Relative *t*-designs on one shell of Johnson association schemes

Yan Zhu (朱艳)

Shanghai University

Joint with Eiichi Bannai

May 21, 2018

JCCA 2018 @ Sendai

Johnson association scheme and its shell

For positive integers v, k with $v \ge 2k$, let $V = \{1, 2, \dots, v\}$ and $X = \binom{V}{k}$. Define

$$R_r = \{(x, y) \in X \times X : |x \cap y| = k - r\}.$$

Then $J(v, k) = (X, \{R_r\}_{r=0}^k)$ is Johnson association scheme.

Johnson association scheme and its shell

For positive integers v, k with $v \ge 2k$, let $V = \{1, 2, \dots, v\}$ and $X = {\binom{V}{k}}$. Define

$$R_r = \{(x, y) \in X \times X : |x \cap y| = k - r\}.$$

Then $J(v, k) = (X, \{R_r\}_{r=0}^k)$ is Johnson association scheme.

For a fixed point $u_0 = \{1, 2, \dots, k\}$, define $X_r := \{x : |x \cap u_0| = k - r\}$.

Johnson association scheme and its shell

For positive integers v, k with $v \ge 2k$, let $V = \{1, 2, \dots, v\}$ and $X = {\binom{V}{k}}$. Define

$$R_r = \{(x, y) \in X \times X : |x \cap y| = k - r\}.$$

Then $J(v, k) = (X, \{R_r\}_{r=0}^k)$ is Johnson association scheme.

For a fixed point $u_0 = \{1, 2, \dots, k\}$, define $X_r := \{x : |x \cap u_0| = k - r\}$.

(Y, w) is a weighted subset of X on p shells $X_{r_1} \cup \cdots \cup X_{r_p}$ if $Y \subset X$.

- $2 w: Y \to \mathbb{R}_{>0}.$
- $\exists \{r_1,\ldots,r_p\} = \{r \mid Y \cap X_r \neq \emptyset\}.$

Block designs

A t- (v, k, λ) design, or t-design in J(v, k) consists of sets of

• points: V with |V| = v,

• blocks: non-empty subset \mathcal{B} of $\binom{V}{k}$,

so that for every $T \in \binom{V}{t}$,

 $\#\{B\in\mathcal{B}:T\subseteq B\}=\lambda>0.$

Block designs

A t- (v, k, λ) design, or t-design in J(v, k) consists of sets of

- points: V with |V| = v,
- blocks: non-empty subset \mathcal{B} of $\binom{V}{k}$,

so that for every $T \in \binom{V}{t}$,

$\#\{B\in \mathcal{B}: T\subseteq B\}=\lambda>0.$

- $w: \mathcal{B} \to \mathbb{R}_{>0}$.
- Replace $\binom{V}{k}$ by $\binom{V}{k_1} \cup \binom{V}{k_2} \cdots \cup \binom{V}{k_p}$.

 (V, \mathcal{B}, w) is called a weighted regular *t*-wise balanced design if

$$\sum_{B\in\mathcal{B}, T\subseteq B} w(B) = \lambda > 0.$$

Block designs

A t- (v, k, λ) design, or t-design in J(v, k) consists of sets of

- points: V with |V| = v,
- blocks: non-empty subset \mathcal{B} of $\binom{V}{k}$,

so that for every $T \in \binom{V}{t}$,

$\#\{B\in \mathcal{B}: T\subseteq B\}=\lambda>0.$

- $w: \mathcal{B} \to \mathbb{R}_{>0}$.
- Replace $\binom{V}{k}$ by $\binom{V}{k_1} \cup \binom{V}{k_2} \cdots \cup \binom{V}{k_p}$.

 (V, \mathcal{B}, w) is called a weighted regular *t*-wise balanced design if

$$\sum_{B\in\mathcal{B}, T\subseteq B} w(B) = \lambda > 0.$$

 \iff A relative *t*-design in H(v, 2) with w.r.t. $u_0 = (0, 0, \cdots, 0)$.

Problem

Question: Interpretation of relative *t*-designs on one shell in J(v, k).

