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Distance-Regular Graphs
Homotopy of a graph: trivial?

Distance-Regular Graphs (DRGs)
A graph Γ = (X ,R) of diameter d is distance-regular (DRG) if
there exist constants
b0, b1, . . . , bd−1; c1, c2, . . . , cd
such that, whenever x and y are vertices at distance i , there are
exactly
I ci neighbors of y at distance i − 1 from x , and
I bi neighbors of y at distance i + 1 from x .

•
x

•
y

Γi−1(x) Γi (x) Γi+1(x)

ci

k − ci − bi

bi
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Distance-Regular Graphs
Homotopy of a graph: trivial?

Distance-Regular Graphs (DRGs)

Examples:

I all five Platonic solids

I regular graphs with just three eigenvalues (“strongly regular”)

I n-cubes and Hamming graphs

I incidence graphs of symmetric designs

I Moore graphs and generalized polygons

I . . . many other connections!
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Distance-Regular Graphs
Homotopy of a graph: trivial?

Coxeter Graph

The Coxeter graph is a cubic distance-regular graph (DRG) of
diameter 4 on 28 vertices having girth 7.
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Distance-Regular Graphs
Homotopy of a graph: trivial?

Distance Distribution in the Coxeter Graph

0 1 2 3 4
3 1

0
2 1

0
2 1

1
1 2

1

The Coxeter graph is distance-regular:
b0 = 3, b1 = b2 = 2, b3 = 1; c1 = c1 = c3 = 1, c4 = 2.
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Distance-Regular Graphs
Homotopy of a graph: trivial?

A Closed Walk in the Coxeter Graph

x

Starting at vertex x , we build a closed walk representing an
element of our homotopy group.
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Distance-Regular Graphs
Homotopy of a graph: trivial?

A Closed Walk in the Coxeter Graph

x

Starting at vertex x , we build a closed walk representing an
element of our homotopy group. 11 edges total.
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Distance-Regular Graphs
Homotopy of a graph: trivial?

A Closed Walk in the Coxeter Graph

x

We say this walk (of length 11) has essential length 7.
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Distance-Regular Graphs
Homotopy of a graph: trivial?

An Excursion into Homotopy

The following idea appears in the thesis work of Heather Lewis
(Discrete Math. (2000)) under the supervision of Paul Terwilliger.

x

v

w

u

t

s

Consider equivalence classes of closed walks in Γ starting and
ending at basepoint x .
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Distance-Regular Graphs
Homotopy of a graph: trivial?

Discrete Homotopy on a Graph

x

v

w

u

t

s

x

v

w

u

t

s

Closed walk xtwx is in the same equivalence class as xtwswx .
In general, walk q′ = q1pp

−1q2 is equivalent to walk q = q1q2:
q′ ∼ q
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Distance-Regular Graphs
Homotopy of a graph: trivial?

Discrete Homotopy on a Graph
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s

These three walks all have “essential length” 3.
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Distance-Regular Graphs
Homotopy of a graph: trivial?

Discrete Homotopy on a Graph

x

v

w

u

t

s

x

v

w

u

t

s

x

v

w

u

t

s

Our group operation is concatenation of walks. Of course, the
concatenation of these two walks is represented by another cycle:

xtwx ? xwsvx = xtwxwsvx ∼ xtwsvx
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Distance-Regular Graphs
Homotopy of a graph: trivial?

Subgroups of the Fundamental Group

Let π(Γ,x) be the homotopy group,as just defined,with basepoint x .

For each k , let πk(Γ, x) be the subgroup generated by walks of
essential length k .

For example, if Γ is a simple graph, πk(Γ, x) = 1 for k = 0, 1, 2.
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Distance-Regular Graphs
Homotopy of a graph: trivial?

Some results of Heather Lewis

I π0(Γ, x) = π1(Γ, x) = π2(Γ, x) ⊆ π2d+1(Γ, x) = π(Γ, x)

I a distance-regular graph which is also “DRG dual” has girth
at most 6

I For any distance-regular graph which is also “DRG dual”,
π6(Γ, x) 6= {e}

I and either π6(Γ, x) = π(Γ, x) or
I Γ is a “pseudoquotient” with D ∈ {2d , 2d + 1} and
I π6(Γ, x) = πD−1(Γ, x) 6= πD(Γ, x) = π(Γ, x)
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Distance-Regular Graphs
Homotopy of a graph: trivial?

