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Johnson association scheme and its shell

For positive integers v, k with v ≥ 2k, let V = {1, 2, · · · , v} and X =
(V

k
)
.

Define
Rr = {(x, y) ∈ X × X : |x ∩ y| = k − r}.

Then J(v, k) = (X, {Rr}kr=0) is Johnson association scheme.

For a fixed point u0 = {1, 2, · · · , k}, define Xr := {x : |x ∩ u0| = k − r}.

(Y,w) is a weighted subset of X on p shells Xr1 ∪ · · · ∪ Xrp if
1 Y ⊂ X.
2 w : Y → R>0.
3 {r1, . . . , rp} = {r | Y ∩ Xr ̸= ∅}.
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Block designs

A t-(v, k, λ) design, or t-design in J(v, k) consists of sets of
points: V with |V| = v,
blocks: non-empty subset B of

(V
k
)
,

so that for every T ∈
(V

t
)
,

#{B ∈ B : T ⊆ B} = λ > 0.

w : B → R>0.
Replace

(V
k
)

by
(V

k1

)
∪

(V
k2

)
· · · ∪

(V
kp

)
.

(V,B,w) is called a weighted regular t-wise balanced design if∑
B∈B,T⊆B

w(B) = λ > 0.

⇐⇒ A relative t-design in H(v, 2) with w.r.t. u0 = (0, 0, · · · , 0).
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Problem

t-designs in J(v, k) Question

?
6

relative t-designs in H(v, 2)(V
k1

)
∪ · · · ∪

(V
kp

) relative t-designs in J(v, k)
Xr1 ∪ · · · ∪ Xrp

Question: Interpretation of relative t-designs on one shell in J(v, k).
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Q-polynomial association scheme

X = (X, {Rr}kr=0): a symmetric association scheme (i.e. Rr = Rr
t ).

Bose-Mesner algebra:

A = ⟨A0,A1, . . . ,Ak⟩ = ⟨E0,E1, . . . ,Ek⟩.

Adjacency matries Primitive idempotents

X is called Q-polynomial w.r.t. the ordering E0,E1, . . . ,Ek, if there
exists a polynomial v∗

i (x) of degree i such that Ei = v∗
i (E◦

1), where E◦
1

means entry-wise multiplication.
It is known that J(v, k) are Q-polynomial association schemes.
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Relative t-designs in Q-polynomial A.S.

Definition (Delsarte, 1977)

Let X be a Q-polynomial association scheme. A weighted subset (Y,w) of X
is called a relative t-design in X with respect to u0 if Ejχ(Y,w) and Ejχ{u0}

are linearly dependent for all 1 ≤ j ≤ t, where

χ(Y,w)(y) =
{

w(y), if y ∈ Y,
0, otherwise.

In particular, if X = J(v, k), then the above condition is equivalent that∑
z⊂y,y∈Y

w(y) = λt,j

depends only on t and j = |z ∩ u0| but not the choice of z ∈
(V

t
)
.

6 / 15



Relative t-designs in Q-polynomial A.S.

Definition (Delsarte, 1977)

Let X be a Q-polynomial association scheme. A weighted subset (Y,w) of X
is called a relative t-design in X with respect to u0 if Ejχ(Y,w) and Ejχ{u0}

are linearly dependent for all 1 ≤ j ≤ t, where

χ(Y,w)(y) =
{

w(y), if y ∈ Y,
0, otherwise.

In particular, if X = J(v, k), then the above condition is equivalent that∑
z⊂y,y∈Y

w(y) = λt,j

depends only on t and j = |z ∩ u0| but not the choice of z ∈
(V

t
)
.

6 / 15



Main result

Theorem (Bannai-Z., 2018)

If (Y,w) is a relative t-design in J(v, k) on p shells Xr1 ∪ · · · ∪ Xrp , then
(Y ∩ Xri ,w) is a weighted (t + 1 − p)-design in Xri as a product association
scheme for 1 ≤ i ≤ p.

1 Algebraic condition + [1] + [2] + [3].
[1] C. F. Dunkl. An addition theorem for Hahn polynomials: the spherical
functions. SIAM J. Mathematical Analysis, 9 (1978), no. 4, 627–637.
[2]. W. J. Martin, Mixed block designs, J. Combin. Designs 6 (1998),
151–163.
[3]. H. Tanaka, New proofs of the Assmus-Mattson theorem based on the
Terwilliger algebra, Europ. J. Combin. 30 (2009), no. 3, 736–746.

2 Geometric condition.
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Product association schemes

(Yℓ,Aℓ): an association scheme of class kℓ with Bose-Mesner Algebra Aℓ.
The direct product of some association schemes is

(X,A) = (Y1,A1) ⊗ (Y2,A2) ⊗ · · · ⊗ (Ym,Am)
defined by

X = Y1 × Y2 × · · · × Ym

A = {⊗m
ℓ=1Bℓ | Bℓ ∈ Aℓ, 1 ≤ ℓ ≤ m}.
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An example: structure of one shell of J(v, k).