Q-polynomial association scheme

 $\mathfrak{X} = (X, \{R_r\}_{r=0}^k)$: a symmetric association scheme (i.e. $R_r = {}^tR_r$).

Bose-Mesner algebra:

$$\mathcal{A} = \langle A_0, A_1, \ldots, A_k \rangle = \langle E_0, E_1, \ldots, E_k \rangle.$$

Adjacency matries Primitive idempotents

Q-polynomial association scheme

 $\mathfrak{X} = (X, \{R_r\}_{r=0}^k)$: a symmetric association scheme (i.e. $R_r = {}^tR_r$).

Bose-Mesner algebra:

$$\mathcal{A} = \langle A_0, A_1, \dots, A_k \rangle = \langle E_0, E_1, \dots, E_k \rangle.$$

Adjacency matries Primitive idempotents

• \mathfrak{X} is called Q-polynomial w.r.t. the ordering E_0, E_1, \ldots, E_k , if there exists a polynomial $v_i^*(x)$ of degree *i* such that $E_i = v_i^*(E_1^\circ)$, where E_1° means entry-wise multiplication.

Q-polynomial association scheme

 $\mathfrak{X} = (X, \{R_r\}_{r=0}^k)$: a symmetric association scheme (i.e. $R_r = {}^tR_r$).

Bose-Mesner algebra:

$$\mathcal{A} = \langle A_0, A_1, \dots, A_k \rangle = \langle E_0, E_1, \dots, E_k \rangle.$$

Adjacency matries Primitive idempotents

X is called Q-polynomial w.r.t. the ordering E₀, E₁,..., E_k, if there exists a polynomial v^{*}_i(x) of degree i such that E_i = v^{*}_i(E^o₁), where E^o₁

means entry-wise multiplication.

It is known that J(v, k) are Q-polynomial association schemes.

Relative *t*-designs in Q-polynomial A.S.

Definition (Delsarte, 1977)

Let \mathfrak{X} be a Q-polynomial association scheme. A weighted subset (Y, w) of X is called a relative *t*-design in \mathfrak{X} with respect to u_0 if $E_{j\chi(Y,w)}$ and $E_{j\chi_{\{u_0\}}}$ are linearly dependent for all $1 \leq j \leq t$, where

$$\chi_{(Y,w)}(y) = \left\{egin{array}{cc} w(y), & ext{if } y \in Y, \ 0, & ext{otherwise}. \end{array}
ight.$$

Relative *t*-designs in Q-polynomial A.S.

Definition (Delsarte, 1977)

Let \mathfrak{X} be a Q-polynomial association scheme. A weighted subset (Y, w) of X is called a relative *t*-design in \mathfrak{X} with respect to u_0 if $E_{j\chi(Y,w)}$ and $E_{j\chi_{\{u_0\}}}$ are linearly dependent for all $1 \leq j \leq t$, where

$$\chi_{(Y,w)}(y) = \begin{cases} w(y), & \text{if } y \in Y, \\ 0, & \text{otherwise.} \end{cases}$$

In particular, if $\mathfrak{X} = J(v, k)$, then the above condition is equivalent that

$$\sum_{z \subset y, y \in Y} w(y) = \lambda_{t,j}$$

depends only on t and $j = |z \cap u_0|$ but not the choice of $z \in \binom{V}{t}$.

Main result

Theorem (Bannai-Z., 2018)

If (Y, w) is a relative t-design in J(v, k) on p shells $X_{r_1} \cup \cdots \cup X_{r_p}$, then $(Y \cap X_{r_i}, w)$ is a weighted (t+1-p)-design in X_{r_i} as a product association scheme for $1 \le i \le p$.

Main result

Theorem (Bannai-Z., 2018)

If (Y, w) is a relative t-design in J(v, k) on p shells $X_{r_1} \cup \cdots \cup X_{r_p}$, then $(Y \cap X_{r_i}, w)$ is a weighted (t+1-p)-design in X_{r_i} as a product association scheme for $1 \le i \le p$.