Two Girth Parameters

For a distance-regular graph (DRG) Γ of diameter d , let g1(Γ)
denote the girth of Γ and let g2(Γ) denote smallest integer ` such
that

π`(Γ, x) = π(Γ, x)

for all vertices x of Γ.

We have
3 ≤ g1 ≤ g2 ≤ 2d + 1
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Polynomial functions on the Fano plane

This part is based on joint work with Doug Stinson (Waterloo).

I Point set X = Z7

I quadratic residues 1, 2, 4

I blocks

B = {{0, 1, 3}, {1, 2, 4}, {2, 3, 5},

{3, 4, 6}, {4, 5, 0}, {5, 6, 1}, {6, 0, 2}}
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Ideal of the Fano plane

B = {{0, 1, 3}, {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 0}, {5, 6, 1}, {6, 0, 2}}

with corresponding incidence vectors

c = [1, 1, 0, 1, 0, 0, 0] etc .

The unique triple in B containing both 0 and 1 also contains 3.
Including the quadratic polynomial x0x1 − x0x3 in a generating set
G for our ideal also guarantees that any vector c ∈ Z(〈G〉) with
c0 = 1 and c1 = 1 must have c3 = 1 as well.

Up to sign, there are
(7
2

)
quadratic generators of this form.

If we also include generators to ensure every zero is a 01-vector
with entries summing to three, these generate the full ideal.
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View design as set of 01-vectors and study ideal

I Consider a k-uniform hypergraph (X ,B) with

I vertex set X , a finite set of size v

I block (hyperedge) set B, a collection of k-subsets of X

I C[x] = C[x1, . . . , xv ], ring of polynomials in v variables with
complex coefficients

I identify each block B ∈ B with a 01-vector cB , with entries
indexed by the elements of X , whose i th entry is equal to one
if i ∈ B and equal to zero otherwise

I GOAL: Study I = I(B), the ideal of all polynomials that
vanish at every point cB .
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Ideal-variety correspondence
For S ⊆ Cv , we let

I(S) := {F ∈ C[x] | F (c) = 0 ∀ c ∈ S} .

If G ⊆ C[x], we denote by Z(G) the zero set of G,

Z(G) := {c ∈ Cv | G (c) = 0 ∀ G ∈ G} .

In our case, S is finite, so we have Z(I(S)) = S.
Nullstellensatz: For any ideal J of polynomials,

I(Z(J)) = Rad(J),

where Rad(J) denotes the radical of ideal J, the ideal of all
polynomials g such that gn ∈ J for some positive integer n.
Radical ideal: already closed under this process: Rad(J) = J.
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The trivial ideal of the complete uniform hypergraph

First example: complete uniform hypergraph (X ,Kv
k ).

Lemma A: Let X be a finite set of size v ≥ k and let Kv
k =

(X
k

)
consist of all k-subsets of X . Let

G0 = {x1 + · · ·+ xv − k} ∪ {x2i − xi | 1 ≤ i ≤ v}. (1)

Then I(Kv
k ) = 〈G0〉 and Z(〈G0〉) = {cB | B ∈ Kv

k}.

Trivial ideal: T = 〈x1 + · · ·+ xv − k , x21 − x1, . . . , x
2
v − xv 〉

All of our generating sets will contain G0.
[There is also a natural notion of “trivial ideal” for spherical codes,
binary codes, etc.]
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Monomials and t-designs

To each C ⊆ {1, 2, . . . , v} associate the monomial

xC =
∏
j∈C

xj

For block B ∈ B, the value of xC at point cB is one if C ⊆ B and
zero otherwise.

A k-uniform hypergraph (X ,B) is a t-(v , k , λ) design (or a block
design of strength t) if, for every t-element subset T ⊆ X of
points, there are exactly λ blocks B ∈ B with T ⊆ B

Every t-(v , k, λ) design is an s-(v , k, λs) design for each s ≤ t
where λs

(k−s
t−s
)

= λ
(v−s
t−s
)
.
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Designs approximate a space w.r.t. polynomial test
functions

The following characterization of t-designs is well-known.