Recall u0 = {1, 2, . . . , k} and Xr =
{

x ∈
(V

k
)
: |x ∩ u0| = k − r

}
.

1 If 2 ≤ r ≤ k
2 , take Xr := {(u0 − x, x − u0) | x ∈ Xr}, i.e.,

Xr = J(k, r) ⊗ J(v − k, r).

2 If k
2 < r ≤ v−k

2 , take Xr := {(x ∩ u0, x − u0) | x ∈ Xr}, i.e.,

Xr = J(k, k − r) ⊗ J(v − k, r).

3 If v−k
2 < r ≤ k − 2, take Xr := {(x ∩ u0, (V − u0) − x | x ∈ Xr}, i.e.,

Xr = J(k, k − r) ⊗ J(v − k, v − k − r).
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Mixed t-designs

Definition (Martin, 1998)

Let |Vi| = vi for i = 1, 2 and X =
(V1

k1

)
×

(V2
k2

)
. A weighted subset (Y,w) of X

is called a weighted t-design in J(v1, k1) ⊗ J(v2, k2) if for j1 + j2 = t∑
(y1,y2)∈Y

z1⊆y1,z2⊆y2

w(y1, y2) = λ(j1,j2)

is independent on the choice of (z1, z2) ∈
(V1

j1
)

×
(V2

j2
)
.

In particular, it is called a mixed t-design if w = 1.
Mixed t-designs ⇐⇒ t-design in Xr of J(v, k).

10 / 15



Examples: mixed 2-designs

(V,B) is a symmetric 2-(v, k, λ) design.
Let V1 be the points set of a block B ∈ B and V2 = V\V1.
(V,B\B) (with v − 1 blocks) forms a mixed 2-design with

λ(2,0) + 1 = λ(1,1) = λ(0,2) = λ.

points

blocks



1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 0 1
0 1 0 1 1 0 0
0 0 1 1 0 1 0
0 0 1 0 1 0 1


V1 V2

2-(7,3,1) design gives a 2-design in J(3, 1) ⊗ J(4, 2).

11 / 15



Examples: mixed 2-designs

(V,B) is a symmetric 2-(v, k, λ) design.
Let V1 be the points set of a block B ∈ B and V2 = V\V1.
(V,B\B) (with v − 1 blocks) forms a mixed 2-design with

λ(2,0) + 1 = λ(1,1) = λ(0,2) = λ.

points

blocks



1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 0 1
0 1 0 1 1 0 0
0 0 1 1 0 1 0
0 0 1 0 1 0 1


V1 V2

2-(7,3,1) design gives a 2-design in J(3, 1) ⊗ J(4, 2).

11 / 15



Lower bound for mixed t-designs

Theorem (Bannai-Bannai-Suda-Tanaka, 2015; Martin, 1998)

Let Y be a t-design in one shell Xr of J(v, k). Then

|Y| ≥


(v

e
)
−

( v
e−1

)
if t = 2e,

2
((v−1

e
)
−

(v−1
e−1

))
if t = 2e + 1.

The design (Y,w) is called tight if the above lower bound is attained.

12 / 15



Tight t-designs in Xr

1 If t = 2, then |Y| = v − 1.
k
2 < r ≤ v−k

2 .

For v ≤ 1000, all tight mixed 2-designs in Xr come from a symmetric
2-(v, k, λ) with one block removed, except for

v k r λ(1,0) λ(0,1) λ(1,1) λ(2,0) λ(0,2)

528 187 165 62 225 30 7 123

λ(2,0) + 1 = λ(1,1) = λ(0,2) = λ.

2 If t = 3, then |Y| = 2(v − 2).
Possible parameters of tight 3-designs in Xr for v ≤ 1, 000 are of type:

v = 4u, k = 2u, k1 = k2 = r, for 2 ≤ r ≤ u.

Conclusion: If a Hadamard 2-(4u− 1, 2u− 1, u− 1) design exists, then
there exists a tight 3-design in Xu with v = 4u and k = 2u.
Question: Is it true for the converse direction?
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Further work

1 Relative t-designs on one shell Xr in J(v, k) for P-polynomial structure
are the product of a t-(k, k1, λ1) design and a t-(k, k2, λ2) design.

2 Existence problem of tight t-designs in Xr.
If t = 2e, then it is the product of two tight 2e-designs.

Question: How to define tight (2e + 1)-designs?
One possibility is the extension of tight 2e-designs.

Result proved by Cameron (1973) for e = 1.

(i) A Hadamard design, i.e., v = 4λ + 3, k = 2λ + 1,
(ii) v = (λ + 2)(λ2 + 4λ + 2), k = λ2 + 3λ + 1,
(iii) v = 111, k = 11, λ = 1,
(iv) v = 495, k = 39, λ = 3.
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Thank you for your attention!
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