1 Algebraic condition + [1] + [2] + [3].

 C. F. DUNKL. An addition theorem for Hahn polynomials: the spherical functions. SIAM J. Mathematical Analysis, 9 (1978), no. 4, 627–637.
 W. J. MARTIN, Mixed block designs, J. Combin. Designs 6 (1998), 151–163.

[3]. H. TANAKA, New proofs of the Assmus-Mattson theorem based on the Terwilliger algebra, Europ. J. Combin. 30 (2009), no. 3, 736–746.

Main result

Theorem (Bannai-Z., 2018)

If (Y, w) is a relative t-design in J(v, k) on p shells $X_{r_1} \cup \cdots \cup X_{r_p}$, then $(Y \cap X_{r_i}, w)$ is a weighted (t+1-p)-design in X_{r_i} as a product association scheme for $1 \le i \le p$.

1 Algebraic condition + [1] + [2] + [3].

C. F. DUNKL. An addition theorem for Hahn polynomials: the spherical functions. SIAM J. Mathematical Analysis, 9 (1978), no. 4, 627–637.
 W. J. MARTIN, Mixed block designs, J. Combin. Designs 6 (1998), 151–163.
 H. TANAKA, New proofs of the Assmus-Mattson theorem based on the Terwilliger algebra, Europ. J. Combin. 30 (2009), no. 3, 736–746.

2 Geometric condition.

Product association schemes

 (Y_{ℓ}, A_{ℓ}) : an association scheme of class k_{ℓ} with Bose-Mesner Algebra A_{ℓ} . The direct product of some association schemes is

 $(X, \mathcal{A}) = (Y_1, \mathcal{A}_1) \otimes (Y_2, \mathcal{A}_2) \otimes \cdots \otimes (Y_m, \mathcal{A}_m)$

defined by

$$X = Y_1 \times Y_2 \times \cdots \times Y_m$$

 $\mathcal{A} = \{ \otimes_{\ell=1}^m B_\ell \mid B_\ell \in \mathcal{A}_\ell, 1 \le \ell \le m \}.$

An example: structure of one shell of J(v, k).

Recall
$$u_0 = \{1, 2, ..., k\}$$
 and $X_r = \left\{ x \in \binom{V}{k} : |x \cap u_0| = k - r \right\}.$
I If $2 \le r \le \frac{k}{2}$, take $X_r := \{(u_0 - x, x - u_0) \mid x \in X_r\}$, i.e.,
 $X_r = J(k, r) \otimes J(v - k, r).$
2 If $\frac{k}{2} < r \le \frac{v - k}{2}$, take $X_r := \{(x \cap u_0, x - u_0) \mid x \in X_r\}$, i.e.,
 $X_r = J(k, k - r) \otimes J(v - k, r).$
3 If $\frac{v - k}{2} < r \le k - 2$, take $X_r := \{(x \cap u_0, (V - u_0) - x \mid x \in X_r\}$, i.e.,
 $X_r = J(k, k - r) \otimes J(v - k, v - k - r).$

Mixed *t*-designs

Definition (Martin, 1998)

Let $|V_i| = v_i$ for i = 1, 2 and $X = \binom{V_1}{k_1} \times \binom{V_2}{k_2}$. A weighted subset (Y, w) of X is called a weighted t-design in $J(v_1, k_1) \otimes J(v_2, k_2)$ if for $j_1 + j_2 = t$

 $\sum_{\substack{(y_1, y_2) \in Y \\ z_1 \subseteq y_1, z_2 \subseteq y_2}} w(y_1, y_2) = \lambda_{(j_1, j_2)}$ is independent on the choice of $(z_1, z_2) \in \binom{V_1}{h} \times \binom{V_2}{h}$.

- In particular, it is called a mixed *t*-design if w = 1.
- Mixed *t*-designs \iff *t*-design in X_r of J(v, k).