Lemma B: (Delsarte) Let X be a set of size v and let (X ,B) be a
k-uniform hypergraph defined on X with corresponding vectors cB
(B ∈ B) as defined above. Then (X ,B) is a t-design on X if and
only if the average over B of any polynomial f (x) in v variables of
total degree at most t is equal to the average of f (x) over the
complete uniform hypergraph Kv

k defined on X .
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Two fundamental parameters

Definitions: Let (X ,B) be a non-empty, non-complete k-uniform
hypergraph on vertex set X = {1, . . . , v} with corresponding ring
of polynomials C[x]. Let I(B) and T be defined as above. Define

γ1(B) = min {deg f | f ∈ I(B), f 6∈ T }

and

γ2(B) = min {max{deg f : f ∈ G} | G ⊆ C[x], 〈G〉 = I(B)} .

William J. Martin Ideals in Combinatorics



Homotopy in Distance-Regular Graphs
Ideals of Designs
Spherical Codes

Association Schemes and Duality

Ideal-variety correspondence
Designs as approximations
Steiner systems, Symmetric & Witt Designs

Two fundamental parameters

So γ1(B) is the smallest possible degree of a non-trivial polynomial
that vanishes on each block and γ2(B) is the smallest integer s
such that I(B) admits a generating set all polynomials of which
have degree at most s.

Obviously, γ1(B) ≤ γ2(B); designs satisfying equality here are
particularly interesting.
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Large t implies all low-degree polynomials are trivial

Theorem C: If (X ,B) is a t-design (t ≥ 2) and f ∈ I(B) is
non-trivial, then deg f > t/2. So, for any non-trivial t-design
(X ,B), γ1(B) ≥ (t + 1)/2.

Theorem: For any k-uniform hypergraph (X ,B), γ2(B) ≤ k .
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Proof of Theorem C

Suppose F ∈ I(B) has degree at most t/2.

Write F (x) = f (x) + ig(x) where f , g ∈ R[x] each have degree at
most t/2.
Since the entries of each cB are real, it’s clear that f , g ∈ I(B).
Then f 2 ∈ I(B) is a non-negative polynomial of degree at most t.
By Lemma B, its average over B is zero hence its average over Kv

k

is also zero.
Since f 2 is everywhere non-negative, it must evaluate to zero on
the incidence vector cB of every k-set B. So it belongs to the ideal
I(Kv

k ). Since this ideal is radical and contains f 2, it also contains
f . By Lemma A, f must be trivial. The same argument applies to
g and, hence, to F .
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For Steiner systems, t/2 < γ1 ≤ γ2 ≤ t

A Steiner system is a t-(v , k, λ) design with λ = 1. The question
of existence of non-trivial Steiner systems with t > 5 has been
recently resolved in spectacular fashion by Keevash.

Theorem: Let (X ,B) be any t-(v , k, 1) design. For a block B ∈ B
and any two t-element subsets T ,T ′ contained in B, define

gT ,T ′(x) = xT − xT
′
.

where xT =
∏

i∈T xi . Then

(i) I(B) is generated by
G0 ∪

{
gT ,T ′(x) : B ∈ B,T ,T ′ ⊆ B, |T | = |T ′| = t

}
;

(ii) γ2(B) ≤ t.
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Upper Bounds

Theorem: For any partial t-(v , k , 1)-design (X ,B), γ2(B) ≤ t.

Corollary: Let (X ,B) be a t-(v , k , λ) design with |B ∩ B ′| < s for
every pair B,B ′ of distinct blocks. Then γ2(B) ≤ s. �
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For symmetric 2-designs, all functions are linear

Theorem: Let (X ,B) be any non-trivial symmetric 2-(v , k, λ)
design. For each pair i , j of distinct points from X define

fi ,j(x) = (k − λ)xixj −
∑

i ,j∈B∈B
xB,1 + λ2.

where xB,1 =
∑

i∈B xi . Then

(i) I(B) is generated by G0 ∪ {fi ,j | i , j ∈ X};
(ii) γ1(B) = γ2(B) = 2;

(iii) the coordinate ring C[x]/I(B) admits a basis
consisting of cosets {xi + I(B) | 1 ≤ i ≤ v}.

