\lambda_{(0,2)}=\lambda
$$

2 If $t=3$, then $|Y|=2(v-2)$.
Possible parameters of tight 3-designs in X_{r} for $v \leq 1,000$ are of type:

$$
v=4 u, k=2 u, k_{1}=k_{2}=r, \quad \text { for } 2 \leq r \leq u
$$

Conclusion: If a Hadamard $2-(4 u-1,2 u-1, u-1)$ design exists, then there exists a tight 3-design in X_{u} with $v=4 u$ and $k=2 u$.
Question: Is it true for the converse direction?

Further work

1 Relative t-designs on one shell X_{r} in $J(v, k)$ for P-polynomial structure are the product of a $t-\left(k, k_{1}, \lambda_{1}\right)$ design and a $t-\left(k, k_{2}, \lambda_{2}\right)$ design.

Further work

1 Relative t-designs on one shell X_{r} in $J(v, k)$ for P-polynomial structure are the product of a $t-\left(k, k_{1}, \lambda_{1}\right)$ design and a $t-\left(k, k_{2}, \lambda_{2}\right)$ design.

2 Existence problem of tight t-designs in X_{r}.

$$
|\mathcal{B}| \geq\left\{\begin{array}{ll}
\binom{v}{e} & \text { if } \quad t=2 e \\
2\binom{v-1}{e} & \text { if } \quad t=2 e+1
\end{array} \quad \text { for } t-(v, k, \lambda)\right. \text { designs. }
$$

Further work

1 Relative t-designs on one shell X_{r} in $J(v, k)$ for P-polynomial structure are the product of a $t-\left(k, k_{1}, \lambda_{1}\right)$ design and a $t-\left(k, k_{2}, \lambda_{2}\right)$ design.

2 Existence problem of tight t-designs in X_{r}.

$$
|\mathcal{B}| \geq\left\{\begin{array}{lll}
\binom{v}{e} & \text { if } & t=2 e \\
2\binom{v-1}{e} & \text { if } & t=2 e+1
\end{array} \text { for } t-(v, k, \lambda)\right. \text { designs. }
$$

- If $t=2 e$, then it is the product of two tight $2 e$-designs.

Further work

1 Relative t-designs on one shell X_{r} in $J(v, k)$ for P-polynomial structure are the product of a $t-\left(k, k_{1}, \lambda_{1}\right)$ design and a $t-\left(k, k_{2}, \lambda_{2}\right)$ design.

2 Existence problem of tight t-designs in X_{r}.

$$
|\mathcal{B}| \geq\left\{\begin{array}{ll}
\binom{v}{e} & \text { if } \quad t=2 e \\
2\binom{v-1}{e} & \text { if } \quad t=2 e+1
\end{array} \quad \text { for } t-(v, k, \lambda)\right. \text { designs. }
$$

■ If $t=2 e$, then it is the product of two tight $2 e$-designs.
■ Question: How to define tight $(2 e+1)$-designs?

Further work

1 Relative t-designs on one shell X_{r} in $J(v, k)$ for P-polynomial structure are the product of a $t-\left(k, k_{1}, \lambda_{1}\right)$ design and a $t-\left(k, k_{2}, \lambda_{2}\right)$ design.

2 Existence problem of tight t-designs in X_{r}.

- If $t=2 e$, then it is the product of two tight $2 e$-designs.
- Question: How to define tight $(2 e+1)$-designs?

One possibility is the extension of tight $2 e$-designs.
Result proved by Cameron (1973) for $e=1$.
(i) A Hadamard design, i.e., $v=4 \lambda+3, k=2 \lambda+1$,
(ii) $v=(\lambda+2)\left(\lambda^{2}+4 \lambda+2\right), k=\lambda^{2}+3 \lambda+1$,
(iii) $v=111, k=11, \lambda=1$,
(iv) $v=495, k=39, \lambda=3$.

Thank you for your attention!