Examples: mixed 2-designs

 (V, \mathcal{B}) is a symmetric 2- (v, k, λ) design. Let V_1 be the points set of a block $B \in \mathcal{B}$ and $V_2 = V \setminus V_1$. $(V, \mathcal{B} \setminus B)$ (with v - 1 blocks) forms a mixed 2-design with

 $\lambda_{(2,0)} + 1 = \lambda_{(1,1)} = \lambda_{(0,2)} = \lambda.$

Examples: mixed 2-designs

 (V, \mathcal{B}) is a symmetric 2- (v, k, λ) design. Let V_1 be the points set of a block $B \in \mathcal{B}$ and $V_2 = V \setminus V_1$. $(V, \mathcal{B} \setminus B)$ (with v - 1 blocks) forms a mixed 2-design with

$$\lambda_{(2,0)} + 1 = \lambda_{(1,1)} = \lambda_{(0,2)} = \lambda.$$

2-(7,3,1) design gives a 2-design in $J(3,1) \otimes J(4,2)$.

Lower bound for mixed t-designs

Theorem (Bannai-Bannai-Suda-Tanaka, 2015; Martin, 1998)

Let Y be a t-design in one shell X_r of J(v, k). Then

$$|\mathsf{Y}| \geq \begin{cases} \binom{\mathsf{v}}{e} - \binom{\mathsf{v}}{e-1} & \text{if } t = 2e, \\ 2\left(\binom{\mathsf{v}-1}{e} - \binom{\mathsf{v}-1}{e-1}\right) & \text{if } t = 2e+1. \end{cases}$$

The design (Y, w) is called tight if the above lower bound is attained.

If
$$t = 2$$
, then $|Y| = v - 1$.
 $\frac{k}{2} < r \le \frac{v-k}{2}$.

For $v \le 1000$, all tight mixed 2-designs in X_r come from a symmetric 2- (v, k, λ) with one block removed, except for

V	k	r	$\lambda_{(1,0)}$	$\lambda_{(0,1)}$	$\lambda_{(1,1)}$	$\lambda_{(2,0)}$	$\lambda_{(0,2)}$
528	187	165	62	225	30	7	123

 $\lambda_{(2,0)} + 1 = \lambda_{(1,1)} = \lambda_{(0,2)} = \lambda.$

If
$$t = 2$$
, then $|Y| = v - 1$.
 $\frac{k}{2} < r \le \frac{v-k}{2}$.

For $v \le 1000$, all tight mixed 2-designs in X_r come from a symmetric 2- (v, k, λ) with one block removed, except for

v	k	r	$\lambda_{(1,0)}$	$\lambda_{(0,1)}$	$\lambda_{(1,1)}$	$\lambda_{(2,0)}$	$\lambda_{(0,2)}$
528	187	165	62	225	30	7	123

$$\lambda_{(2,0)} + 1 = \lambda_{(1,1)} = \lambda_{(0,2)} = \lambda.$$

2 If t = 3, then |Y| = 2(v-2).

Possible parameters of tight 3-designs in X_r for $v \le 1,000$ are of type:

$$v = 4u, \ k = 2u, \ k_1 = k_2 = r, \ \text{ for } 2 \le r \le u.$$

If
$$t = 2$$
, then $|Y| = v - 1$.
 $\frac{k}{2} < r \le \frac{v-k}{2}$.

For $v \le 1000$, all tight mixed 2-designs in X_r come from a symmetric 2- (v, k, λ) with one block removed, except for

v	k	r	$\lambda_{(1,0)}$	$\lambda_{(0,1)}$	$\lambda_{(1,1)}$	$\lambda_{(2,0)}$	$\lambda_{(0,2)}$
528	187	165	62	225	30	7	123

$$\lambda_{(2,0)} + 1 = \lambda_{(1,1)} = \lambda_{(0,2)} = \lambda.$$

2 If t = 3, then |Y| = 2(v-2).

Possible parameters of tight 3-designs in X_r for $v \le 1,000$ are of type:

$$v = 4u, \ k = 2u, \ k_1 = k_2 = r, \ \text{ for } 2 \le r \le u.$$

Conclusion: If a Hadamard 2-(4u-1, 2u-1, u-1) design exists, then there exists a tight 3-design in X_u with v = 4u and k = 2u.