We have a similar result when (X ,B) consists of the points and
e-dimensional subspaces of PG(d , q)
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Parameter values for Witt designs

Certain orbits of the Mathieu groups provide elegant examples of
t-designs.

t-(v , k , λ) γ1(B) γ2(B)

5-(24, 8, 1) 3 3
4-(23, 7, 1) 3 3
3-(22, 6, 1) 2 2
2-(21, 5, 1) 2 2

5-(12, 6, 1) 3 3
4-(11, 5, 1) 3 3
3-(10, 4, 1) 2 2
2-(9, 3, 1) 2 2
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The unique 5-(24, 8, 1) design

Theorem: Let (X ,B) be the 5-(24, 8, 1) design. For a block
B ∈ B and points i , j ∈ B, define

fB,i ,j(x) = (xi − xj)(cB · x− 2)(cB · x− 4).

Then

(i) I(B) is generated by G0 ∪ {fB,i ,j | i , j ∈ B ∈ B};
(ii) γ1(B) = γ2(B) = 3.
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The Icosahedron
A spherical code is a finite subset of the unit sphere Sm−1 in Rm.
Q: Which polynomials vanish on the 12 vertices of the
icosahedron?

Image Credit:

https://en.wikipedia.org/wiki/Regular_icosahedron
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The Icosahedron
Q: Which polynomials vanish on the 12 vertices of the
icosahedron?

Image Credit:

https://en.wikipedia.org/wiki/Regular_icosahedron

F (x1, x2, x3) = x1x2x3 vanishes on all

(±1,±φ, 0) , (0,±1,±φ) , (±φ, 0,±1)
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Ideals for Spherical Designs

Here, the trivial ideal is T = 〈x21 + · · ·+ x2m − 1〉
and we define γ1(X ) and γ2(X ) similarly.

For a spherical t-design, we have γ1(X ) ≥ t/2.

If X is the set of vertices of the icosahedron, then I(X ), the ideal
of all polynomials that vanish on X , is generated by the equation
of the sphere together with five cubics of the above form.
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The Icosahedron and Famous Lattices

We can use “sliced zonal polynomials” to generate I(X ) in these
cases:

Name |X | Dim strength γ1(X ) γ2(X )

icos. 12 3 5 3 3
E6 72 6 5 3 3
E7 126 7 5 3 3
E8 240 8 7 4 4

Leech 196560 24 11 6 6
(joint with Corre Love Steele arXiv:1310.6626)
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Example - the cube
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Gram Matrix
These eight vectors (

± 1√
3
, ± 1√

3
, ± 1√

3

)
have Gram matrix (pairwise inner products)

G =
1

3



3 1 1 −1 1 −1 −1 −3
1 3 −1 1 −1 1 −3 −1
1 −1 3 1 −1 −3 1 −1
−1 1 1 3 −3 −1 −1 1

1 −1 −1 −3 3 1 1 −1
−1 1 −3 −1 1 3 −1 1

−1 −3 1 −1 1 −1 3 1

−3 −1 −1 1 −1 1 1 3


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Gram Matrix

The entrywise square of G

G ◦2 = G ◦ G =
1

9



9 1 1 1 1 1 1 9

1 9 1 1 1 1 9 1

1 1 9 1 1 9 1 1

1 1 1 9 9 1 1 1

1 1 1 9 9 1 1 1

1 1 9 1 1 9 1 1

1 9 1 1 1 1 9 1

9 1 1 1 1 1 1 9


is also a Gram matrix (tetrahedron in R4). And G (G ◦ G ) = 0.

William J. Martin Ideals in Combinatorics



Homotopy in Distance-Regular Graphs
Ideals of Designs
Spherical Codes

Association Schemes and Duality

The Icosahedron
Spherical Designs and Lattices
“DRG duals”

Multiplying Entrywise Powers

For the 3-cube, we have

GG = 8
3G , G (G ◦ G ) = 0, G (G ◦ G ◦ G ) = 56

27G ,

(G ◦ G )(G ◦ G ) = 8
27J + 16

9 G ◦ G , (G ◦ G )(G ◦ G ◦ G ) = 0,

(G ◦ G ◦ G )(G ◦ G ◦ G ) = 56
243G + 16

9 G ◦ G ◦ G

So the vector space spanned by J, G , G ◦ G , G ◦ G ◦ G is closed
under matrix multiplication!
This is special:
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DRG Duals

Let X ⊂ Sm−1 be a spherical code in Rm with Gram matrix
G = [x · y]x,y∈X .

Since G is positive semidefinite, G ◦ G � 0 as well, and
G ◦ G ◦ G � 0, etc.
Suppose only s angles occur between pairs of distinct vectors in X .
We say X is a “DRG dual” if the vector space

span

J,G ,G ◦ G , . . . ,G ◦ · · · ◦ G︸ ︷︷ ︸
s times


is closed under matrix multiplication.
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Association Schemes

I all DRGs are association schemes (P-polynomial a.s.)

I all “DRG duals” are association schemes (Q-polynomial a.s.)

A symmetric association scheme can be thought of as a highly
regular coloring of the edges of the complete graph . . .

or as a vector space of symmetric matrices closed under both
ordinary and entrywise multiplication, and containing the
identities, I and J, for both.
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Truncated Boolean Lattice (partially ordered set)

∅

{1} {2} {3} {4} {5}

{1, 2} {1, 3} {1, 4} {1, 5} {2, 3} {2, 4} {2, 5} {3, 4} {3, 5} {4, 5}

For n = 5, Ω = {1, 2, 3, 4, 5} and k = 2, we take all subsets of Ω
of size at most k , ordered by inclusion.
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Truncated Boolean Lattice (poset)

∅

{1} {2} {3} {4} {5}

{1, 2} {1, 3} {1, 4} {1, 5} {2, 3} {2, 4} {2, 5} {3, 4} {3, 5} {4, 5}

Incidence matrix:
1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1


X consists of 10 points in R5 and I(X ) is generated by the
obvious quadratics (trivial polynomials for designs).
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Hamming Lattice (poset)

· · ·

0 · · 1 · · ·0· ·1· · · 0 · · 1

00· 01· 0 · 1 ·11

000 001 010 011 100 101 110 111

For n = 3 and q = 2, we consider all “partial” n-tuples over Zq,
marking unspecified entries with ‘·’. Partial order relation is:

a � b if ai = bi whenever ai 6= ·
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Hamming Lattice (poset)

· · ·

0 · · 1 · · ·0· ·1· · · 0 · · 1

00· 01· 0 · 1 ·11

000 001 010 011 100 101 110 111

Incidence matrix:

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1


X consists of 8 points in R6 and I(X ) is generated by trivial
polynomials together with

Y1 + Y6 − 1, Y2 + Y5 − 1, Y3 + Y4 − 1.

Similar ideas work for the Grassmann scheme and the bilinear forms scheme.
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The Ideal of the Cube

If, instead of looking at the poset, we go back to the Euclidean
cube, {(±1,±1,±1)}, we immediately see that

I(X ) = 〈x21 − 1, x22 − 1, x23 − 1〉
and γ1(X ) = γ2(X ) = 2.William J. Martin Ideals in Combinatorics
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Conjectures

Dual DRGs distance-regular graphs
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Duality

If Γ is a distance-regular graph defined on an abelian group X such
that

a ∼ b ⇒ a + x ∼ b + x

for all a, b, x ∈ X , then the characters of G give us a DRG dual.

And, in this case, closed walks of length k map to polynomials of
degree dk2 e in the ideal of the dual DRG.

Girth g1(Γ) > 4 iff a1 = 0, c2 = 1
WHILE
γ1(X ) > 2 iff a∗1 = 0, c∗2 = 2m1/(m1 + 2), etc.
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The End

Thank you all!

Sparrow Dance, Sendai-shi Festival, Sunday, 20th May, Sun Mall
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