If
$$t = 2$$
, then $|Y| = v - 1$.
 $\frac{k}{2} < r \le \frac{v-k}{2}$.

For $v \le 1000$, all tight mixed 2-designs in X_r come from a symmetric 2- (v, k, λ) with one block removed, except for

v	k	r	$\lambda_{(1,0)}$	$\lambda_{(0,1)}$	$\lambda_{(1,1)}$	$\lambda_{(2,0)}$	$\lambda_{(0,2)}$
528	187	165	62	225	30	7	123

$$\lambda_{(2,0)} + 1 = \lambda_{(1,1)} = \lambda_{(0,2)} = \lambda.$$

2 If t = 3, then |Y| = 2(v-2).

Possible parameters of tight 3-designs in X_r for $v \leq 1,000$ are of type:

$$v = 4u, \ k = 2u, \ k_1 = k_2 = r, \ \text{ for } 2 \le r \le u.$$

Conclusion: If a Hadamard 2-(4u-1, 2u-1, u-1) design exists, then there exists a tight 3-design in X_u with v = 4u and k = 2u. **Question:** Is it true for the converse direction?

I Relative *t*-designs on one shell X_r in J(v, k) for P-polynomial structure are the product of a t- (k, k_1, λ_1) design and a t- (k, k_2, λ_2) design.

- **I** Relative *t*-designs on one shell X_r in J(v, k) for P-polynomial structure are the product of a t- (k, k_1, λ_1) design and a t- (k, k_2, λ_2) design.
- **2** Existence problem of tight *t*-designs in X_r .

$$|\mathcal{B}| \geq \begin{cases} \binom{v}{e} & \text{if } t = 2e \\ 2\binom{v-1}{e} & \text{if } t = 2e+1 \end{cases} \text{ for } t - (v, k, \lambda) \text{ designs.}$$

- **I** Relative *t*-designs on one shell X_r in J(v, k) for P-polynomial structure are the product of a t- (k, k_1, λ_1) design and a t- (k, k_2, λ_2) design.
- **2** Existence problem of tight *t*-designs in X_r .

$$|\mathcal{B}| \ge \begin{cases} \binom{v}{e} & \text{if } t = 2e \\ 2\binom{v-1}{e} & \text{if } t = 2e+1 \end{cases}$$
 for $t - (v, k, \lambda)$ designs.

• If t = 2e, then it is the product of two tight 2e-designs.

- **I** Relative *t*-designs on one shell X_r in J(v, k) for P-polynomial structure are the product of a t- (k, k_1, λ_1) design and a t- (k, k_2, λ_2) design.
- **2** Existence problem of tight *t*-designs in X_r .

$$|\mathcal{B}| \geq \begin{cases} \binom{v}{e} & \text{if } t = 2e \\ 2\binom{v-1}{e} & \text{if } t = 2e+1 \end{cases} \text{ for } t \cdot (v, k, \lambda) \text{ designs.}$$

- If t = 2e, then it is the product of two tight 2*e*-designs.
- Question: How to define tight (2e+1)-designs?

- **1** Relative *t*-designs on one shell X_r in J(v, k) for P-polynomial structure are the product of a t- (k, k_1, λ_1) design and a t- (k, k_2, λ_2) design.
- **2** Existence problem of tight *t*-designs in X_r .
 - If t = 2e, then it is the product of two tight 2*e*-designs.
 - Question: How to define tight (2e+1)-designs?
 One possibility is the extension of tight 2e-designs.

Result proved by Cameron (1973) for e = 1.

(i) A Hadamard design, i.e.,
$$v = 4\lambda + 3$$
, $k = 2\lambda + 1$,
(ii) $v = (\lambda + 2)(\lambda^2 + 4\lambda + 2)$, $k = \lambda^2 + 3\lambda + 1$,
(iii) $v = 111$, $k = 11$, $\lambda = 1$,
(iv) $v = 495$, $k = 39$, $\lambda = 3$.

Thank you for your attention!